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Abstract 

Background Vaccine homophily describes non-heterogeneous vaccine uptake within contact networks. This study 
was performed to determine observable patterns of vaccine homophily, as well as the impact of vaccine homophily 
on disease transmission within and between vaccination groups under conditions of high and low vaccine efficacy.

Methods Residents of British Columbia, Canada, aged ≥ 16 years, were recruited via online advertisements 
between February and March 2022, and provided information about vaccination status, perceived vaccination status 
of household and non-household contacts, compliance with COVID-19 prevention guidelines, and history of COVID-
19. A deterministic mathematical model was used to assess transmission dynamics between vaccine status groups 
under conditions of high and low vaccine efficacy.

Results Vaccine homophily was observed among those with 0, 2, or 3 doses of the vaccine. Greater homophily 
was observed among those who had more doses of the vaccine (p < 0.0001). Those with fewer vaccine doses had 
larger contact networks (p < 0.0001), were more likely to report prior COVID-19 (p < 0.0001), and reported lower 
compliance with COVID-19 prevention guidelines (p < 0.0001). Mathematical modelling showed that vaccine homo-
phily plays a considerable role in epidemic growth under conditions of high and low vaccine efficacy. Furthermore, 
vaccine homophily contributes to a high force of infection among unvaccinated individuals under conditions of high 
vaccine efficacy, as well as to an elevated force of infection from unvaccinated to suboptimally vaccinated individuals 
under conditions of low vaccine efficacy.

Interpretation The uneven uptake of COVID-19 vaccines and the nature of the contact network in the population 
play important roles in shaping COVID-19 transmission dynamics.
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Introduction
COVID-19 is a respiratory illness caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), 
which is transmitted predominantly via aerosols and 
droplets [1]. In high-income countries, the general popu-
lation case fatality rate of COVID-19 is sufficiently high 
to necessitate widespread public health interventions and 
targeted protections for vulnerable populations, such as 
seniors and people who are immunocompromised [2].
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Fortunately, several safe and effective vaccines are avail-
able that can prevent severe COVID-19 and reduce mor-
tality risk, although they have lower effectiveness against 
transmission than initially hoped [3]. At the individual 
level, the effectiveness of these vaccines wanes over time, 
and is subject to immune escape [4]. At the population 
level, the effectiveness of these vaccines is also dependent 
on their uptake within and across geographic regions and 
social networks [5, 6]. Of course, vaccine uptake is het-
erogeneous within any given population, and this hetero-
geneity may create disproportionate risk for SARS-CoV-2 
transmission within and across communities.

Vaccine hesitancy is an important factor shaping vac-
cine uptake [7]. A 2014 systematic review documented a 
range of factors that influence vaccine hesitancy, includ-
ing contextual influences (e.g., politics, government, reli-
gion, geographic patterns, media); individual and social 
group influences (e.g., beliefs, attitudes, knowledge, 
trust in healthcare systems and providers); and vaccine-
specific issues (e.g., mode of administration and delivery, 
vaccination schedules, risk vs. benefit) [8]. The results 
showed that vaccine status tends to cluster with sociode-
mographic characteristics, such as age, socioeconomic 
status, race/ethnicity, and political orientation [8–10].

Homophily is a principle in sociology and mathemati-
cal modelling that describes the clustering of individual-
level characteristics, such as vaccination status, within 
social networks [11]. Kadelka and McCombs [12] sug-
gested that vaccine homophily may impact COVID-
19 vaccine effectiveness given the potential for uneven 
vaccination uptake. Modelling studies have explored 
the impact of homophily in a range of contexts, and its 
impact on transmission dynamics is well documented 
[13, 14]. For instance, one modelling study argued that 
the mixing of vaccinated and unvaccinated groups con-
tributes to a considerable risk of infection for the vacci-
nated group, occurring at a rate that is disproportionately 
higher than what would be expected based solely on the 
contact between the two groups [15]. However, these 
previous studies were not based on descriptive data 
regarding vaccine homophily. Broadly, empirical research 
related to vaccine homophily in the context of the 
COVID-19 pandemic has been limited. Therefore, it is 
important to describe COVID-19 vaccine homophily and 
its relationship to vaccination status to gain an improved 
understanding of COVID-19 transmission [16–19].

The present study was performed to characterize 
observable patterns of vaccine homophily and to deter-
mine the impact of vaccine homophily on COVID-19 
transmission within and between vaccination groups 
under conditions of high and low vaccine efficacy. In 
doing so, this paper makes important contributions by 
connecting vaccination and contact heterogeneity, which 

are two crucial determinants of transmission dynamics 
and assesses the impacts of these determinants under low 
and high vaccination efficacy scenarios.

Methods
Participant recruitment
Participants were recruited using paid Facebook and 
Instagram advertisements (Fig.  1) between February 16, 
2022, and March 3, 2022, a period during which the aver-
age number of new COVID-19 cases in British Colum-
bia, Canada was declining (7-Day Rolling Average: 865 
on February 16, 487 on March 3) and the province con-
tinued to experience high numbers of Omicron variant 
infections [20].

Data collection
After providing informed consent, potential partici-
pants recruited via Facebook and Instagram advertise-
ments were screened for eligibility. The eligibility criteria 
restricted participation to individuals aged 16  years or 
older living in British Columbia (BC), Canada. Partici-
pants completed an online survey delivered in English 
using the Qualtrics platform, which assessed participants’ 
history of COVID-19, the extent to which they were fol-
lowing provincial mandates and guidelines for COVID-
19 prevention, and how many COVID-19 vaccine doses 
they had received. Participants also reported on the per-
ceived COVID-19 history of their regular contacts, the 
perceived level of compliance to COVID-19 prevention 
guidelines and mandates among regular contacts, the 
vaccination status of their household and non-household 
contacts, and the number of household and non-house-
hold contacts with whom they had recent contacts. Sup-
plemental Table  S1 provides an overview of how these 
variables were measured by providing the question text 
and response options.

