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Abstract 

Background The rapid global spread of COVID-19 has seriously impacted people’s daily lives and the social economy 
while also posing a threat to their lives. The analysis of infectious disease transmission is of significant importance 
for the rational allocation of epidemic prevention and control resources, the management of public health emergen-
cies, and the improvement of future public health systems.

Methods We propose a spatiotemporal COVID-19 transmission model with a neighborhood as an agent unit 
and an urban spatial network with long and short edge connections. The spreading model includes a network 
of defined agent attributes, transformation rules, and social relations and a small world network representing agents’ 
social relations. Parameters for each stage are fitted by the Runge-Kutta method combined with the SEIR model. 
Using the NetLogo development platform, accurate dynamic simulations of the spatial and temporal evolution 
of the early epidemic were achieved.

Results Experimental results demonstrate that the fitted curves from the four stages agree with actual data, 
with only a 12.27% difference between the average number of infected agents and the actual number of infected 
agents after simulating 1 hundred times. Additionally, the model simulates and compares different “city closure” sce-
narios. The results showed that implementing a ‘lockdown’ 10 days earlier would lead to the peak number of infections 
occurring 7 days earlier than in the normal scenario, with a reduction of 40.35% in the total number of infections.

Discussion Our methodology emphasizes the crucial role of timely epidemic interventions in curbing the spread 
of infectious diseases, notably in the predictive assessment and evaluation of lockdown strategies. Furthermore, this 
approach adeptly forecasts the influence of varying intervention timings on peak infection rates and total case num-
bers, accurately reflecting real-world virus transmission patterns. This highlights the importance of proactive measures 
in diminishing epidemic impacts. It furnishes a robust framework, empowering policymakers to refine epidemic 
response strategies based on a synthesis of predictive modeling and empirical data.
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Background
Since the outbreak of COVID-19, various prevention 
and control measures have been implemented in differ-
ent regions worldwide. However, the persistent spread of 
COVID-19 continues to represent a significant challenge 
for many countries. Several studies have established dis-
ease models that aim to predict the development of the 
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epidemic. Currently, the more frequently used epide-
miological modeling methods include the propagation 
dynamics model, cellular automata model, and multi-
agent model. In the history of epidemiological research, 
Kermack, et  al. [1] proposed the famous SIR compart-
ment model, which laid the foundation for studying epi-
demic transmission dynamics models. The basic idea 
is to divide the population into different classes (com-
partments), which represent the population’s various 
disease states. Mathematical methods are subsequently 
employed to establish dynamic equations of these vari-
ables and then investigate the dynamic process of dis-
ease transmission. Later, many scholars have improved 
the classical compartment model to better reflect the 
actual situation of the disease. For example, Jana, et  al. 
[2], Khan, et al. [3], Amaro [4], Zhu, et al. [5], Yang, et al. 
[6] have improved the basic warehouse model for pre-
diction analysis. However, the infectious disease dynam-
ics model significantly simplifies the simulation process 
and does not consider the heterogeneity of the popula-
tion. The cellular automata model was proposed by Von 
Neumann and Ulam in 1948 and is often employed to 
simulate the spatiotemporal evolution of complex phe-
nomena. Bin, et al. [7] used the cellular automata model 
to simulate and analyze the application of influenza A 
(H1N1). Although the epidemic simulation model based 
on cellular automata overcomes population heterogene-
ity, it does not consider human movement and behav-
ior. The agent model can effectively describe individual 
behavior, making it widely used in simulating the spread 
of various diseases, such as COVID-19 [8, 9], malaria [10, 
11], AIDS [12], SARS [13], Ebola virus [14]. However, the 
agent model also does not take into account the impact of 
social relations between agents on the epidemic’s spread 
according to Wang, et al. [15].

In the transmission of an epidemic, people are a critical 
source of infection, and their social relationships signifi-
cantly impact on the epidemic’s spread. Watts, et al. [16] 
proposed small-world networks to describe human social 
connections. The emergence of complex network theory 
offers a fresh perspective for conducting dynamic simula-
tions of epidemics. More and more studies use complex 
networks to simulate disease transmission and evalu-
ate the effectiveness of prevention and control measures 
[17–21]. Liu, et al. [19] used contact and contactless net-
works to simulate the two-stage outbreak of COVID-19 
on the Diamond Princess cruise ship. Alrasheed, et  al. 
[18] proposed a network-based epidemic model to simu-
late the spread of COVID-19 in Saudi Arabia. They used 
a variety of scenarios to predict the epidemic dynamics 
of Saudi Arabia in the next 6 months. Peirlinck, et al. [20] 
combined the network model with the SEIR model to 
predict the peak of the COVID-19 outbreak in China and 

the United States. The current epidemic spread based 
on the network model focuses more on the influence of 
parameters such as infection rate and primary repro-
duction number on epidemic spread combined with the 
compartment model [22, 23]. The results are the trend 
of the epidemic in time. However, the spread of epidem-
ics is a time and spatial evolution process [24]. Since the 
outbreak of COVID-19, some scholars have studied the 
risk of COVID-19 infection [25, 26] as well as the spa-
tial and temporal distribution characteristics [27–30]. 
Meanwhile, some scholars pay attention to the spatial 
characteristics of epidemics during the transmission pro-
cess. However, most spatiotemporal modeling ignores 
individuals’ social relations [31]. It should be noted that 
individual behavior and government intervention can 
significantly impact the spread of epidemics.

