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Introduction
The management and control of infectious disease has 
been a signal modern achievement. Advances in epide-
miological techniques pioneered during the 19th century 
established public health as a discipline. Overlapping 
with, but distinct from the medical establishment and the 
biopharmaceutical industry, modern public health orga-
nizations have sought to control disease using nonphar-
maceutical interventions (NPIs).

Contact tracing is a cornerstone of the public-health 
response, particularly with emergent pathogens and 
nascent disease outbreaks [1]. Effective contact trac-
ing facilitates estimates of epidemiological parameters 
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Abstract
Contact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent 
pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-
Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, 
often using rapid antigen tests due to lack of accessibility to PCR tests. These limitations, combined with SARS-CoV-
2’s propensity for asymptomatic transmission, raise the question “how reliable was contact tracing for COVID-19 
in the United States”? We answered this question using a Markov model to examine the efficiency with which 
transmission could be detected based on the design and response rates of contact tracing studies in the United 
States. Our results suggest that contact tracing protocols in the U.S. are unlikely to have identified more than 
1.65% (95% uncertainty interval: 1.62-1.68%) of transmission events with PCR testing and 1.00% (95% uncertainty 
interval 0.98-1.02%) with rapid antigen testing. When considering a more robust contact tracing scenario, based on 
compliance rates in East Asia with PCR testing, this increases to 62.7% (95% uncertainty interval: 62.6-62.8%). We 
did not assume presence of asymptomatic transmission or superspreading, making our estimates upper bounds on 
the actual percentages traced. These findings highlight the limitations in interpretability for studies of SARS-CoV-2 
disease spread based on U.S. contact tracing and underscore the vulnerability of the population to future disease 
outbreaks, for SARS-CoV-2 and other pathogens.
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describing disease spread. In the current COVID-19 pan-
demic, rigorous early studies relying on contact tracing 
revealed key epidemiological features of SARS-CoV-2 
such as asymptomatic transmission [2, 3], superspread-
ing [4], and aerosol transmission [5–9]. This provided a 
basis for projecting the future course of the outbreak and 
designing a public health response.

Effective contact tracing is also critical for limiting 
onward spread through the deployment of test-and-trace 
and isolation protocols. Many Asia-Pacific countries 
effectively limited SARS-CoV-2 community spread for 
the first two years of the pandemic, relying on contact 
tracing with isolation of contacts, including strict test-
ing and isolation efforts at their borders. For example, 
South Korea used methods such as tracking credit card 
transactions and using closed circuit televisions to link 
contacts together [10]. In China, specifically Hubei, sus-
pected contacts were placed under monitored house 
arrest throughout their quarantine period [11]. This 
strategy permitted high levels of within country contact 
and mobility while keeping case counts low [12–18].

In the U.S., contact tracing was primarily performed 
in the pre-Omicron era (late 2019-late 2021), and largely 
abandoned in early 2022 [19]. It has been widely rec-
ognized that contact tracing in the U.S. has not slowed 
disease transmission [20]. Part of the challenge has been 
that the process varied from state to state and relied on 
individual initiative and access to testing [19]. This meant 
that an individual typically must be symptomatic, volun-
tarily seek testing, and have their positive result reported 
to initiate contact tracing [21]. Public health officials ini-
tiated an investigation by asking the index case to iden-
tify their contacts, who in turn would be interviewed. 
The exposed contacts were monitored for symptoms 
and could choose to test for SARS-CoV-2 five days after 
exposure. If positive, the contact (now a secondary case) 
would be asked to name their contacts.

The process was largely voluntary, allowing for selec-
tion bias and many missed transmission chains. There 
was often no system for identifying close contacts whom 
the index case did not know personally. Many published 
papers noted that many named contacts were not suc-
cessfully traced [22–24] and not all symptomatic contacts 
were willing to undergo testing [25]. A systematic sur-
veillance-based cross-sectional study in the U.S. showed 
that 2 out of 3 index cases of COVID-19 were either not 
reached by tracers or declined to share contacts. Only 
70% of named contacts agreed to be interviewed, and 
only 50% of those contacts were monitored, leading to 
an average of less than one contact per index case being 
monitored [26]. Additionally, the CDC-recommended 
15 min of contact within six feet over a 24-hour period 
was somewhat arbitrary and never updated, even as 

evidence emerged indicating that COVID-19 could be 
transmitted through brief interactions.