Additionally, the following demographic data of the 
participants were collected: age (numerical), gender 
(Male; Female; Non-binary), ethnicity (African, Carib-
bean, or Black; Arab or West Asia; East Asian; Indig-
enous; Latin American; South Asian; Southeast Asian; 
White; Other), education level (Some high school; High 
school diploma or equivalent; Some college or trades 
training; Some university; College or trades certificate 
or diploma; University degree or higher), annual house-
hold income ($0 to $150,000 or higher), and whether 
participants were born in Canada (Yes; No, moved to 
Canada in the last 5  years; No, moved to Canada more 
than 5 years ago). Postal code was also assessed and was 
used to assign participants to one of the 5 regional health 
authorities in BC.
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Data analysis
Aim 1. Characterizing vaccine homophily and analyzing

Its association with COVID‑19 risk factors and preven‑
tion behaviours To characterize observable patterns 
of vaccine homophily, self-reported vaccination status, 
COVID-19 prevention behaviours, contact network size, 
and self-reported COVID-19 infection, descriptive analy-
ses of survey responses were conducted in R version 4.1.3. 
[21]. Data were cleaned using the Tidyverse collection of 
R packages [22]. As a preliminary step, participants with 
missing data on demographic-variables (i.e., age, gen-
der, ethnicity, income, education level, immigration sta-
tus, and health authority) or poor-quality responses (i.e., 
those in which incongruent responses were provided 
across questions, indicating imprecise answering) were 
removed from the analysis. Removal of data with miss-
ing demographic variables was done because our sample 

weighting procedure was not tolerant of missing data [23]. 
The remaining observations were weighted by weighting 
variables using iterative proportional fitting raking esti-
mation, which is a well-established approach for multi-
variable weighting when only the marginal proportions 
for each variable are known [24–26]. Raking estimation 
was implemented using the anesrake package [27] with 
marginal proportions for each weighting variable derived 
from the 2016 Canadian Census Profile for BC [28]. The 
survey package was used to generate weighted descrip-
tive statistics [29]. Table 1 provides target weights used in 
weighting.

Weighted descriptive data were plotted using the ques‑
tionr and ggplot2 packages [30, 31]. For descriptive statis-
tics, all observations were included in the weighted sam-
ple without removing them due to non-response (e.g., 
early survey drop off, refusal to answer). This allowed us 

Fig. 1 Example meta advertisement used for participant recruitment
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to make best use of the data available. All variables had 
less than 5% missingness.

To understand clustering between risk factors for 
COVID-19 and participant’s self-reported vaccination 
status, the chi-square and Kruskal–Wallis tests were used 
to compare participants with 0, 1, 2, or 3 or more doses 
with regard to select COVID-19 related personal and net-
work characteristics. Post-hoc pairwise comparisons were 
also conducted to examine the differences in network 
size across different vaccine dose categories (i.e., Zero 
doses, One dose, Two doses, Three doses) using the Wil-
coxon rank sum test with a continuity correction. In these 

additional analyses, the Benjamini-Hochberg procedure 
was employed for adjusting p-values to control for the 
false discovery rate in multiple comparisons.

The following variables are determined based on the out-
comes of the survey:

• Average Number of Doses Among Contacts. The 
average numbers of doses among household, non-
household, and overall contacts were calculated 
using self-reported estimates of the number of 
doses that participants believed each of their con-
tacts had received.

• Proportion of Contacts with ≥ 1 Dose. The propor-
tion of contacts with ≥ 1 dose was calculated using 
self-reported data on the number of doses that 
participants believed each of their contacts had 
received.

• Prevalence adjusted Vaccine Homophily. As 
homophily estimates depend on the prevalence of 
each vaccination group, we calculated prevalence 
adjusted homophily (PAH) using a method pro-
posed in [32]. We define prevalence-adjusted vac-
cine homophily hi as follows:

where δi = wi+di
3
j=0(wj+dj)

, which represents the proportion 

of contacts in an individual’s network that are of the same 
vaccination status. Here, qi represents the prevalence of 
vaccination status i which is calculated from vaccination 
uptake data in BC during the study period [33]. The term 
wi denotes the number of people in the contact network 
of an individual with i doses who have also received i 
doses, while di represents the number of people in the 
household of an individual with i doses who have 
received i doses themselves. Each participant, therefore, 
has their own hi value. To validate the mathematical 
expression for hi , we consider three special cases:

Firstly, δk = 1 for the kth individual, possible only if that 
individual only contacts those in their group. From 
Eq.  (1), it is easy to show that in this case hk = 1 . This 
implies perfect homophily.

Secondly, if δk = 0 for the kth individual, then none of the 
contacts are with people of the same vaccination status. 
In this case, hk = −1 , which implies perfect heterophily.

(1)hi =

{

δi−qi
1−qi

if δi ≥ qi,
δi−qi
qi

if δi < qi,

Table 1 Target weights

Demographic Target %

Age
 29 or younger 0.215

 30–39 0.153

 40–49 0.156

 50–59 0.179

 60–69 0.155

 70 or older 0.142

Gender
 Men 0.485

 Women 0.505

 Non-binary 0.010

Ethnicity
 White 0.637

 East Asian 0.166

 South and Southeast Asian 0.092

 Indigenous 0.059

 Other 0.046

Educational Attainment
 Some Post-Secondary Training 0.304

 High School Diploma or Less 0.450

 University Degree 0.246

Household Income
 Less than $30,000 0.189

 $30,000 to $59,999 0.240

 $60,000 to $89,999 0.195

 $90,000 0.376

Born in Canada
 No 0.305

 Yes 0.695

Health Authority
 Fraser 0.368

 Interior 0.157

 Island 0.164

 Northern 0.062

 Vancouver Coastal 0.249
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Thirdly, if the kth individual does not have mixing pref-
erences and prefers to mix randomly between vaccina-
tion groups, we can expect δk to be approximately the 
prevalence of the kth group, implying δk = qk , which 
yields hk = 0 . We have hi ∈ [−1, 1] for all i , with -1 and 
1 at the appropriate extremes and 0 reflecting no con-
tact preference (by vaccination status). In summary, the 
PAH score is calculated by subtracting the prevalence of 
the participant’s vaccination status from the fraction of 
their contact network with the same vaccination status, 
and then dividing by the prevalence of all other vaccina-
tion statuses. This is done if the fraction of the partici-
pant’s contact network with the same vaccination status 
is greater than or equal to the prevalence of their group. 
Conversely, if this fraction is less than the prevalence of 
the individual’s group, then the division is done by the 
prevalence of the individual’s group.