Given the aforementioned issues, this study proposes 
a small-world network and multi-agent collaborative 
COVID-19 spatiotemporal propagation simulation model 
to simulate the spread of COVID-19 for urban areas. The 
neighborhood is regarded as a kind of agent with the 
exact nature, and the interaction between the communi-
ties is realized by establishing a small-world network. By 
integrating individuals’ social connections into the spa-
tiotemporal modeling of COVID-19 spread, alongside 
GIS (Geographic Information System), data visualization, 
and other technologies, this approach fully investigates 
various information relationships and describes the epi-
demic’s temporal and spatial propagation. Taking Wuhan 
urban area as an example, this model simulated the early 
stages of COVID-19 outbreak. Multiple scenarios were 
developed to simulate the epidemic’s evolutionary trends, 
and analyzed and discussed using the simulation results. 
The data simulations confirmed the excellent applicabil-
ity of this model.

Methods and study design
In this study, we use the neighborhoods as the primary 
unit of investigation. In order to represent the activity 
relationships between neighborhoods, we designed a spa-
tiotemporal simulation model containing both short and 
long connections. Short connections were established 
based on interactions within the same activity, and con-
nections between neighborhoods were facilitated due to 
the activities of individuals within them. On the other 
hand, long-lasting connections were established between 
distant neighborhoods where individuals engage in com-
mon activities.

COVID‑19 spatiotemporal propagation simulation model
In the context of the COVID-19 pandemic, it is crucial 
to determine various epidemiological parameters for 
the disease accurately. To achieve this, we utilized the 
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Runge-Kutta method and fitted the fmincon function 
in MATLAB to minimize the sum of squared residuals, 
resulting in optimal parameter values. These values were 
then integrated into the SEIR (Susceptible-Exposed-
Infectious-Removed) model to predict the number of 
COVID-19 cases. It is worth noting that the transmission 
of the virus primarily occurs among acquaintances within 
individuals’ daily activities, emphasizing the importance 
of understanding social networks in disease transmission.

Agent model
The agent model mainly consists of agents with specific 
action objectives, which can perceive the environment 
and decision-making behavior under certain conditions. 
By defining the attributes and behaviors of agents, some 
phenomena in the real world can be simulated. Agents 
may represent a single individual or a homogeneous 
class of individuals. When constructing infectious dis-
ease models, modeling objects are mainly divided into 
microscopic individuals and single/mixed groups [32]. 
The microscopic individual considers a single individual 
as the research object while taking into account differ-
ences between individuals. In contrast, the single group 
regards a class of individuals with the same characteris-
tics and explores the differences between individuals with 
different characteristics. The composite group represents 
individuals living in a relatively independent geographi-
cal area and the migration of internal individuals links 
the sub-groups. In order to explore the epidemic situa-
tion of COVID-19 in urban areas, this paper adopts the 
mixed group method, where the population in the neigh-
borhood is regarded as a sub-group, the agent represents 
all the individuals in a single cell, and the network repre-
sents the connections between cells due to the movement 
of the internal individuals.

In our study, the agent-based model adopts the popu-
lation partitioning method of the SEIR (Susceptible-
Exposed-Infectious-Removed) model to characterize the 
dynamics of disease transmission at the neighborhood 
level. Within this model framework, an individual “agent” 
does not represent a single person but rather a collec-
tive of residents within a neighborhood. Specifically, a 
“Susceptible Agent” (S) denotes a state where there has 
been no disease transmission within the neighborhood; 
an “Exposed Agent” (E) signifies that residents within 
the neighborhood have been exposed to the pathogen, 
though they have not yet exhibited symptoms but carry 
the risk of infection; an “Infectious Agent” (I) describes 
the presence of at least one resident within the neighbor-
hood displaying symptomatic infection; and a “Removed 
Agent” (R) encompasses all residents who have recovered 
or passed away due to the disease. Transitions between 
states, such as from “Exposed” to “Infectious,” indicate 

the progression of illness in at least one resident within 
the neighborhood, reflecting the overall health status of 
the population within that neighborhood. Defining agent 
attributes, social relations, and state transition rules con-
struct the agent model of COVID-19. The agent attrib-
utes can be described as follows:

Definition 1:
Agent attributes. Agent attributes refer to the proper-

ties of agents. The agent attributes of this paper include 
agent identification, agent location, latent days, infection 
days and agent category, which are expressed as:

In Eq.1, O represents the number of the agent, P 
denotes the geographical location of the agent in the vir-
tual space, De represents the number of days when the 
latent agent is in the incubation period, Di represents 
the number of days when the infected agent is in the 
infection period, K represents the type of agent, that is, 
an agent at a particular time belongs to the susceptible 
agent, the latent agent, the infected agent or the evacuee 
agent. It is crucial to note that each agent can only belong 
to a particular type of agent at each time.

Simulation of COVID‑19 spatiotemporal propagation 
of small‑world networks with cooperative multi‑agent
The impact of interpersonal relationships on the preva-
lence of epidemics is significant. Individuals tend to 
have fixed social networks with stable relationships in 
everyday life. Viral infections are usually spread among 
acquaintances in these networks. Understanding the 
patterns of viral transmission within individual social 
networks is crucial for controlling the epidemic. The 
small-world network model is a widely used method for 
describing social relationships between people. In this 
paper, we use the small-world network to model these 
relationships and construct a spatiotemporal simulation 
model called the COVID-19 Small-World Network Col-
laborative Multi-Agent Model. This model combines the 
small-world network approach with multi-agent mod-
eling techniques to simulate the spread of COVID-19.