The implications of these limitations in contact trac-
ing are significant. The relatively high reproductive 
number for SARS-CoV-2 [27] would suggest that many 
transmission chains generated from a single index case 
went undetected. Additionally, asymptomatic transmis-
sion and superspreading behavior would also impact the 
efficacy of contact tracing for infection control and the 
generalizability of inferences made about transmission 
dynamics [28, 29].

In keeping with this voluntary and symptom-gated 
approach to contact tracing, there are many examples 
of minimally observed onward transmission in settings 
where transmission would be expected. This includes 
studies involving children with strong implications for 
policies related to schools. The results of studies investi-
gating children and COVID-19 transmission have docu-
mented limited forward transmission, but this is often in 
context of significant mitigation strategies being in place 
or incomplete contact tracing [30–32]. During the initial 
omicron surge, when contact tracing was limited, schools 
struggled to remain open, reported high absenteeism 
rates, and in some cases, relied on the national guard 
to teach courses and due to incomplete contact tracing 
it was unclear what role children in schools played in 
transmission [33, 34]. In another case, two COVID-19 
positive hairdressers in Missouri saw 139 clients over a 
ten-day period, with no reported onward transmission 
[24]. Notably, of the exposed clients, only ~ 75% (n = 104) 
responded to contact tracers’ requests for interviews, and 
only ~ 50% (n = 67) agreed to be tested. Biases in willing-
ness to respond to interviews or participate in testing 
may have concealed many onward transmission events.

Another example that demonstrated the challenges in 
identifying both primary and secondary infections was 
the Sturgis motorcycle rally in August 2020. Follow-
ing this 10-day event in Meade County, South Dakota 
(attended by approximately 460,000 persons [35] without 
[36–38] any mask-wearing requirements or other miti-
gating policies [39]), there was a wave of COVID-19 cases 
in Meade County, South Dakota. The counties outside of 
South Dakota that contributed the highest inflows of rally 
attendees experienced a 6.4–12.5% increase in COVID-
19 cases relative to counties without inflows [40]. Despite 
evidence of population-level changes in COVID-19 
case counts following the rally, the CDC and neighbor-
ing Minnesota Department of Health only identified 21 
person-to-person transmission events [41]. Out of the 
86 positive cases, only 41 reported being in close con-
tact (defined as being within 6 feet of another person for 
≥ 15 min) with other people, and they reported an aver-
age of 2.5 close contacts. Given the nature of the event, it 
is reasonable to assume that many cases and transmission 
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events were not reported [42–44]. The CDC’s report does 
not specify how many of the 102 secondary contacts were 
tested, consistent with other U.S. contact-tracing studies 
[45, 46].

Examples such as these, coupled with the unique fea-
tures of SARS-CoV-2 contact tracing in the U.S. dur-
ing the early part of the pandemic raise the question 
“what was the efficiency of contact tracing, as it was 
implemented in the U.S.”? We answered this question 
using Markov Chain modeling to synthesize data from 

multiple sources of information on testing and contact 
tracing completeness to estimate the efficiency with 
which onward transmission could be detected. Our 
model-based approach sought to quantify two metrics 
of performance for contact tracing: (1) the percentage 
of all transmission pairs identified in a disease cluster/
outbreak, and (2) the percentage of onward transmission 
events identified from a known index case. These metrics 
correspond broadly to the two contact-tracing scenarios 
described above, the Sturgis motorcycle rally study (seek-
ing all transmission pairs) and the Missouri hairdress-
ers (seeking onward transmission from a known index 
case). Our results suggest that contact tracing protocols 
in the United States are unlikely to have identified more 
than a small fraction of transmission events. We contrast 
this with a similar model run that incorporates data from 
Asian countries with more comprehensive contact trac-
ing protocols in place, which yields a larger fraction of 
identified transmission events.

Methods
Model
We created a Markov Model to represent the sequence 
of events in contact tracing depicted in Fig. 1. The model 
captures the steps in contact tracing beginning with 
identifying a primary infectious individual through test-
ing and then engaging that person in contact tracing by 
accurately identifying their contacts. The final steps of 
the model details engaging the infected contact and com-
pleting testing. We focus on estimating the probability of 
identifying infected contacts only. Importantly, it should 
be noted that this model does not incorporate the pos-
sibility of asymptomatic transmission. Furthermore, as 
we note later in the limitations, we assume the contact 
tracing process to be instantaneous, thereby not allow-
ing for further delays in the reporting of contacts due to 
timing lags in testing and transmission. We parameterize 
the model steps through literature review. We capture 
uncertainty in the transition parameters by sampling over 
a literature-informed uncertainty range of the parameters 
10,000 times. When no data was available on a parameter 
value, we sweep over the range of [0,1].