• Blau’s Heterogeneity Index Score. For each partici-
pant, we also calculated the diversity of vaccination 
statuses in their social network using Blau’s heteroge-
neity index [34], calculated as 1 minus the sum (over 
the numbers of doses, k) of the squared fraction of 
the participant’s contact networks with k doses (pk2):

Blau’s heterogeneity index scores were calculated for the 
number of doses (k=0, 1, 2, 3) for each participant’s over-
all contact network and dichotomized vaccination status 
(i.e., k≥1 dose vs. <1 dose) for each participant’s house-
hold, non-household, and overall contact networks.

Homophily estimates and diversity estimates were cal-
culated across each level of vaccination, and associations 
with select personal and network characteristics were 
tested using the Kruskal–Wallis H test (for associations 
with categorical variables) and Spearman’s rank correla-
tion tests (for associations with continuous variables).

Aim 2. Demonstration of the impact of vaccine homophily 
on COVID‑19 transmission
To demonstrate the impact of vaccine homophily on 
COVID-19 transmission within and between vaccination 
groups under conditions of high and low vaccine efficacy, 
we developed a deterministic model that accounts for 
heterogeneity in contact patterns to assess the dynamic 
impact of vaccine homophily on COVID-19 transmis-
sion in BC. We analyzed the effects of vaccine homoph-
ily under two broad scenarios with low and high vaccine 
efficacy against infection.

H = 1−

3
∑

k=0

p2k .

Model assumptions The current model was developed 
to demonstrate the impact of vaccine homophily in sce-
narios of both low and high vaccine efficacy. We stratified 
the model population based on the number of COVID-
19 vaccine doses received. Interactions within and 
between groups occur at varying contact rates and pref-
erences, reflecting how individuals interact with others 
based on their vaccination status. Since vaccine effective-
ness against infection is not 100%, breakthrough infec-
tions can occur in all groups, with the rate depending on 
exposure, number of doses received, and vaccine efficacy. 
We assumed that newly recovered individuals have tem-
porary protection against reinfection (denoted as τj ). If 
τj = 0 , it implies no protection against reinfection from a 
previous infection; if 1, it implies perfect protection after 
recovery, reducing the model to the classical SIR model 
with sterilizing immunity after recovery. Immunity wanes 
at a constant rate σj , depending on the number of doses 
received. Vaccine efficacy νj impacts the probability of 
infection given contact, and we incorporated this into the 
force of infection �ij as described below. For the unvacci-
nated, ν(j=0) = 0 , reflecting no protection from vaccina-
tion. This vaccine efficacy specifically refers to immunity 
against infection, as disease was not explicitly modelled, 
focusing instead on transmission dynamics. The recovery 
rate γ is assumed to be independent of vaccination status. 
Without explicitly modelling importations, we assume 
that a constant number of susceptibles become infected 
due to importations at a constant rate fj , which varies 
with vaccination status. Finally, our analysis focuses on a 
short period during which vaccination levels in the popu-
lation remained stable.

Model equation The model equations are:

where i, j = 0, 1, 2, 3 represent the number of COVID-19 
doses an individual has received. Note that fj (imported 
infections per day) represents a constant daily rate of 
importation of infected vaccinated individuals into the 
population. Since a minimum of two doses was required 
for admission into BC during the study period, we 
assumed no importations from unvaccinated individu-
als or those with only a single dose into the population 
( fj = 0 for j < 2). The non-zero values of fj are informed 
by a previous study [35]. The total population size is the 
sum of each vaccination dose group: N =

∑3
j=0Nj , where 

dSj(t)

dt
= −

3
∑

i=0

�ij(t)Sj(t)+ σjRj(t)− fj

dIj(t)

dt
=

3
∑

i=0

�ij(t)
(

Sj(t)+
(

1− τj
)

Rj(t)
)

+ fj − γ Ij(t)

dRj(t)

dt
= γ Ij(t)−

(

(

1− τj
)

3
∑

i=0

�ij(t)+ σj

)

Rj(t),
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Nj = Sj + Ij + Rj . The total population is set at 5.07 mil-
lion, i.e. the population of BC.

Further details, sources, and descriptions of the vari-
ables and parameters used in the model are presented in 
Table 2.

Force of infection The force of infection �(t) was defined 
as: (number of contacts per unit time) × (probability of 
disease transmission per contact) × (proportion of con-
tacts that are infected). We used the following expression 
to model the force of infection:

where �ij(t) is the force of infection for transmitting infec-
tion from individuals with vaccination status i to those 
with vaccination status j , pji is the proportion of contacts 
of those with vaccination status j that are of vaccination 
status i , cj is the total number of contacts per day made 
by individuals with j doses, β is the probability of infec-
tion given contact, νj is vaccine efficacy against infection 
for individuals with j doses, lj represents the extent to 
which individuals with j doses comply with physical dis-
tancing measures. This is used to capture the heterogene-
ity in adherence to population-wide physical distancing 
measures during the study period. During this time, mask 
mandates and restrictions on indoor gatherings were still 
in place in BC. Therefore, it’s challenging to determine 
how respondents interpreted the survey question regard-
ing their adherence to public health measures. One pos-
sibility is interpreting it purely as wearing a face mask 
or face covering during indoor contact, while another is 
viewing it as overall measures, including reducing con-
tacts or avoiding large gatherings. In the former scenario, 
including lj in the force of infection is necessary. In the 

�ij(t) = pjicjβ
(

1− vj
)(

1− lj
) Ii

Ni
,

latter, the contact matrix inherently accounts for their 
level of adherence to public health guidelines. As a sim-
plifying model assumption, we presumed that lj repre-
sents adherence to indoor mask-wearing during contact. 
In another simulation we assumed that adherence to all 
public health measures was already accounted for and 
included a supplementary figure assuming lj =0 (Fig.  S5 
in the Supplementary Information). Under these assump-
tions, infections grow more rapidly, reaching higher lev-
els. However, the direction of the force of infection essen-
tially remains the same as when lj>0. Ii is the number of 
infected individuals who have had i doses, and Ni is the 
total number of people with i doses. Parameter values 
were extracted from the Meta survey data.