The small-world network model captures the clus-
tering and separation of nodes in real-world systems. 
Within social networks, this property means that indi-
viduals who do not know each other can be connected 
by short chains of acquaintances, leading to the small-
world phenomenon. Many empirical network dia-
grams exhibit small-world phenomena, such as social 
networks, the underlying architecture of the Internet, 
Wikipedia’s encyclopedia sites, and genetic networks. 
The clustering coefficient and average path length are 
key parameters that characterize small-worldness in 
a network, helping to determine whether it possesses 

(1)A = (O,P,De,Di,K ),
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such characteristics. The clustering coefficient meas-
ures the proximity of neighbor nodes, while the average 
path length indicates the typical distance between any 
two nodes in the network. A small-world network falls 
between regular and random networks, with a signifi-
cant clustering coefficient and a small path length. The 
nodes in the small-world network can represent the 
agents, and the connection between the nodes can rep-
resent the social relationship between the agents.

Our refined model integrates the dynamic charac-
teristics of small-world networks to better understand 
COVID-19 spread through social connections. It high-
lights the importance of the network’s evolving nature 
and the non-uniformity of connections, where some 
nodes have more significant interactions than others. 
This complexity, reflecting multiple layers of relation-
ships, is crucial to depict the intricate viral transmis-
sion patterns in extensive social networks. The model 
focuses on key features like the high clustering coef-
ficient and short average path lengths, demonstrating 
how close-knit groups and short connection chains 
between individuals can accelerate the spread of the 
virus. This approach aims to offer a more detailed and 
realistic simulation of epidemic propagation, under-
scoring the influence of social network structures on 
disease dynamics. To understand the role of social con-
nections in spreading the COVID-19 epidemic, the 
number of agents ‘neighbors and the average degree of 
the network are defined as:

Definition 2:
Number of agent neighbors. The number of edges 

directly connected to the agent node i, that is, the 
degree (Ui) of node i, is expressed as:

In Eq. 2, L is the set of all sides; Ab
i  takes a value of 1 

or 0, mainly determines whether b contains node i; if 
it does, Ab

i  value takes 1, otherwise take 0. Generally, 
a more extensive Ui indicates that the node is more 
important in the network.

Definition 3:
Network average degree. The average degree of all 

agents in the network is the average degree of the net-
work (<k>), expressed as:

In Eq. 3, N denotes the number of nodes in the net-
work, and Ui denotes the number of neighbors of node 
i. Jia, et  al. [31] proposed constructing a small-world 
network by “random edging.” They used this method to 

(2)Ui =

∑

b∈L

Ab
i ,

(3)< κ ≥
Ui

N
,

establish an agent model of the small-world network to 
simulate the social relationship between agents.

Definition 4:
Agent social relationship. The connection between 

the nodes indicates the social connection between the 
agents. If there is a connected edge between the agents, 
it indicates that there is a social relationship between the 
two agents. Otherwise, there is no social relationship, 
expressed as:

In Eq. 4, i and j represent node i and node j in the net-
work. The parameter w denotes the presence of a connec-
tion between these nodes: it is set to 1 if there is an edge, 
here labeled as l, connecting node i to node j; and it is set 
to 0 if no such edge exists.

In this study, we constructed a network of 4671 nodes, 
each corresponding to a neighborhood. The average 
degree of 6.8 indicates that each neighborhood is directly 
connected to 6.8 other neighborhoods. The average path 
length of the network is 6.4 steps, demonstrating that 
neighborhoods can reach each other through a few inter-
mediary steps, even within a large-scale network. More-
over, the average clustering coefficient of the network is 
0.28, which is significantly higher than the expected clus-
tering coefficient of a random network of the same size, 
indicating a tendency for nodes within the network to 
form highly clustered groups.

Figure  1 displays the degree distribution of the net-
work’s nodes, where most nodes have relatively low 
degree values while a few have high degrees. This dis-
tribution pattern aligns with the typical degree distribu-
tion characteristics of small-world networks, where most 
nodes are interconnected through a few highly connected 
nodes. Figure  2 shows the distribution of the clustering 
coefficients of the nodes. The higher peaks of the cluster-
ing coefficients suggest strong interconnections between 
nodes within the network, reflecting the high clustering 
coefficient characteristic of small-world networks.

Combining these observations, it is evident that the 
network of the study area exhibits two critical features 
of small-world networks: one is the short average path 
length, allowing any two nodes to be reached through a 
limited number of intermediary nodes; the second is the 
high clustering coefficient, meaning that nodes tend to 
form tight-knit groups. These features together support 
the conclusion that the study area possesses small-world 
network properties.

In an agent model using a small-world network, the 
social relationship between agents is expressed by con-
structing short and long connections based on the 
network’s topology. A short connection is randomly 

(4)w = Al
ij ,
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established within a specific distance, representing an 
activity range of people’s daily lives. The long connection 
selects an agent with a more significant node degree to 
connect randomly with other agents, reflecting far com-
muting or participation in large-scale activities. Far-
distance cells are connected when internal individuals 
participate in the same activity. Figure  3 illustrates the 
structure of the COVID-19 propagation model, where 
green circles represent susceptible agents, yellow circles 
represent latent agents, red circles represent infected 
agents, and blue circles represent removed agents.

