
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Begen et al. BMC Public Health          (2024) 24:505 
https://doi.org/10.1186/s12889-024-18038-3

BMC Public Health

*Correspondence:
Gregory S. Zaric
gzaric@ivey.ca
1Ivey Business School and Western University, London, Canada
2Department of Epidemiology and Biostatistics, Western University, 
London, Canada
3Department of Statistical and Actuarial Sciences, Western University, 
London, Canada
4King’s University College at Western University, London, Canada
5London Health Sciences Centre, London, Canada

Abstract
Background In April 2021, the province of Ontario, Canada, was at the peak of its third wave of the COVID-19 
pandemic. Intensive Care Unit (ICU) capacity in the Toronto metropolitan area was insufficient to handle local COVID 
patients. As a result, some patients from the Toronto metropolitan area were transferred to other regions.

Methods A spreadsheet-based Monte Carlo simulation tool was built to help a large tertiary hospital plan and 
make informed decisions about the number of transfer patients it could accept from other hospitals. The model 
was implemented in Microsoft Excel to enable it to be widely distributed and easily used. The model estimates the 
probability that each ward will be overcapacity and percentiles of utilization daily for a one-week planning horizon.

Results The model was used from May 2021 to February 2022 to support decisions about the ability to accept 
transfers from other hospitals. The model was also used to ensure adequate inpatient bed capacity and human 
resources in response to various COVID-related scenarios, such as changes in hospital admission rates, managing the 
impact of intra-hospital outbreaks and balancing the COVID response with planned hospital activity.

Conclusions Coordination between hospitals was necessary due to the high stress on the health care system. A 
simple planning tool can help to understand the impact of patient transfers on capacity utilization and improve the 
confidence of hospital leaders when making transfer decisions. The model was also helpful in investigating other 
operational scenarios and may be helpful when preparing for future outbreaks or public health emergencies.
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Background
In April 2021, the province of Ontario, Canada, was 
at the peak of the third wave of COVID-19 cases [1, 2]. 
The highest daily number of new infections during the 
third wave, 5067, occurred on April 14, 2021 [2]. Cases 
were highest in the Toronto metropolitan area, the larg-
est urban area in the province, and many ICUs in the 
Toronto area were full. As a result, some COVID patients 
from the Toronto metropolitan area who required hos-
pital care had to be transferred to other regions of the 
province [3, 4].

The London Health Sciences Centre (LHSC) in Lon-
don, Ontario, is an academic, tertiary care hospital with 
two sites, each with a medicine ward and ICU. In April 
2021, requests were made to transfer COVID patients to 
LHSC from other regions. The requests created a chal-
lenge for leaders at LHSC: accepting patients from other 
regions would increase bed utilization of LHSC facilities 
and thus potentially reduce the ability of LHSC to care 
for patients from within their normal catchment area. 
However, denying the request could have serious health 
consequences for patients needing transfer and hospi-
tals requesting the transfer which were already short on 
capacity.

To help leaders at LHSC make decisions about accept-
ing regional transfers, we developed a spreadsheet-based 
tool to help forecast the utilization of their ICUs and 
medicine wards up to seven days into the future. The 
tool uses knowledge of current admission rates, length-
of-stay, and assumptions about future arrivals of patients 
from outside the region to make short-term census 
projections.

Methods
Model overview
We developed a spreadsheet-based Monte Carlo simu-
lation model [5] to investigate the impact of accepting 
transfer patients from other hospitals on ward capac-
ity levels at LHSC. The model focuses on capacity in six 
wards: ICU (referred to in the tool as Medical-Surgical 
Intensive Care Unit (MSICU) at the University Hospital 
site and the Critical Care Trauma Centre (CCTC) at the 
Victoria Hospital (VH) site), as well as Acute and Sub-
Acute Medicine (SAMU), at each of two LHSC sites. The 
impact of patient transfers is characterized by bed utiliza-
tion rates and probabilities of exceeding hospital capac-
ity in each of the six wards. The model was developed in 
Microsoft Excel (Fig.  1) to facilitate rapid development 
and deployment and ease of use by staff at LHSC.

User input– hospital data
Data is entered into three portions of the model. The 
first set of data inputs relates to the current state of the 
six hospital wards and their recent patient volumes (the 

green cells in Fig. 1). A model user enters the number of 
COVID patients (“COVID patients”) and patients with 
other conditions (“non-COVID”) that are currently in 
each of the six wards; the arrival rate of new COVID and 
non-COVID patients to each of the six wards, expressed 
as the average number of patients per day; and a number 
representing the length-of-stay (LOS) for the two types 
of patients in each of the six wards. The LOS values are 
intended to represent the total amount of time that each 
type of patient would occupy a bed in each ward and 
thus account for any cause of disposition from the ward, 
including discharge, transfer to another ward or hospi-
tal, or death. All LOS values are assumed to be exponen-
tially distributed. To fit the exponential distribution, the 
user enters additional information using a drop-down 
menu. In particular, the user specifies whether the LOS 
value represents the LOS distribution’s mean, median, 
75th percentile, or 90th percentile (gray cells in Fig.  1). 
The LOS information is used to simulate the number of 
patients of each type who leave each ward per day, as 
described in the Simulation Model section.