Model validation We matched model output to 
reported cases of COVID-19 during the survey period 
from February 16 to March 3, 2022. We accounted for the 
underreporting of cases by assuming a constant under-
ascertainment probability (r = 90%), i.e. the fraction of 
cases that were not detected. This is similar to the 92% 
reported for BC by [37], during the study period. We 
varied the underascertainment probability around our 
assumed value and found that the model’s predictions 
are not highly sensitive to underreporting. The model 
yielded a good fit to the data and provided reasonable 
initial conditions for subsequent model prediction. The 
model fit to data is shown in Fig. S2 (See Supplementary 
Information).

Model scenarios We analyzed the impact of vaccine 
homophily on COVID-19 transmission dynamics under 
two broad scenarios. First, we assumed that vaccine effi-
cacy in preventing infection is relatively high, represent-
ing conditions where a reasonable proportion of the pop-
ulation has recently received a booster vaccination. This 

Table 2 Descriptions of variables and parameters

Variables and parameters Description and sources

Sj(t) Number of susceptible individuals

Ij(t) Number of infectious individuals

Rj(t) Number of recovered individuals

σj Waning rate per day for immunity against infection. Set at 1/(183 days)

fj Importation rate (e.g., due to travel). Set at 150 infections per day for those with ≥ 2 doses and 0 for those with < 2 
doses [35]. Assuming that travel restrictions are effective

τj Strength of short-term protection from reinfection. At baseline: τ0=0.35,τ1=0.65, τ2=0.68,τ3 = 0.83 (Assumed)

γ Recovery rate per day. Set at 1/ (4 days) [36]

β Probability of infection given contact:0.23 (Fitted)

pji Proportion of contacts of those with vaccination status j  that are of vaccination status i  (Estimated from survey data)

cj The total number of contacts per day made by individuals with j  doses (Estimated from survey data)

lj The level to which those with j  doses comply with physical distancing measures (Estimated from survey data)
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corresponds to the situation prior to the emergence of the 
Omicron variant, which showed substantial escape from 
immunity against infection, or future scenarios where 
more effective vaccines are available and have been widely 
used. Second, we modelled a scenario with low vaccine 
efficacy, representing time periods where immunity has 
waned significantly or when the dominant variant shows 
low sensitivity to vaccine protection. We further consid-
ered each of the above scenarios with and without homo-
phily. For the former, we used contact-related parameter 
( pji, cjlj ) values estimated from the survey data, combin-
ing both household and non-household contacts, while in 
the latter, we calculated a weighted average for each of the 
parameters to eliminate the impact of vaccine homoph-
ily. That is, for the without homophily scenario, the total 
number of contacts ( cj ) for each vaccination group and 
the proportion of contacts individuals make with those 
in their group and everyone else, as well as the level of 
adherence to physical distancing measures, are the same 
for each group regardless of vaccination status.

Below, we describe the parameter values we used for 
model simulations under various scenarios.

The values of the invariant parameters are presented in 
Table 2. With vaccine homophily, we used the following 
parameters as estimated from the survey data: Propor-
tion of contacts of those with vaccination status j that are 
of vaccination status i ( pji).

p00 = 0.45, p01 = 0.02, p02 = 0.39, p03 = 0.14, p10 = 0.17, p11 =

0.08, p12 = 0.61, p13 = 0.14, p20 = 0.11, p21 = 0.02, p22 = 0.69,

p23 = 0.18, p30 = 0.03, p31 = 0.01, p32 = 0.32, p33 = 0.64 . For 
the total number of contacts per day made by individuals 
with j doses ( cj), we estimated values from the survey data 
as follows.  c0 = 2.11, c1 = 2.68, c2 = 2.19, c3 = 1.73 , per 
day. The level of compliance to physical distancing meas-
ures ( li ) is calculated from the survey data and obtained 
as follows:  l0 = 0.134, l1 = 0.174, l2 = 0.349, l3 = 0.817 . 
Furthermore, to generate a scenario of conditions with-
out vaccine homophily, we eliminate the impact of vac-
cine status homophily in the number of contact per day 
by finding the average weighted contact c′j per day for the 
population as follows: c′ = c1p1 + c2p2 + c3p3 = 2.43 per 
day where pj is the prevalence of each vaccination sta-
tus group which was calculated from vaccination cover-
age data as 0.07, 0.03, 0.42, and 0.48 for  p0,  p1,  p2 , and 
p3 respectively [33]. A similar procedure was used to cal-
culate the weighted average rate of adherence to public 
health measures, l′=0.514.

For the no-homophily scenario, we set p′ji (Proportion 
of contacts of those with vaccination status j that are 

of vaccination status i ) as the proportion of individuals 
with i doses in the population, for all j . Under condi-
tions of low vaccine efficacy, we used: v0 = 0,v1 = 0.001,v2 = 
0.02,v3 = 0.07,τ0 = 0.20,τ1 = 0.40,τ2 = 0.65,τ3 = 0.80.

Under conditions of high vaccine efficacy and higher 
temporary protection after recovery, we used: v0 = 0,v1 = 
0.60,v2 = 0.89,v3 = 0.93,τ0 = 0.80,τ1 = 0.85,τ2 = 0.90,τ3 = 0.97.

For these four scenarios, we assumed β=0.6, which is 
higher than the estimated value in Table  2, to generate 
scenarios that would allow for an increase in the number 
of infections. The values of τ and v are also assumed to 
represent high and low vaccine efficacy scenarios.