The steps to build the social network of the agent is as 
follows:

(1) According to the range of people’s daily activities, 
the amicable relationship between the daily activi-
ties of the agent is randomly established.

(2) Select an agent with a certain degree of high modal-
ity and randomly connect with other agents to 
construct a distant relative relationship for long-

distance commuting. Barabási, et al. [33] proposed 
the “preference dependency” network model, 
emphasizing that the probability of connecting 
edges between nodes in real networks often has the 
characteristics of “heavy-tail distribution,” and sub-
sequent studies have also shown that this network 
structure has essential applications in epidemic 
transmission and cluster behavior [34, 35].

Propagation mechanism
The state of an agent can change at any time. Disease 
transmission mainly occurs between agents through 
short and long connections. Infected and latent agents 
are infectious, and those in contact with them within the 
infection period have a certain probability of contract-
ing the disease. Susceptible agents can be infected by 
either infected or latent agents and become latent agents. 
Latent agents will transition to infected after incubation, 
and infected agents will become removed agents after the 
end of the infection period, which prevents them from 

Fig. 1 Degree distribution chart

Fig. 2 Clustering coefficient distribution chart
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being reinfected. The state transition rules of the agent 
are shown in Fig. 4.

The agent propagation mechanism is shown in Fig.  5. 
Firstly, the adjacent agents of the infected agent in the 
social relationship network are obtained as the infected 
contacts. The infected contacts generate a random num-
ber r to compare with the actual infection rate to deter-
mine whether the infected contacts are infected with the 
latent agent. If the random number r exceeds the infec-
tion rate, the infected contacts are not infected. Con-
versely, if the random number r is less than or equal to 
the infection rate, the infected contacts are infected into 
the latent agent. Similarly, the latent agent obtains the 
adjacent agent of the latent person in the social rela-
tionship network as the latent contact. The latent con-
tact generates a random number r2 to compare with 
the latent rate to determine whether the latent contact 
ends the latent contact period and becomes the infected 
agent. If the random number r2 exceeds the latent rate, 
the latent contact remains in the latent period. Other-
wise, the random number r2 is less than or equal to the 

latent rate, and the latent contact ends the latent period 
and becomes the infected agent. During the treatment 
process, an infected agent generates another random 
number, denoted as r3. This random number is compared 
to the removal rate to determine whether the infected 
agent recovers or succumbs to the disease. If the random 
number r3 is less than or equal to the removal rate, the 
infected agent transitions to the removed state, repre-
senting recovery or death. However, if the random num-
ber r3 is greater than the removal rate, the state of the 
infected agent remains unchanged.

Model simplification
To simplify the implementation of the COVID-19 space-
time propagation model using small-world network col-
laborative multi-agent, several assumptions are proposed:

(1) It is assumed that the infection and the removal 
probability between cells are the same without con-
sidering the impact of factors such as the internal 
size of the cell.

Fig. 3 Structure of the COVID-19 propagation model

Fig. 4 Agent state transition rules



Page 7 of 18Fan et al. BMC Public Health          (2024) 24:672  

(2) All lurking agents will be transformed into infected 
agents, and there are no cases of self-healing or 
death of lurking agents or reinfection of removed 
agents.

(3) Neighborhood social network relationships are 
mainly concentrated within a specific range of 
surrounding communities. If a city is under com-
prehensive control management and all public 
transport in the urban area is closed, remote com-
munities have no social relationships. When a cell 
is under closed management, all connections are 
removed, indicating no social relationship between 
cells.

(4) Epidemic transmission only spreads through cell 
connection networks. If there is a network connec-
tion between the cells, the connected cells are likely 
to be infected and become epidemic cells if there is 
an epidemic cell.

Model realization
The pseudocode for the COVID-19 spatiotemporal prop-
agation model using small-world network collaborative 
multi-agent is shown in Table 1.

Step 1: Initialization, mainly including agent initiali-
zation and space environment initialization. Agent ini-
tialization configures the four types of agents S, E, I, 
and R, according to the agent properties and methods 

for the acquired agent information; Space environment 
initialization is to process boundary data to provide a 
space environment basis for the activities of agents;

Step 2: Build a virtual space. Load cell vector data and 
urban vector data in NetLogo to build virtual space;

Step 3: Parameter Estimation. Utilizing real COVID-
19 data, the SEIR model parameters were estimated 
by fitting the model using the Runge-Kutta method to 
forecast COVID-19 trends. Subsequently, MATLAB’s 
built-in function fmincon was employed to optimize 
the parameters, aiming to minimize the sum of squared 
residuals and thereby obtain fitted values for param-
eters β, θ, α, and γ. Fmincon is a function designed to 
solve constrained nonlinear minimization problems, 
which is particularly suitable for our model due to its 
effective handling of complex constraints. The choice of 
this function was based on its efficiency and accuracy 
in dealing with such optimization problems. Specific 
configurations were made to the parameters of fmincon 
to ensure optimal fitting of parameters β, θ, α, and  γ, 
while adhering to the model constraints. The specific 
steps are as follows:

(1) Considering that the COVID-19 has an incubation 
period, this paper selects the SEIR model for simula-
tion. The specific formula of the SEIR model is as fol-
lows:

Fig. 5 Agent propagation mechanism
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In Eq.  5, N is the total number of people, and S(t), 
E(t), I(t), and R(t), respectively, represent the total num-
ber of susceptible, latent, infected, and recovered peo-
ple at time t, and S(t) + E(t) + I(t) + R(t) = N is satisfied 
at any time, which means that the total number of four 
types of people at time t is the total number of people, 
and remains unchanged; β encapsulates the transmis-
sion probability of the virus by infected individuals dur-
ing their interaction with susceptible ones, whereas θ 
corresponds to the likelihood of virus dissemination by 
exposed individuals in contact with susceptible popula-
tions.; α indicates the probability that the latent person 

(5)

dS(t)
dT

=
−βI(t)S(t)−θE(t)S(t)

N ,
dE(t)
dT

=
βI(t)S(t)+θE(t)S(t)

N − αE(t),
dI(t)
dT

= αE(t)− γ I(t),
dR(t)
dT

= γ I(t),

will be transformed into an infected person, and γ is the 
removal rate.

(2) It should be noted that the model parameters in Eq. 
(5) are not directly estimated from data. In this study, 
we employed the fourth-order Runge-Kutta method 
for numerical solving, which is suitable for systems of 
ordinary differential equations and has been proven 
to provide excellent solving performance [36]. With 
known derivatives of the equations and initial val-
ues, the fourth-order Runge-Kutta method effectively 
simplifies the process of solving differential equa-
tions, particularly in computer simulation applica-
tions. Therefore, we used this method to numerically 
solve the SEIR model in Eq. (5) to obtain the model 
parameters. The fourth-order Runge-Kutta equation 
is as follows:

Table 1 Spatiotemporal propagation simulation algorithm of COVID-19
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In Eq. 6, where k1, k2, k3, and k4 are the slopes of sev-
eral points in the interval  [xt,  xt + 1], k1 is the slope at the 
beginning of the period, k2 and k3 are the slopes of the 
midpoint of the period, k4 is the slope of the end of the 
time, and h is the time interval. The next value, yt + 1, is 
determined by the product of the current value yt plus 
the time interval h and the estimated slope. The y in the 
model can be calculated as S, E, I, and R, respectively. 
In the initial setup of the model, S0, E0, I0, and R0 rep-
resent the quantities of susceptible, latent, infected, and 
removed individuals, respectively. Here, R0 refers to the 
total number of individuals who no longer transmit the 
virus at the beginning of the model, which is different 
from the basic reproduction number used in epidemiol-
ogy to describe the transmission capacity of infectious 
diseases. Based on the specified initial values, predicted 
values for the numbers of susceptible individuals (St), 
latent individuals (Et), confirmed individuals (It), and 
removed individuals (Rt) can be obtained. Then the pre-
dicted value and the actual data of the epidemic are con-
structed. The sum of squares of residuals is shown in 
Eq. 7.

In Eq.  7, Strue, Etrue, Itrue, and Rtrue, respectively, repre-
sent the actual number of susceptible people, the num-
ber of latent people, the number of confirmed cases, and 
the number of transferred cases (including the number of 
cured cases and the number of dead cases), and S, E, I and 
R respectively represent the predicted number of suscep-
tible people, the number of latent people, the number of 
confirmed cases and the number of transferred cases.

(3) The fmincon function in MATLAB was utilized to 
minimize the sum of squared residuals. For this pur-
pose, suitable initial parameter values were estab-
lished, and the feasible domain for these parame-
ters was defined, ensuring that the values remained 
within a reasonable range throughout the estimation 
process. Through an iterative optimization algorithm, 
each step involved adjusting the parameter values 
based on the gradient information of the objective 
function at the current parameters, aiming to reduce 

(6)

yt+1 = yt +
h
6 (k1 + 2k2 + 2k3 + k4),

k1 = f
(

xt, yt
)

,

k2 = f
(

xt +
h
2 , yt +

h
2kt

)

,

k3 = f
(

xt +
h
2 , yt +

h
2k2

)

,

k4 = f
(

xt +
h
2 , yt +

h
2k3

)

,

(7)
f = sum

(

(Strue − S)2 + (Etrue − E)2 + (Itrue − I)2 + (Rtrue − R)2
)

,

discrepancies between the model output and actual 
epidemic data. The optimization process was con-
tinuous until the sum of squared residuals reached its 
minimum, at which point the parameter set formed 
the best fitting solution for the model, namely the 
fitted values of parameters β, θ, α, and  γ. The con-
straints applied in the fmincon function are as fol-
lows:

where c(x) is a nonlinear inequality, ceq(x) is a nonlinear 
equation, A·x < =b is a linear inequality, and Aeq·x = beq is 
a linear equation. Since there is no linear inequality con-
straint in the model, this paper sets A = [], b = [], Aeq = [], 
Beq = [], lb, and ub as the lower and upper bounds of the 
linear inequality constraint of variables. This paper sets 
parameters β、θ、α and γ range is [0,1].

Step 4: Build a relationship network. Constructing 
the social network of agents represents the interaction 
between agents and simulates the spread of viruses in 
cities.

Step 5: According to the transmission mechanism 
of the agent, determine the infection rules of virus 
transmission.

Step 6: Use the experimental data to simulate and 
output the spatial distribution of the agent at the last 
moment after the simulation time and the curve of each 
agent over time.