The second set of inputs required is the number of 
beds in each ward (blue cells in Fig. 1). Changing these 
parameters meant the hospital could open additional 
beds, create off-site capacity in a field hospital setting, or 
reallocate beds from different wards, such as cancelled 
elective surgery beds. The third input specified by the 
model user is the number of planned transfers of COVID 
patients from outside the catchment area for the current 
day and the next seven days into the future (pink cells in 
Fig. 1).

Simulation model
For each of the six simulated wards, the total patient 
counts each day for the next seven days were calculated 
using the following steps (Fig. 2). The day of planning is 
denoted by day t; subsequent days in the planning hori-
zon are days t + 1, t + 2,…, t + 7. Full details are described 
in the appendix.

1. Simulate the number of new COVID and non-
COVID patients in each ward daily. For COVID 
patients, the number of new arrivals is the sum of the 
planned intake from other regions and the number of 
new arrivals from the local region.

2. Simulate the number of patients of each type to leave 
each ward each day. As noted earlier, we assumed 
that LOS was exponentially distributed. Based 
on user-specified information, we estimated the 
parameter for each exponential distribution, then 
used that to calculate the probability that a patient 
exits the ward each day. The total number of patients 
who exit the ward is simulated from a binomial 
random variable where the number of trials (n) is 
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the sum of the number of patients in the ward at 
the beginning of the day and the number of arrivals 
that day, and the probability of success (p) is the 
probability that a patient exits the ward.

3. Update the census in each ward at the end of each 
day. The number of each patient type at the end of 
each day is the number of patients at the end of the 
previous day plus the number of patients who arrive 
minus the number of patients who exit.

4. Steps 1–3 are repeated to generate an end-of-day 
census up to the end of the 8th day into the future for 
each of the six wards.

Note that all variability in the model is a result of steps 
1 (variability in the daily number of arrivals) and 2 (vari-
ability in the daily number of exits from each ward). Since 
steps 1 and 2 involve random variables, the model is run 
hundreds of times to generate a distribution of possible 
outcomes. For this application, the model was run 400 
times. This size was chosen to balance the need to pro-
duce a wide range of outcomes with the ability for the 
model to execute quickly on a wide range of computers. 
In preliminary testing of the model, we found that model 
results were fairly stable beyond 200 runs. Note that the 
model was constructed to enable an end user to change 
the number of runs if it was later determined that more 
runs were needed.

Model outputs
The model has two types of outputs (yellow cells in 
Fig. 1).

1. The probability that each of the six wards will be 
over capacity at the end of each day for the planning 
horizon.

2. Ward utilization for a target percentile (from 0 to 
100) of the simulation runs. For example, if the 
target percentile is 75 and the corresponding ward 
utilization value is 87%, the 75th percentile of 
simulations had 87% ward utilization.

For both outputs, conditional formatting was used to 
highlight in red those days when estimated utilization 
would exceed ward capacity.

Model use
The model was intended to be used frequently on a “roll-
ing horizon” basis [6], meaning that the plan is re-evalu-
ated as new information becomes available.

Results
Preparation and response from end users
Given the impact of the third wave of the pandemic, the 
hospital recognized the need for an objective tool to sup-
port short-term capacity planning decision-making. This 
was necessitated by the need to balance an increasing 
volume of patients admitted for COVID related illness 
while also maintaining as much scheduled service as pos-
sible. This was particularly important for understanding 
the impact to planned surgeries. It was important to have 
a model that could be developed and deployed quickly 
to help guide decisions and planning. The tool described 
in this paper was operationalized in May 2021 and used 
once or twice per week, as needed, until February 2022.