Literature search and model parameterization
We reviewed the literature to produce estimates for 
each of the parameters of our model (Fig.  1). We used 
the search term “(covid 19 or covid-19 or covid19) AND 
(case investigation or contact tracing) AND (united states 
or US)” on PubMed to inform parameters that define 
the likelihood of individuals naming their close contacts 
and of those contacts responding to a contact tracing 
encounter and being tested. We collected data from con-
tact tracing investigations that reported the proportion 
of positive cases that named contacts, the proportion of 

Fig. 1 Schematic representation of steps required to correctly identify 
secondary cases of infected individuals. Each step is a binary variable and 
represents a point in the process where failure can occur. Steps 1–3 coin-
cide with Phase 1 (identifying positive index cases). Steps 4 and 5 coincide 
with phase 2 (identifying contacts of positive cases). Finally, steps 6 and 7 
coincide with Phase 3 (identifying positive cases among contacts)
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named contacts reached, the proportion of contacts that 
cooperated with tracers, and/or the proportion of con-
tacts tested.

We also parameterized our model to represent a setting 
where stringent contact tracing was implemented. For 
this, we derived estimates from Taiwan and South Korea, 
which had rigorous contact tracing protocols during 
the initial phase of the pandemic using the search terms 
‘(covid 19 or covid-19 or covid19) AND (case investiga-
tion or contact tracing) AND (taiwan)’ and ‘(covid 19 or 
covid-19 or covid19) AND (case investigation or contact 
tracing) AND (korea or south korea)’. We run the model 
separately for RAT and PCR tests.

The model can be divided into two distinct categories 
of parameters that contribute to the overall effectiveness 
of contact tracing: (1) efficiency of testing and (2) effi-
ciency of contact tracing. Efficiency of testing includes 
the proportion of symptomatic people receiving test-
ing, test sensitivity (RAT or PCR) [47, 48], and the pro-
portion of contacts tested. Efficiency of contact tracing 
aggregates the probabilities that tracers contact a posi-
tive index case, a positive index case names contacts, and 
named contacts are traced. Both aggregate parameters 
take values between [0,1]. We plot all possible combina-
tions of these parameters on a heatmap and identify the 
estimates obtained for the U.S.-based and ideal scenarios.

Code availability
The Markov Model was implemented in Python, and 
code for running the simulations and plotting the results 
are available in a Jupyter notebook on Github (https://
github.com/Henry-Bayly/ContactTracingMarkovModel).

Results
Literature search
Our literature search of U.S. studies yielded 1,355 papers. 
Of these, the first 350 were reviewed to represent a ran-
dom sample of the total papers found, as our goal was to 
conduct a representative and not comprehensive litera-
ture review. We excluded 325 papers that did not contain 
data relevant to the parameters required for our model, 
leaving twenty-five papers with information on contact 
tracing parameters. When multiple papers had values 
for the same parameter, for instance the probability of 
a case naming contacts, we assumed that the true value 
was uniformly distributed in the range of the reported 
values across the papers. All parameter values are shown 
in Table 1; sources of the parameters are shown in Tables 
S1-S6. We were unable to identify precise parameter 
estimates for the probability of a symptomatic person 
receiving testing and assume a uniform distribution over 
[0,1]. This parameter encapsulates the probability that an 
infected person experiencing symptoms will receive test-
ing. Because this is a multifaceted question related to a 
person’s geographic location, socioeconomic status, and 
other factors impacting seeking testing and test availabil-
ity, finding a comprehensive and representative estimate 
is difficult.

We reviewed 225 papers from South Korea and Tai-
wan. However, we were unable to find studies quantifying 
contact tracing parameters related to the completeness of 
tracing. This appeared to be due to a much more compre-
hensive approach to contact tracing in these countries, 
negating the need to report on these parameters since 
it was assumed that reporting was nearly complete. For 
example, South Korea used traditional shoe-leather epi-
demiology along with large databases (global position-
ing system, credit card transactions, and closed-circuit 

Table 1 Table of parameters derived from literature that were used in the model
Parameter (Step in the Model) U.S. Probability Range Comprehensive 