Design of the study
The main objective of this study is to simulate the spread 
of COVID-19 using a Multi-Agent Simulation approach 
integrated with the Small-World Network framework. 
The experimental design comprises several essential 
components to ensure the robustness and credibility of 
the research findings. Firstly, based on detailed neighbor-
hood data in the main urban area of Wuhan, we estab-
lished a virtual space containing latitude, longitude, and 
infection counts. This step involved using Python for 
data mining to obtain neighborhood names, locations, 
and COVID-19 infection case data. This data serves as 
the basis for building the Multi-Agent Simulation model. 
Secondly, model parameters are computed by utilizing 
the Runge-Kutta method to predict COVID-19 data, and 
the fmincon function in MATLAB is employed to obtain 
the optimal parameter values by minimizing the sum of 
squared residuals. Lastly, the Multi-Agent Simulation 

(8)min f (x) →

c(x) ≤ 0
ceq(x) = 0
A · x ≤ b
Aeq · x = beq
lb ≤ x ≤ ub

,



Page 10 of 18Fan et al. BMC Public Health          (2024) 24:672 

model is constructed, and simulation results are output-
ted. The position of infected and exposed individuals is 
determined from the previous steps, and social rela-
tionship networks and infection rules are established to 
simulate interactions among agents. By incorporating 
the transition rules, the state changes of agents over time 
are modeled, and simulations are conducted to output 
the results. And the implementation steps are further 
detailed in Fig. 6.

Study area and data processing
Wuhan was the city most seriously affected by the early 
stage of the COVID-19 epidemic in China. There are 13 
districts in Wuhan, mainly including seven central urban 
areas of Jiang’an district, Jianghan district, Qiaokou dis-
trict, Hanyang district, Wuchang district, Qingshan dis-
trict, Hongshan district, and six administrative districts 
of Dongxihu district, Hannan district, Caidian district, 

Jiangxia district, Huangpi district, and Xinzhou district. 
Wuhan is China’s most significant inland water, land, 
and air transportation hub and the shipping center in the 
middle reaches of the Yangtze River. Its high-speed rail 
network radiates over half of China and is the only city in 
Central China that can directly travel to five continents 
worldwide. As of the end of 2020, Wuhan has an area of 
8569.15  km2, a permanent population of 12.3265 million 
people, and a regional GDP of 1.56 trillion yuan. This 
paper selects the research area as the central urban area 
of Wuhan (as shown in Fig. 7).

The data used in the propagation model mainly include 
COVID-19 epidemic data and epidemic small-area data 
in the urban area of Wuhan. The COVID-19 epidemic 
data in Wuhan is sourced from the real-time data pub-
lished around 7 PM on a daily basis by the DXY web-
site (https:// ncov. dxy. cn/), including daily confirmed 
cases, cumulative confirmed cases, recovered cases, and 

Fig. 6 Multi-agent coordination propagation model of COVID-19 spatiotemporal spread

https://ncov.dxy.cn/
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deaths. Due to the change in the diagnosis method for 
COVID-19 in Hubei Province on February 12th, about 
12,000 clinical cases were added to the cumulative cases 
reported in Wuhan that day. In order to make the data 
more reasonable and reliable, the newly added data on 
February 12th was allocated to each day in the previous 
week according to the daily increase ratio of confirmed 
cases in the previous week [37], as shown in Fig. 8.

The epidemic small-area data in the urban area of 
Wuhan was obtained from the lists of Wuhan’s first 
and twentieth epidemic-free communities and villages, 

which were published by Changjiang Daily. Starting from 
March 6, 2020, the Neighborhood Prevention and Con-
trol Group of the Wuhan COVID-19 Prevention and 
Control Headquarters released 20 batches of lists con-
taining areas, communities, and villages (teams) with no 
reported cases. The designation of a no-epidemic neigh-
borhood is contingent upon meeting both the criteria of 
‘zero cases’ and ‘comprehensive control’. Since the data 
from the twentieth publication showed that 99.9% of 
the communities and villages had no cases, we regarded 
the communities and villages from this publication as all 

Fig. 7 The central urban area of Wuhan

Fig. 8 Comparison of raw and corrected data



Page 12 of 18Fan et al. BMC Public Health          (2024) 24:672 

of Wuhan’s residential areas. We obtained the location 
information of Wuhan’s residential areas by using the 
Amap API according to their names and converted the 
obtained latitude and longitude information into vector 
data. We then spatially connected the vector data of resi-
dential areas with the vector data of central urban areas 
of Wuhan. Finally, we obtained the residential area data 
for each district in the central urban area, as shown in 
Table 2. The epidemic residential areas were determined 
by comparing the first and twentieth epidemic-free 
neighborhood and village lists.

Parameter determination
When using epidemic models to study the spread of epi-
demics, the most critical issue is to determine the trans-
mission parameters of the epidemic, including infection 
rate, transition rate, and removal rate. Since the outbreak 
of COVID-19, China has taken a series of measures to 
control the development of the epidemic, such as clos-
ing off communities, establishing a shelter hospital, and 
requiring temperature checks to enter public places. 
To ensure that the quantitative parameter values are 
closer to the actual values, we divided the epidemic into 
four stages based on three main time points during the 
Wuhan epidemic, namely the closure of traffic on January 
23rd, the closure management of the neighborhood on 
February 10th, and the implementation of “bed waiting” 
on February 27th. The parameter fitting values for each 
stage are obtained according to Step 3, and the results are 
shown in Table 3.