Fig. 1 Screen capture of the input section of the model †. †A user enters three different types of information into the tool: (1) Inputs (green): Current 
number of (COVID and non-COVID) patients, arrivals for all local patients, LOS for all patients. (2) Decisions (blue): Number of beds to operate. (3) Deci-
sions (pink): Non-local COVID arrivals, i.e., COVID patients, are to be accepted from other jurisdictions. Then the model calculates two tables (yellow): The 
probability of over-capacity and percentile utilization of occupied beds. (The user can choose the percentile level, e.g., 50% for median utilization). We see 
these in the yellow tables on the right, and the model highlights in red days when estimated capacity utilization exceeds 100%
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Model input data was collected from several sources. 
The number of COVID patients and patients with other 
conditions occupying beds in each of the six wards was 
captured using the hospital’s daily occupancy report. The 

hospital’s Decision Support team provided the previ-
ous week’s arrival rate of new COVID and non-COVID 
patients and the length of stay for these patients (Fig. 3). 
The number of beds in operation was based on the bed 

Fig. 2 Patient flows at wards*. *The model keeps track of arrivals (COVID and non-COVID), all departures and the number of patients who end up staying 
at each ward and each day. The model treats the current day as ‘t’ and calculates the mentioned quantities for the next seven days (t + 1 to t + 7)
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census at the time of simulation (blue cells in each sce-
nario). The expected number of COVID patient transfers 
from outside LHSC’s catchment area, “COVID Outside 
Arrivals/day,” was directed by the regional and provincial 
COVID Command Centre.

The model outputs, including the probability that 
each ward would exceed bed capacity and the projected 
impacts on occupancy, were reported at least once per 
week to the hospital’s COVID Operations Executive 
Leadership team and more frequently when the pan-
demic warranted a nimbler response. Specific projection 
scenarios, such as the impact of significant changes in 
hospital admission rates, were also requested by the hos-
pital’s executive team and were used to inform the hospi-
tal’s response.

Reporting to the hospital’s COVID Operations Execu-
tive Committee, the hospital’s COVID Operations Direc-
tor lead would present the current state impact, as well 
as multiple scenarios derived from the simulation tool 
to inform the committee’s decision making. Scenar-
ios presented included the need to open new ward and 
ICU beds as well as reducing planned patient activity to 
ensure enough ward and ICU bed capacity to meet future 
demand.

Before using the model, the Chief of Critical Care at 
LHSC, together with the director lead, offered a virtual 
session with physicians and hospital leaders that were 
members of the COVID Operations Executive Commit-
tee to explain the model logic and build confidence in the 
tool. The tool was met with enthusiasm given its ability 
to objectively leverage real time data in the wards most 
heavily impacted by COVID patient volumes to make the 
most informed decisions possible. The tool was subse-
quently used over a ten-month period during perhaps the 
most challenging time during the COVID pandemic.

Incorporation into regular planning at LHSC
In most scenarios, the estimates that the tool projected 
were reliably matched with the system occupancy that 
was realized in the subsequent seven days. Because of its 
conservative design, there were times when bed capacity 
in each of the wards was more than sufficient to meet the 

COVID specific patient demands and as a result planned 
activity was expanded. While the original intended use of 
the tool was to inform the number of transfers that could 
be accepted, the utility of the tool expanded to include 
the ability to measure the impact of bed closures due to 
intra-hospital COVID outbreaks, to balance the COVID 
response with planned hospital activity, (e.g. surgeries) 
and to inform the human health resource requirements 
to maintain staffing levels in the wards. The hospital also 
considered how a similar tool might help inform future 
bed allocation decisions in everyday operations.

Scenarios
We illustrate the model with three representative scenar-
ios that build on each other. Scenario 1 represents a case 
with high baseline utilization across all six wards, with 
COVID-positive patients occupying 11 − 21% of the ICU 
and acute medicine beds and no external COVID patient 
arrivals. Scenario 2 represents the impact of adding 
20 acute medicine beds at UH and ten additional acute 
medicine beds at VH. Scenario 3 represents the potential 
impact of accepting two additional ICU patients to the 
VH site every other day. The model user enters arrival 
rates and LOS values based on retrospective data from 
the previous seven days.

In scenario 1 (Fig.  4a), the combination of high uti-
lization across all six wards and the impact of COVID-
positive patient volumes result in the acute medicine 
wards at both sites exceeding 100% utilization and need-
ing additional beds to support patient volumes. In addi-
tion, the model demonstrates the need for the ICU at 
the VH (CTCC) site to load level with the ICU at the UH 
(MSICU) site.

Scenario 2 (Fig. 4b) depicts the identical bed pressures 
of scenario 1. In addition, 20 additional beds are added to 
acute medicine at UH, and ten additional beds are added 
to acute medicine at VH. The utilization rate in the acute 
medicine wards decreases below 100% at both sites.

In scenario 3 (Fig. 4c), all scenario inputs from scenario 
2 are maintained and only the outside COVID patient 
arrivals at VH ICU change (pink cells) with the consid-
eration to accept two additional patients every other 

Fig. 3 Screen capture of input data **. **Input data captures the arrival rate of new COVID and non-COVID patients to each of the six wards and the 
length-of-stay (LOS) for the two types of patients in each of the six wards based on a seven-day retrospective data collection. This example captures the 
data for the acute and sub-acute medicine wards at Victoria Hospital
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day over seven days. The model demonstrates that if the 
patients are to be accepted then the need to either load 
level or add additional beds at the VH ICU becomes criti-
cal as the ICU bed utilization at VH exceeds 120% by day 
t + 4.