Contact Tracing 
Probability Range

Symptomatic case receives testing* [0,1] [0.90, 1.0]
COVID-19 test gives true positive* [0.57, 0.83] (RAT) [48, 108] 

and [0.88, 0.92] (PCR) [47]
[0.57, 0.83] (RAT) 
and [0.88, 0.92] 
(PCR)

Tracers make contact with a positive case** [22, 26, 45, 46, 50, 109–113] [0.41, 0.82] [0.90, 1.0]
Positive case names any contacts**,a [22, 26, 45, 109, 110, 113, 114] [0.17, 0.52] [0.90, 1.0]
Tracers make contact with infected contacts of positive case** [22, 26, 46, 109, 110, 112–114] [0.28, 0.85] [0.90, 1.0]
Infected contacts of positive case get tested* [110, 114–118] [0.19, 0.45] [0.90, 1.0]
Contact’s COVID-19 test gives a true positive* [0.57, 0.83] (RAT) [48, 108] 

and [0.88, 0.92] (PCR) [47]
[0.57, 0.83] (RAT) 
and [0.88, 0.92] 
(PCR)

aThese values represent the probability that a positive case names any contacts at all. We use this as a proxy for the given step. Thus, our model represents an 
overestimate of the true efficacy of contact tracing

* parameter related to testing

**parameter related to tracing

https://github.com/Henry-Bayly/ContactTracingMarkovModel
https://github.com/Henry-Bayly/ContactTracingMarkovModel
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television) [10] and in one study of 5,706 index cases an 
average of 9.9 contacts per index case were reported [10]. 
Taiwan similarly reported an average of 27.61 contacts 
per index case [49]. This contrasts with the US where 
the average number of non-household contacts reported 
in a large study was one for every three index cases [50]. 
Therefore, we hypothesized a range of [0.9, 1.0] for all 
parameters not associated with testing sensitivity in our 
ideal model setting, representing a more robust response 
to SARS-CoV-2.

Estimates of contact tracing efficacy
We examined the efficiency of contact tracing along the 
two dimensions described previously: (1) the percentage 
of all transmission pairs identified in a disease cluster/
outbreak, and (2) the percentage of onward transmission 
events identified from a known index case.

We estimate a 1.00% chance (95% uncertainty range: 
0.98-1.02%) of identifying any transmission pair in the 
U.S. when RAT are the primary testing modality. More 
specifically, we estimate a 21.8% chance of identifying a 

positive index case, a 20.0% chance of identifying con-
tacts given that the index case has been identified, and 
a 22.8% chance of identifying positive secondary cases 
given the index cases and contacts were identified. Using 
more sensitive, but less available, PCR tests, we estimate 
a 1.65% (95% uncertainty range: 1.62-1.68%) chance of 
identifying a transmission pair (Fig.  2; Table  2). Our 
model estimates a 27.7% chance of identifying a posi-
tive index case, a 19.8% chance of identifying contacts 
given that the index case has been identified, and a 29.2% 
chance of identifying positive cases given that the index 
cases and its contacts were correctly identified. By con-
trast, when we use a more robust scenario, based on data 
from East Asia, we estimate a 62.7% (95% uncertainty 
range: 62.6-62.8%) chance of identifying a given trans-
mission pair when using PCR testing and 38.4% (95% 
uncertainty range: 38.2-38.6%) when using RAT (Figs. 2 
and 3; Table 2).

When an index case has been identified, we remove the 
steps 1 and 2 from our model. This effectively answers the 
question: given that we have knowledge of a truly positive 

Fig. 2 Impact of contact tracing and testing on the probability of identifying a positive contact of an infected individual with COVID-19. Quality of testing 
refers to parts of the process relating to testing and aggregates the following probabilities: symptomatic people receiving testing, symptomatic index 
cases receive true positive test result (i.e. test sensitivity), contacts receive testing, contacts receive a true positive test result. Quality of contact tracing 
aggregates the probability of: tracers contact a positive index case, a positive index case names contacts, and tracers contact the contacts of the index 
case. This shows that if testing and contact tracing are done perfectly, we can expect to identify all contacts of infected individuals (illustrated through 
the colors of the heat map). The two circles in the lower left hand corner correspond to our United States estimates while the two in the upper half cor-
respond to our simulations using estimates from South Korea and Taiwan, where there was stricter contact tracing
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index case, how likely are we to identify one of their posi-
tive contacts? In our U.S. based example, we estimate a 
2.80% (95% uncertainty interval: 2.78-2.84%) and 3.62% 
(95% uncertainty interval: 3.58-3.66%) chance of identify-
ing a positive contact of a known index case using RAT 
and PCR testing, respectively. In the stricter contact 
tracing setting, these increase to 57.0% (95% uncertainty 
interval: 57.1%-56.9%) for RAT and 73.3% (95% uncer-
tainty interval: 73.2-73.4%) for PCR testing.