After substituting the parameter values from Table  3 
into the SEIR model, the fit curve obtained was com-
pared with the actual epidemic data, as shown in Fig. 9. 
From the figure, it can be seen that the fitted values of 
cumulative confirmed cases, currently confirmed cases 
and removed cases show a similar trend to the actual epi-
demic data, indicating a good degree of model fitting and 

high accuracy of the quantified parameter fitting values 
in each stage.

Since the first place where the coronavirus was discov-
ered and widely spread in Wuhan was the Huanan sea-
food market, we assumed it to be the initial infectious 
agent. Before January 23rd, 2020, the crowd was a regular 
activity, and the average network degree was 6. This set-
ting is based on the theory of six degrees of separation, 
which posits that in social networks, any two individu-
als are, on average, connected by only five intermediar-
ies (or six steps) to establish contact [38]. This theory 
has gained further support and development within the 
context of social networks and big data analysis [39, 40]. 
Additionally, the small-world network model effectively 
simulates real-world social networks’ structure, particu-
larly in describing population clustering and social inter-
actions [41, 42]; After January 23rd, Wuhan was “closed,” 
all public transportation was halted, and all long-distance 
connections were cut off. On February 10th, Wuhan car-
ried out the closed management of the neighborhood, 
the social contact between the communities was cut off, 
and all network connections were removed. The outbreak 
began with the discovery of the first unexplained pneu-
monia case on December 8th, 2019, until the existing 
confirmed cases in Wuhan became zero on April 25th, 
2020. The period lasted 140 days, and the model set the 
simulation time to 140.

Results
In the simulation process of the spatial and temporal 
spread of the COVID-19 epidemic, the spatial and tem-
poral distribution of various agents in the first day and 
the end time of each stage of the four stages, namely 
T = 0, T = 47, T = 65, T = 81, T = 140, was recorded. Fig-
ure  10 shows the spatial distribution of agents at each 
moment in the single simulation process. T = 0 day is the 
initial moment of the simulation. Currently, there are 
only two types of agents: susceptible and infected. The 
susceptible agent is all the communities in the urban area 
of Wuhan, and the infected agent is the South China Sea-
food Market assumed in this paper. T = 47 days is January 
23rd, Wuhan city closure day, infected agents infect sus-
ceptible agents through social networks. After a period 

Table 2 Situation of epidemic residential areas in various 
districts of Wuhan

Area Total 
number of 
plots

Epidemic plots No 
epidemic 
plots

Proportion 
of epidemic 
plots

Jiang’an 1056 789 267 75%

Jianghan 668 491 177 74%

Qiaokou 489 365 124 75%

Hanyang 403 347 56 86%

Wuchang 848 424 424 50%

Qingshan 258 207 51 80%

Hongshan 949 857 92 90%

Sum 4671 3480 1191 75%

Table 3 Quantitative values for each parameter at different 
stages

Time phasing β θ α γ

Stage I (2020.1.10–2020.1.22) 0.6101 0.1910 0.0803 0.0318

Stage II (2020.1.23–2020.2.09) 0.0001 0.3267 0.1843 0.0187

Stage III (2020.2.10–2020.2.26) 0.0001 0.1038 0.2803 0.0211

Stage IV (2020.2.27–2020.4.25) 0.0001 0.1282 0.3960 0.0761
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of spread, most agents around the South China Seafood 
Market are infected through short connections into 
infected and latent agents. Some susceptible agents are 
removed after infection, and some long-distance agents 
are infected through long connections. The number of 
infected agents increased significantly at T = 65 days. 
Since Wuhan closed all public transport facilities on 
January 23rd, all long connections were removed. Most 
new infections were around the infected or latent agents 
at T = 47 days. T = 81 days, all the latent agents are trans-
formed into the infected agent, because Wuhan on Feb-
ruary 10th, all the neighborhood closed management, 
all connections were removed, and the epidemic did not 
further spread; at the end of the T = 140-day simulation, 
almost all the infected agents are converted to the emi-
grant agents.

Because the spread of epidemic diseases is random in 
space and quantity, the results of a single simulation may 
not be representative. To address this, 1 hundred random 
simulations were conducted on the research scope using 
the same parameters, and the data where the epidemic 
did not successfully spread (initial patients were cured or 
died without spreading the virus to others) was removed. 
Ultimately, 94 sets of data were obtained. As depicted in 
Fig. 11, the simulation results show that the average num-
ber of infected agents is 3053, which differs by 12.27% 
from the actual number of infected communities in 

Wuhan (3480). After the simulation, the average number 
of infected agents is 10.

A detailed analysis of the data for various regions, 
as shown in Fig.  12, reveals the relative errors for dif-
ferent districts: Jiang’an District has a relative error of 
− 12.80%, Jianghan District is at − 13.44%, Qiaokou Dis-
trict at − 13.42%, Hankou District at − 11.82%, Wuchang 
District at − 12.50%, Qingshan District at − 10.14%, and 
Hongshan District at − 11.20%. Combining the data from 
these regions, the average relative error is found to be 
− 12.19%. This indicates that the results of this simulation 
closely align quantitatively with actual epidemiological 
data, thereby validating the effectiveness and reliability 
of the simulation method employed in predicting the 
dynamics of the COVID-19 virus transmission.

According to the results of the 20th non-epidemic area 
and the first non-epidemic area, the distribution map of 
the epidemic area (Fig. 13) was calculated. It can be seen 
from the map that the epidemic is concentrated in the 
urban center, where economic activities are frequent, and 
population flows are large. It can be found that there is 
a close relationship between COVID-19 and population 
density. The more opportunities for contact between 
people, the higher the prevalence of the epidemic.