Ethics review
The study protocol was approved by the Research Ethics 
Board of Simon Fraser University (Protocol #30000753). 
All participants provided informed consent before com-
pleting the survey,

Results
Aim 1. Characterization of vaccine homophily and its 
relationship to COVID‑19 transmission dynamics
Facebook and Instagram advertisements were displayed 
to 266,894 users. A total of 3659 participants initiated the 
survey and provided informed consent to participate in 
the study. After exclusion of responses that were of poor 
quality or had missing data, the final analytical sample 
size was 1185.

The unweighted sample was disproportionately White 
(86.9%), female (58.1%), had higher income (≥ $90,000, 
58.7%), and had been born in Canada (82.8%) (Table 3). 
Statistical weights were used to align these factors with 
the population distribution based on the 2016 Canadian 
Census Profile for British Columbia, Canada.

Table 4 presents additional descriptive statistics about 
self-reported COVID-19 diagnosis history and self-
reported compliance with provincial COVID-19 preven-
tion guidelines, stratified by self-reported vaccination 
status. Statistical comparisons across these variables indi-
cate that participants who had received more doses of the 
COVID-19 vaccine were less likely to report a previous 
COVID-19 diagnosis (p < 0.0001) and were more likely 
to report higher compliance with provincial COVID-19 
prevention guidelines (p < 0.0001).

Table  5 presents descriptive statistics for participant-
reported descriptions of their household and non-
household contacts stratified according to self-reported 
vaccination status. Statistical comparisons across these 
variables indicate that participants who had received 
more doses of the COVID-19 vaccine had networks with 
higher average numbers of doses (p < 0.0001) and had a 
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greater proportion of network contacts with at least one 
vaccine dose (p < 0.0001). With regard to network vaccine 
heterogeneity, participants with fewer vaccine doses had 
more heterogeneous networks according to Blau’s heter-
ogeneity index (p < 0.0001).

Figure 2 plots the distribution of the vaccine homo-
phily scores, ranging from -1.0 to 1.0, for individuals 
with 0, 1, 2, or 3 vaccine doses. Kruskal-Wallis test 
indicates significant differences in homophily between 
individuals with differing numbers of vaccine doses 
(p < 0.0001). Refer to Fig.  S1 in the Supplementary 
Information for an alternative version of Fig. 2, which 

displays homophily scores with a customized vertical 
axis.

Figure 3 shows boxplots of the participants’ contact 
network sizes stratified according to vaccination sta-
tus. Participants with more vaccine doses—particu-
larly those with three or more doses—tended to have 
smaller average network sizes (Spearman’s r =  − 0.217, 
p < 0.0001). Pairwise comparisons indicated that those 
who received zero doses exhibited a significantly dif-
ferent network size compared to those who received 
three doses, p < 0.0001. However, no significant dif-
ference was found between individuals who received 
zero doses and those who received either one dose 
(p = 0.958) or two doses (p = 0.958). Furthermore, indi-
viduals who received three doses showed a significantly 
different network size compared to those who received 
one dose (p = 0.031) and two doses (p < 0.0001). There 
was no significant difference between individuals who 
received one dose and those who received two doses 
(p = 0.958).

Finally, we also tested the association between vac-
cine homophily and network size, finding that higher 
network size was associated with lower vaccine homo-
phily (Spearman’s r = -0.114, p < 0.0001).

Aim 2. Demonstration of the impact of vaccine homophily 
on COVID‑19 transmission
Our deterministic mathematical model tested the 
impact of vaccine homophily on COVID-19 transmis-
sion dynamics under conditions of high and low vac-
cine efficacy. To illustrate these effects, Fig. 4 presents 
four scenarios describing the intersection of vaccine 
homophily and vaccine efficacy. Each panel in the fig-
ure shows the number of infections from 0 to 60  days 
and two heat maps characterizing the force of infection 
at 15 (P1) and 45 (P2) days. Overall, in both low and 
high vaccine efficacy scenarios, the presence of vaccine 
homophily contributed to higher levels of epidemic 
growth. We describe each of the four scenarios in the 
following section to highlight the interaction between 
homophily and vaccine efficacy. The model’s initial 
conditions were established to reflect the vaccination 
uptake levels in British Columbia (BC) as of February 
16, 2023. It was then fitted to case report data accu-
mulated during the study period. After calibration, the 
final values of the state variables in the SIR model (Sus-
ceptible, Infected, Recovered) were used to initialize 
the model for each simulated scenario. Subsequently, 
the model was simulated for two scenarios, each span-
ning a 60-day period.

Table 3 Characteristics of the study population, weighted for BC 
population characteristics based on 2016 census profile

a Due to the small sample sizes in most ethnicity categories, the statistical 
weight for the ethnicity variable was generated based on a binary variable 
measuring whether participants were either White or another ethnicity. While 
suboptimal, this was necessary to achieve convergence of the raking estimation 
algorithm. Weighted estimates may not round to whole numbers or sum to 
100%

Variable Weighted

Age, mean (SD) 47.49 (17.63)

Gender, n (%)

 Male 563.9 (47.6)

 Female 590.3 (49.8)

 Non-binary 30.5 (2.6)

Ethnicity, n (%)a

 White 761.2 (64.2)

 Asian 175.7 (14.8)

 Indigenous 173.9 (14.7)

 Other 73.9 (6.2)

Education level, n (%)

 Some high school 112.1 (9.5)

 High school diploma or equivalent 418.9 35.4)

 College or trades certificate or diploma 257.8 (21.8)

 Some university 107.8 (9.1)

 University degree or higher (e.g., Bachelors, Masters, 
PhD, JD, MD)

288.1 (24.3)

Household income, n (%)

 < $30,000 227.3 (19.2)

 $30,000–$59,999 287.5 (24.3)

 $60,000–$89,999 231.9 (19.6)

 ≥ $90,000 438.0 (37.0)

Born in Canada, n (%) 813.3 (69.8)

Health authority, n (%)

 Vancouver Coastal 310.2 (26.2)

 Fraser 419.3 (35.4)

 Interior 192.8 (16.3)

 Island 189.2 (16.0)

 Northern 73.2 (6.2)
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With vaccine homophily and high vaccine efficacy (Fig. 4A)
In this scenario, the epidemic is primarily driven and 
sustained by unvaccinated individuals, as indicated by 
the darker heat maps. While infections increase slowly 
in the vaccinated groups, epidemic growth is rapid 
among the unvaccinated. The force of infection in this 
scenario reveals that transmission is predominantly sus-
tained within the unvaccinated group. There is only a 
slight impact on the one-dose group due to suboptimal 
immunity. However, there is minimal effect on the two-
dose and three-dose groups, owing to the high vaccine 
efficacy.