Discussion
Since its emergence in humans more than three years 
ago, SARS-CoV-2 has overwhelmed public health insti-
tutions globally. The virus still exerts an enormous mor-
tality and morbidity burden worldwide, with nearly 
7 million reported deaths thus far [51]. Underlying this is 
the systematic failure of contact tracing, which was aban-
doned by most states in the United States by early 2022 
[19] and contraindicated in CDC guidance for communi-
ties with “sustained ongoing transmission” of COVID-19 

Fig. 3 Illustration of Model results. We assume a hypothetical population of 1,000 infected people in a community with 5 unique infected contacts (no 
shared contacts). The figure depicts the results of our model, tracking the number of losses at each step. We split the tracking of ‘cases’ by first identifying 
how many index cases were identified. Then, with that information, we moved to correctly identifying positive contacts of those index cases. This example 
shows that if we had 1,000 people who infected 5 people each (5000 total infected contacts) and assuming the use of RAT, we would expect to correctly 
identify about 43 of the 5000 secondary cases

 

Table 2 Probabilities of correctly identifying positive contacts of a given index case stratified by contact tracing style and by use of 
RAT/PCR tests. Values in parenthesis represent the 95% uncertainty intervals

United States Comprehensive Contact Tracing
RAT PCR Tests RAT PCR Tests

Percent of all transmission pairs in an outbreak 1.00% (0.98-1.02%) 1.65% (1.62-1.68%) 38.4% (38.2-38.6%) 62.7% (62.6-62.8%)
Percent of onward transmission from a known index case 2.80% (2.77-2.84%) 3.62% (3.58-3.66%) 57.0% (56.9-57.1%) 73.3% (73.2-73.4%)
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[21]. The Lancet Commission report on COVID-19 [52] 
and several reviews [20, 53, 54] have highlighted this 
shortcoming in pandemic response.

Our work takes this a step further by quantifying the 
extent to which contact tracing failed to identify trans-
mission events in the U.S. and in a more robust contact 
tracing setting based on East Asian data. Our results 
demonstrate that the voluntary steps in contact tracing, 
i.e. seeking testing and interacting with contact tracers, 
reduced the efficiency dramatically, with fewer than 2% 
of transmission events identified compared to 62.7% in 
a setting where testing and compliance with tracing was 
higher.

Contact tracing formed the basis of modern epide-
miological practice, dating back to the investigation of 
the 1854 Broad Street Cholera outbreak in Britain [55] 
that led to both a mechanistic understanding of cholera 
transmission [56] and successful control of the outbreak. 
A more recent example of highly successful and proac-
tive contact tracing by public health authorities was the 
effective suppression of monkeypox in the Western US in 
2003 [57]. Notably, during the current pandemic, many 
other countries (such as China, Japan, South Korea, Tai-
wan, Vietnam and Singapore) were successful at imple-
menting contact tracing in the first two years of the 
pandemic [14–18].

The impact of poor contact tracing in the U.S. has 
undermined our understanding of the transmission 
potential of SARS-CoV-2. For example, the argument that 
schools do not contribute to SARS-CoV-2 transmission 
was based in part on the lack of detection of transmis-
sion chains in a school setting. Numerous publications 
showed a lack of contact-traced chains of transmission in 
a school setting [58–62], while in effect lacking a positive 
control for the ability to identify onward chains of trans-
mission [63]. It is now clear that SARS-CoV-2 is readily 
transmitted in schools [64–72], particularly when robust 
mitigation measures are not in place [73, 74]. Indeed, 
dramatic increases in case detection rates have been 
observed in studies that relied on surveillance testing, 
rather than contact tracing [70]. Additionally, this led to 
the conclusion that the most common source of trans-
mission was gatherings in the home, but it is unclear if 
this is a consequence of household contacts being easiest 
to identify or a result of many transmission studies being 
conducted in settings with strict shut downs, where 
households were one of the few places where transmis-
sion could occur [75]. Also, reports from the West have 
pointed to a lack of detected transmission chains in air 
travel [76–78]. These reports are contradicted by careful 
contact tracing studies from other countries, which have 
clearly demonstrated person-to-person transmission in 
flight [79–81], even when robust mitigation measures 
were in place [82].