In order to analyze the influence of the intervention 
effect of prevention and control measures on the epi-
demic development, 100 simulations were carried out 

Fig. 9 Comparison of SEIR model simulation results with actual values
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for the scene of “closing the city” in Wuhan 10 days ear-
lier and 10 days later, respectively. After each scenario 
simulation, the data were cleaned up, and finally, the 
valuable data were averaged as the epidemic spread result 
(Fig.  14). The simulation results show that the number 
of infected agents peaked at 2077 on the 59th day in 
the normal situation. However, the number of infected 
agents who “closed the city” 10 days in advance reached 
the maximum value of 1239 in 52 days, reaching the peak 
7 days earlier than the typical scenario. The peak num-
ber of infected agents was 40.35% less than the typical 
scenario. However, infected agents peaked at 2480 on 
the 66th day, 7 days later than the standard scenario. The 
peak number of infected agents was 19.40% higher than 

that in the typical scenario. The intervention of preven-
tion and control measures will significantly impact the 
spread of the epidemic. The earlier the intervention, the 
fewer the number of patients at the peak of the epidemic, 
and the effective control of the epidemic as soon as pos-
sible will have a more significant effect on restraining the 
spread of the epidemic.

Discussion
The global COVID-19 pandemic has profoundly 
impacted socio-economic activities and public health. 
This study focuses on Wuhan with a daily time scale. We 
employed an integrated approach of intelligent agent-
based modeling, complex network modeling, and GIS 

Fig. 10 Spatial distribution of agents at each moment of the single simulation process
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technology to build a COVID-19 spatial diffusion model. 
This model used the Runge-Kutta method with the SEIR 
model to fit critical parameters and was segmented 
into four stages based on early prevention measures in 
Wuhan. It successfully replicated COVID-19’s spatial 
diffusion in Wuhan’s main urban areas from December 
8th, 2019, to April 25th, 2020, with experimental results 
closely matching actual observations.

This study used a multi-agent simulation technique 
based on small-world networks to simulate realistically 
the transmission characteristics of urban social networks. 
Small-world networks’ unique structure and connectivity 
capture social network complexity and simulate dynamic 
individual interactions, providing an accurate epidemic 
spread model. This model also flexibly demonstrates 

various control strategy effects, forming a theoretical 
basis for effective prevention and control measures.

Our data source is non-epidemic areas reported by 
the ‘Changjiang Daily,’ defined as regions without con-
firmed COVID-19 cases for at least 14 consecutive days, 
with the removal of suspected cases, fever cases, and 
close contacts. The first non-epidemic area data collec-
tion began on February 21st. Although there might be 
infections before March 6th, affecting infected areas and 
village counts in Wuhan districts, after a hundred simu-
lations, the model closely approximates the actual value 
despite occasional abnormal predictions.

Simulation simplifies real-world behavior over time. 
However, the actual world is intricate and influenced 
by many variables. COVID-19’s spread is complex, and 

Fig. 11 Simulation of 1 hundred cumulative outbreak plots

Fig. 12 Regional error analysis chart
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despite parameter quantification in stages, government 
prevention efforts and community and medical facility 
responses affect parameters like contact, infection, and 
removal rates. Regional differences in prevention and 
control measures make accurate model parameter quan-
tification challenging. The stochastic model and aver-
aging of 100 simulation results may differ from actual 
COVID-19 historical data, which is a random process.

This study significantly improved our biological 
understanding of COVID-19 spread by creating a spa-
tial diffusion model for Wuhan. It reveals epidemic 

diffusion patterns under various prevention meas-
ures, demonstrating virus transmission mechanisms 
in diverse social and environmental conditions. Pre-
dicted results provide a scientific basis for evaluat-
ing and enhancing public health responses, guiding 
future epidemic control. Despite effectively simulating 
COVID-19 spread in Wuhan, the model has limitations, 
primarily relying on fixed social networks and neglect-
ing complex population mobility and social interac-
tions. Additionally, it does not cover other potential 
preventive measures like isolation and medical resource 

Fig. 13 Distribution of outbreak plots in Wuhan

Fig. 14 Epidemic trends under the three “city closure” time scenarios
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allocation, suggesting a need for future research to 
enhance model comprehensiveness and practicality.

Conclusions
Since viruses mostly spread through fixed social net-
works, simulating the pandemic using micro-indi-
viduals within urban spatial structures has limited 
significance. Thus, the neighborhood is treated as an 
agent with traits and behavioral rules, and a cyber-
space with small-world characteristics represents the 
social connections among agents. The proposed model 
of COVID-19 spatiotemporal spread of small-world 
network collaborative multi-agent explicitly considers 
the influence of the distance between agents and social 
relations on epidemic spread. Using the NetLogo plat-
form, the spatiotemporal spread process of COVID-19 
is simulated in the Wuhan area. The difference between 
the simulation and actual results is 12.27%, which 
shows that the model can effectively illustrate the 
spread law of COVID-19 in urban space.

The propagation model also examines the epidemic 
changes under various scenarios, revealing that pre-
vention and control measures can significantly inhibit 
epidemic spread. Earlier implementation of these meas-
ures leads to a more pronounced effect on inhibiting 
the disease’s transfer. The outcomes of different sce-
narios tested by the model may help enhance the safety 
prevention and control system of urban tectonic space.
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