Without vaccine homophily and high vaccine efficacy 
(Fig. 4B)
In this scenario, the unvaccinated are mixing randomly 
with the vaccinated, and the epidemic quickly stabilizes 
as the unvaccinated obtain secondary benefits from the 
predominantly fully vaccinated population. Meanwhile, 
disease importation sustains transmission at a steady 
state. Furthermore, a substantial number of infections 
in the unvaccinated group are caused by the vaccinated 
groups, because contacts are primarily driven by group 
sizes (see Figure S3 in the Supplementary Information, 
which describes contact between groups). On the other 
hand, high vaccine efficacy against infection limits the 
force of infection from the unvaccinated group to the 
optimally vaccinated group.

With vaccine homophily and low vaccine efficacy (Fig. 4C)
In this scenario, due to the low vaccine efficacy, major 
outbreaks occur among the unvaccinated and subop-
timally vaccinated, while infections quickly stabilize 
among the fully vaccinated, despite the low vaccine 
efficacy. The epidemic is primarily driven by the unvac-
cinated and those with two doses. This could be due to 

the large size of the two-dose group combined with the 
relatively low vaccine efficacy. Although each individual 
has partial protection, the overall population size and 
low vaccine efficacy result in a substantial force of infec-
tion within the two-dose group. Unvaccinated individu-
als significantly impact those within their group and have 
some impact on those with one or two doses, but mini-
mal impact on the group with three or more doses, as the 
mixing pattern limits intergroup contact. A similar pat-
tern is observed in the group with two doses.

Without vaccine homophily and with low vaccine efficacy 
(Fig. 4D)
In this scenario, each group affects both itself and other 
groups equally, although the strength of the impact 
depends on the vaccination status and the size of the 
group. Moreover, the fully vaccinated group has a sub-
stantial impact on both the unvaccinated and partially 
vaccinated, as contact is driven by group sizes, coupled 
with the low vaccine efficacy.

Without vaccine homophily and with vaccine efficacy 
for Omicron
In this scenario (See Supplementary Information Fig-
ure  S4), published vaccine efficacy values against infec-
tion with the Omicron variant were used [38]. The 
two-dose group drives infections in both the one-dose 
and unvaccinated groups, albeit with a somewhat 
reduced impact on those with three or more doses. Fur-
thermore, the influence of the unvaccinated group on the 
two- and three-dose groups is less pronounced than the 
converse. These dynamics likely stem from the relatively 
low vaccine efficacy against the Omicron variants and 
the absence of vaccine status homophily, which allows 
the prevalence of each vaccination group to drive con-
tact patterns. This scenario was designed to reflect the 

Table 4 Personal indicators of COVID-19 risk, weighted

Values may not round to whole numbers or sum to 100% due to missing observations on some variables and statistical weighting

0 Doses
n = 234.4

1 Dose
n = 20.6

2 Doses
n = 243.9

≥ 3 Doses
n = 685.7

COVID‑19 Diagnosis/Infection, n (%)

 No, and I do not think I have had COVID-19 76.3 (32.0) 10.9 (59.6) 73.2 (30.4) 486.2 (74.0)

 No, but I think I have had COVID-19. I just never received 
a test and/or diagnosis.

86.6 (37.4) 2.8 (15.1) 92.0 (38.1) 112.9 (17.2)

 Yes, I have been diagnosed with COVID-19 69.0 (29.8) 4.7 (25.3) 75.9 (31.5) 57.9 (8.8)

Compliance with COVID‑19 Guidelines, n (%)

 Not At All 28.8 (12.3) 1.0 (5.0) 14.6 (6.0) 0.4 (0.1)

 Not Very Closely 77.6 (33.1) 4.5 (22.0) 59.0 (24.3) 13.3 (2.1)

 Somewhat Closely 97.1 (41.4) 9.9 (48.3) 94.6 (39.0) 116.6 (18.0)

 Very Closely 30.9 (13.2) 5.1 (24.8) 74.4 (30.7) 515.9 (79.8)
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Table 5 Social network indicators of COVID-19 risk

Values may not round to whole numbers or sum to 100% due to missing observations on some variables and statistical weighting

0 Doses
n = 234.4

1 Dose
n = 20.6

2 Doses
n = 243.9

≥ 3 Doses
n = 685.7

Proportion of overall contacts with prior COVID-19, n (%)

 A few of them (i.e., 0–20%) 94.5 (40.6) 16.6 (80.6) 100.6 (41.2) 493.5(72.0)

 Some of them (i.e., 21–40%) 34.7 (14.9) 0.1 (0.4) 39.6 (16.2) 96.7 (14.1)

 Around half of them (i.e., 41–60%) 25.0 (10.7) 0.0 (0.1) 49.1 (20.1) 57.2 (8.3)

 Most of them (i.e., 61–80%) 54.2 (23.3) 2.8 (13.7) 34.6 (14.2) 33.9 (4.9)

 Nearly all of them (i.e., 80–100%) 24.5 (10.5) 1.1 (5.2) 20.1 (8.2) 4.4 (0.6)

Proportion of overall contacts adhering closely to guidelines, n (%)

 A few of them (i.e., 0–20%) 31.4 (13.4) 3.9 (18.8) 29.9 (12.3) 30.7 (4.5)

 Some of them (i.e., 21–40%) 41.8 (17.8) 3.9 (18.8) 46.9 (19.2) 35.8 (5.2)

 Around half of them (i.e., 41–60%) 45.2 (19.3) 5.4 (26.4) 39.9 (16.4) 79.2 (11.6)

 Most of them (i.e., 61–80%) 93.4 (39.9) 7.4 (35.9) 78.5 (32.2) 271.3 (39.6)