Our work has several limitations. We have assumed 
instantaneous contact tracing, ignoring the impact of 
tracing delays on infection control which has a significant 
impact on contact tracing effectiveness against transmis-
sion [83, 84] due to short incubation period of SARS-
CoV-2 [85]. Instead, our estimates for contact tracing 
effectiveness apply to the informativeness of contact trac-
ing studies, and they form an upper bound for the effec-
tiveness of contact tracing as a transmission prevention 
measure. We do not account for asymptomatic transmis-
sion, again making our estimates an upper bound. The 
percent of asymptomatic COVID-19 cases is estimated 
to be anywhere between 1.6% and 56.5% [86–92], with 
these cases having a relative reduced infectiousness of 0 
to 62% [86–93]. This would mean our estimated 1.65% of 
transmission pairs identified with PCR testing could be 
as low as 0.9%, assuming no asymptomatic index cases 
are identified. We also have not accounted for super-
spreading, which has been estimated to be a significant 
feature in COVID-19 transmission [90–92]. This implies 
that missing a superspreading index case would have tre-
mendous impact on downstream contact tracing efforts 
and that there is significant stochasticity [93]. We only 
consider the probability of identifying infected contacts, 
but it is ideal to also identify uninfected contacts accu-
rately. Finally, we estimate the probability of naming an 
infected contact using data describing the probability of 
naming any contacts at all (rather than the probability of 
naming any given contact). This means that our final esti-
mated probabilities are upper bounds of the true values. 
Despite representing an upper bound, our contact trac-
ing estimates suggest that U.S. contact tracing studies fail 
to identify the majority of transmission pairs and onward 
transmission events. This severely limits the inferences 
that can be drawn from such studies.

Our work points to several key lessons for future public 
health efforts. First, compliance is a key driver of contact 
tracing effectiveness. Methods to improve compliance 
will be crucial for future contact tracing efforts- whether 
using technological approaches (such as mobile phone or 
surveillance-camera based tracing) or by making changes 
to the legal framework around public health efforts (see 
Supplementary Information S2 for a more on this topic).

Second, there is a pressing need for innovation, to 
develop contact tracing methodologies that are more 
resistant to noncompliance. One such approach may be 
backward contact tracing, which seeks to identify who 
infected the detected case. Here when contact tracing 
is executed backward to identify the source of infection 
(parent), the more offspring (infections) a parent has 
produced, the more frequently the parent shows up as a 
contact. Model-based analysis suggests that a backwards 
contact tracing approach does not require sampling a 
network at such a large scale as forward tracing [94, 95] 
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to understand transmission dynamics, and addresses the 
problem of low compliance. This approach has been pro-
posed by others for COVID-19 [96–98], and has been 
empirically shown to be effective, particularly in identify-
ing superspreading events [99], however this is unlikely 
to be as helpful in reducing transmission.

Third, public health responses to future outbreaks must 
include educate the public about behaviors with health 
outcomes, including creating a normative framework 
around contact tracing compliance. Consistent messag-
ing about limiting transmission and contact tracing are 
key as has been noted by the Lancet Commission [52], 
among others [100, 101]. This could include reframing 
messaging to reduce stigma that has often been associ-
ated with contact tracing [102] and which undermines 
contact tracing efficacy [103]. During the HIV epidemic, 
contact tracers emphasized the index case’s personal 
responsibility towards the health of their sexual partners 
[1]. It also includes addressing misinformation, which led 
many to believe that COVID-19 was a “hoax” [104] and 
public health measures were overreactions [105].

Finally, we have shown that testing availability and 
accuracy create a critical gap in contact tracing efforts. 
Considering only the steps for testing accuracy and 
cases/contacts receiving testing in our model we find that 
only 12.4% of possible cases could be identified with RAT, 
the most available testing modality. To effectively manage 
future outbreaks, tests need to be sensitive, provide rapid 
results, and be readily available.

The work presented here adds to the growing body of 
literature [26, 106, 107] highlighting the poor perfor-
mance of contact tracing in the West during the ongoing 
pandemic and suggests practical fixes for this problem, as 
we have described. In its absence, public health is forced 
to rely on population-wide measures for disease spread 
and will not be able to fine-tune its responses to match 
the situation. If we are to improve our response to the 
current crisis, or to others in the future, we must improve 
our ability to deliver this key function.
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