Over time, the use of the model evolved, and the model 
was used to evaluate new scenarios. One scenario was 
the reallocation of bed designations within the hospital, 
such as changing the designation of surgery ward beds to 
medicine ward beds. A second scenario was the model-
ing of outbreaks at one site, which would force all admis-
sions to be directed to the other site.

Discussion
In this paper, we described a tool developed to help a 
hospital plan for transfers of COVID patients from other 
regions during a surge in cases. The model was incor-
porated into the planning process starting in May 2021. 
Although initially developed to manage transfers within 
the province, a model like this may have benefits in help-
ing hospitals manage transfers over wider geographic 
regions. For example, in October 2021, LHSC received 
transferred COVID patients from Saskatchewan when 
that province had high case counts [7]. As noted, the 
model was used over a 10-month period, from May 2021 
to February 2022.

Despite being built for LHSC, the method is easily gen-
eralized. A hospital could relabel the column headings in 

Fig. 4a Screen captures of different scenarios. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3
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this model to tailor the wards to their situation. A hos-
pital having more than six wards could add additional 
wards to the spreadsheet.

Other research teams developed methods to make 
decisions about admitting individual patients to an ICU 
[8]. These methods recognize the trade-offs involved in 
making this decision: “ICU admission in this situation 
may also deprive another patient who has a chance of 
recovery in the event of ICU admission from receiving 
ICU care [8].” However, they do not explicitly model the 
impact of admission decisions on bed capacity.

We identified a small number of papers in which 
spreadsheets were used for COVID management appli-
cations [9–11] but none that were used to forecast 
future occupancy or help in planning patient transfers. 
Spreadsheet simulation models have also been devel-
oped to support decision making and preparedness in 
other domains, including pandemic influenza prepared-
ness [12], physician workforce planning [13], kidney 
exchanges [14], foot-and-mouth disease [15], and emer-
gency department flow [16].

Other tools with similar goals have been developed. 
For example, Baas et al. developed a tool to plan regional 
ICU transfers in the Netherlands [17]. Dijkstra et al. 
developed a model to create a “fair balancing” of hospi-
tal COVID patients [18]. Castro et al. developed a tool to 
forecast demand for hospital beds, ICU beds, and ven-
tilators in New Mexico [19]. Donker et al. developed a 
model to predict demand at a tertiary care center in Ger-
many [20]. Ortiz-Barrios et al. developed a discrete-event 
simulation model. They illustrated the performance of 
the model with data from a hospital in Spain [21]. Several 
tools with similar objectives have also been developed in 
other settings (see [22–24] for reviews).

Like any model, our tool has limitations. We assumed 
that the wards were independent. That may not be true, 
as patients don’t always flow downstream, and may 
require multiple ICU stays per hospital admission. We 
circumvented the dependence between wards by incor-
porating internal patient movements into the arrival 
rates to each ward. Also, a rolling horizon planning 
approach with frequent updates allows ward capacities 
to be updated frequently– before they would likely cause 
significant problems. The number of runs for the model 
was initially selected without a formal sample size anal-
ysis. However, the model was built in a way that would 
easily allow the end user to change the number of runs 
if they determined that a larger run size was needed. 
We assumed that ward LOS for all patients followed an 
exponential distribution, allowing us to exploit its “mem-
oryless property” [5]. We used the exponential distribu-
tion to calculate the daily probability of ward discharge 
for any patient, then used this probability as a parame-
ter in a binomial distribution to calculate the number of 

ward exits per day. Using another distribution that does 
not have the memoryless property (e.g. Weibull) would 
make it challenging to model departures in a spread-
sheet because departures on any given day would not be 
constant, but would depend on the history of previous 
arrivals, including the history of arrivals before the simu-
lated time window. More sophisticated whole-hospital 
simulation models exist (e.g., [25]). However, these often 
require specialized software, limiting the ability to dis-
tribute them widely, and they typically require extensive 
time and effort to develop and validate.

Conclusions
This work shows that a relatively simple model can 
be developed quickly and benefit end users. This was 
emphasized in a letter written by the interim President 
and CEO of LHSC, who wrote, “…we now have a more 
reliable way to predict the impact of receiving patients 
from hospital partners on top of local unscheduled care 
needs. The modelling is flexible and gives us the confi-
dence we were looking for to ensure we can continue to 
safely serve our own community while helping ease the 
pressures in harder hit areas.” The immediate need for 
this model at LHSC has passed. However, understanding 
how to quickly develop and implement a simple model 
like this, in partnership with hospital and public health 
decision-makers, can be helpful when planning for future 
public health emergencies [26].
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