 Nearly all of them (i.e., 80–100%) 22.6 (9.7) 0.0 (0.1) 48.5 (19.9) 268.6 (39.2)

Proportion of overall contacts vaccinated, n (%)

 A few of them (i.e., 0–20%) 20.0 (8.5) 2.3 (10.9) 12.8 (5.3) 10.3 (1.5)

 Some of them (i.e., 21–40%) 40.8 (17.4) 0.3 (1.7) 14.2 (5.8) 6.0 (0.9)

 Around half of them (i.e., 41–60%) 68.4 (29.2) 1.7 (8.4) 42.5 (17.4) 9.3 (1.4)

 Most of them (i.e., 61–80%) 68.1 (29.0) 3.8 (18.5) 88.2 (36.2) 128.6 (18.9)

 Nearly all of them (i.e., 80–100%) 37.2 (15.9) 12.5 (60.5) 86.2 (35.4) 526.2 (77.3)

Number of non-household contacts, mean (SD) 21.76 (19.24) 13.30 (12.86) 20.29 (16.03) 15.52 (16.38)

Number of non-household contacts with known vaccine status, mean (SD) 10.21 (9.75) 10.40 (10.50) 10.67 (9.82) 10.97 (12.17)

Vaccination status of non-household contacts, mean (SD)

 0 doses 3.73 (6.49) 1.23 (3.23) 1.13 (3.53) 0.35 (1.21)

 1 dose 0.17 (0.55) 1.03 (1.91) 0.19 (0.66) 0.18 (0.97)

 2 doses 4.41 (6.54) 4.65 (6.37) 7.19 (9.05) 4.34 (9.42)

 3 doses 1.90 (4.66) 3.49 (5.07) 2.15 (3.46) 6.10 (8.01)

Household size, mean (SD) 1.85 (1.42) 1.90 (0.79) 2.14 (1.28) 1.76 (1.02)

Vaccination status of household contacts, mean (SD)

 Unknown 0.11 (0.46) 0.06 (0.35) 0.06 (0.31) 0.00 (0.00)

 0 doses 1.09 (1.38) 0.56 (1.07) 0.29 (0.92) 0.03 (0.17)

 1 dose 0.05 (0.22) 0.40 (0.81) 0.03 (0.18) 0.01 (0.12)

 2 doses 0.40 (0.83) 0.32 (0.48) 1.38 (1.11) 0.26 (0.59)

 3 doses 0.21 (0.52) 0.56 (0.91) 0.38 (0.60) 1.46 (0.97)

Calculated measures

 Average number of doses among overall contacts, mean (SD) 1.31 (0.79) 1.81 (0.70) 2.00 (0.49) 2.61 (0.45)

 Average number of doses among household contacts, mean (SD) 0.83 (1.06) 1.59 (1.11) 1.93 (0.75) 2.81 (0.43)

 Average number of doses among non-household contacts, mean (SD) 1.47 (0.89) 1.88 (0.57) 2.02 (0.56) 2.55 (0.55)

 % of overall contacts with at least 1 dose, mean (SD) 0.58 (0.31) 0.85 (0.22) 0.89 (0.18) 0.97 (0.12)

 % of household contacts with at least 1 dose, mean (SD) 0.36 (0.45) 0.74 (0.41) 0.86 (0.30) 0.99 (0.10)

 % of non-household contacts with at least 1 dose, mean (SD) 0.65 (0.36) 0.91 (0.16) 0.90 (0.20) 0.96 (0.15)

 Vaccine Homophily, mean, (SD) 0.27 (0.60) -0.34 (0.63) 0.35 (0.57) 0.42 (0.60)

 Network heterogeneity for ≥ 1 dose, mean (SD) 0.31 (0.20) 0.17 (0.18) 0.13 (0.19) 0.04 (0.10)

 Household heterogeneity for ≥ 1 dose, mean (SD) 0.11 (0.27) 0.07 (0.20) 0.06 (0.17) 0.01 (0.06)

 Non-household heterogeneity for ≥ 1 dose, mean (SD) 0.20 (0.20) 0.11 (0.18) 0.10 (0.17) 0.03 (0.10)

 Network heterogeneity, same number of doses in overall contacts, mean (SD) 0.41 (0.20) 0.42 (0.21) 0.33 (0.21) 0.25 (0.22)

 Network heterogeneity, same number of doses in household contacts, mean (SD) 0.13 (0.28) 0.08 (0.21) 0.15 (0.24) 0.06 (0.17)

 Network heterogeneity, same number of doses in non-household contacts, mean (SD) 0.30 (0.23) 0.34 (0.24) 0.24 (0.22) 0.22 (0.22)
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situation in British Columbia where homophily-enhanc-
ing measures, such as vaccination passports, were relaxed 
shortly after the study period. This may have led to a 

reduction in homophily. Given that the Omicron variant 
was the dominant strain in BC at the time, we focused on 
vaccine efficacy against the Omicron variant.

Fig. 2 Distribution of vaccine homophily scores, by participant vaccination status

Fig. 3 Homophily and Contact Network Size by Quantile. Figure Note: Each box in the boxplot spans from the first quartile (Q1) to the third 
quartile (Q3) of the data, representing the middle 50% of the data points for each vaccine status category. The black horizontal bar within each box 
represents the median of the data. In the context of this boxplot, it indicates the median network size for participants within each vaccine status 
category. The vertical lines, known as whiskers, extend from the upper and lower edges of the box to the highest and lowest values within a specific 
range. This range is typically defined as 1.5 times the interquartile range (IQR) above the upper quartile and below the lower quartile. Values 
outside this range are considered outliers and are not included in the whiskers. In this plot, the whiskers represent the spread of the network size 
data points, excluding outliers, for each vaccine status category



Page 12 of 16Are et al. BMC Public Health          (2024) 24:472 

Interpretation
Primary findings
This study was performed to characterize observable 
patterns of vaccine homophily and examine the impact 
of vaccine homophily on COVID-19 transmission both 
within and between vaccination status groups under con-
ditions of high and low vaccine efficacy. The results indi-
cated the occurrence of vaccine homophily, with a large 
proportion of the participants’ network contacts having 
the same number of vaccine doses as the participants 
themselves. Even adjusting for the population preva-
lence of each vaccine dose, those with zero, two, or three 
doses reported greater than expected levels of homoph-
ily. Similarly, the average number of doses received by 
household and non-household contacts was highest 
among those with ≥ 3 doses and lowest among those with 
0 doses, demonstrating a higher prevalence of vaccina-
tion within the networks of vaccinated individuals relative 

to unvaccinated individuals. Those who were unvacci-
nated also had more diverse social networks with regard 
to vaccine status, were more likely to report previous 
COVID-19 infection and had larger social network sizes. 
Mathematical models demonstrated that these dynamics 
contribute to elevated transmission overall under condi-
tions of high vaccine efficacy, and transmission is driven 
primarily by unvaccinated individuals infecting other 
unvaccinated individuals. Under conditions of low vaccine 
efficacy, within-group transmission among unvaccinated 
individuals remains high, but there is also considerable 
impact of unvaccinated transmission on suboptimally 
vaccinated individuals. Those with suboptimal protec-
tion (e.g., two doses) also experience considerable within-
group transmission due to high contact rates with other 
suboptimally protected contacts within their network.

One factor contributing to these patterns is a higher 
level of observed vaccine homophily among household 

Fig. 4 Number of Infections and Force of Infection: Assessment of the Impact of Homophily Under Scenarios of Low and High Vaccine Efficacy. A 
Number of infections under a scenario with vaccine homophily and high vaccine efficacy. The trajectory is colour-coded by vaccination status. Heat 
maps P1 and P2 show the force of infection at 15 and 45 days, respectively. B Number of infections under a scenario without vaccine homophily 
and with high vaccine efficacy. C The number of infections per day for various vaccination groups under a scenario with vaccine homophily and low 
vaccine efficacy. D Daily number of infections according to vaccination status under a scenario without homophily and low vaccine efficacy. The 
following parameter values were used under conditions with vaccine homophily. The horizontal and vertical axes on the heat maps represent 
vaccination status. The numbers within the heat maps indicate which group is transmitting infection to which other group: “2 to 1” indicates 
that individuals with 2 doses transmit to those with only 1 dose on that grid, and “3 to 0” indicates that those with 3 doses transmit to unvaccinated 
individuals on that grid
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contacts compared to non-household contacts. Indeed, 
among unvaccinated participants, only 39% of household 
contacts had one or more doses of the COVID-19 vac-
cine, compared to 68% of non-household contacts. We 
also found that vaccine homophily appears to decrease as 
social network size increases, suggesting that smaller net-
works are more similar to one another than larger net-
works. This is consistent with the empirical expectation 
that people tend to associate with people like themselves 
and are more different from those who are more socially 
distant [11].

To our knowledge, there have been few reports of 
empirically measured COVID-19 vaccine homoph-
ily. However, our findings that vaccine homophily has 
important implications for understanding the transmis-
sion of COVID-19 were consistent with previous model-
ling studies [12, 13, 15]. In situating our findings within 
these previous studies, it is important to note that the 
impact of vaccine homophily differs according to the 
level of vaccine efficacy. Under conditions of high vaccine 
efficacy, transmission occurs largely among unvaccinated 
individuals. Meanwhile, contact patterns put subopti-
mally vaccinated individuals at risk of infection under 
conditions of low vaccine efficacy. In contrast, fully vac-
cinated individuals experience a lower risk of infection. 
Furthermore, contrary to some narratives that blame 
unvaccinated individuals for driving the epidemic under 
conditions of low vaccine efficacy, we found that the force 
of infection is substantially influenced by group sizes in 
‘without homophily’ scenarios. Additionally, a sizeable 
portion of the force of infection among unvaccinated 
individuals originates from outside their group, a trend 
that becomes more pronounced when vaccine efficacy is 
low. With vaccine homophily, unvaccinated individuals 
pose significantly greater risk to other unvaccinated indi-
viduals than to other groups. The impact of unvaccinated 
individuals on fully vaccinated individuals is considerable 
only when there is low vaccine homophily, and vaccine 
efficacy is low. For all the scenarios we considered, the 
impact of homophily is amplified by increased probabil-
ity of infection per contact.

The overrepresentation of the unvaccinated in the 
total number of infections (Fig.  4A) is similar to find-
ings from Canada, based on case-level vaccine history 
data. Among individuals aged 5  years and older, the 
unvaccinated constituted approximately 30% of the total 
reported cases since the onset of the vaccination roll-
out, as of June 10, 2022. As the vaccination rollout pro-
gresses, the limited testing capacity has resulted in the 
targeted testing of the high-risk population for severe 
disease, which coincides with the group prioritized dur-
ing the vaccination rollout. Consequently, this bias in 
the case report data indicates that reported case data by 

vaccination status may not accurately reflect the distri-
bution of infections by vaccination status at the popula-
tion level [33]. For example, in BC, the unadjusted data 
indicated that the unvaccinated accounted for 14.2% 
of the total cases, whereas the age-adjusted cases per 
100,000 population in the province showed that unvac-
cinated groups accounted for 58% in March 2022 [39]. 
This finding is consistent with the initial conditions of 
our model at the beginning of March 2022.

Taken together, our findings are worrisome, particu-
larly when considering the risk for transmission within 
households, which are known to account for a sig-
nificant proportion of COVID-19 infections [40–42]. 
Furthermore, the high risk of infection among unvacci-
nated individuals, even with an effective vaccine avail-
able, underscores the need for vaccine-status-specific 
COVID-19 prevention measures. These measures are 
crucial as unvaccinated individuals can significantly con-
tribute to hospitalizations, even when they are a minor-
ity [43], which might raise important questions about 
health equity. Such measures may include mask man-
dates, physical distancing rules, and proof of vaccination 
requirements. Given the group transmission dynamics 
that arise due to household and non-household contact 
networks, it is important to engage these populations 
to address vaccine hesitancy [44–50]. This will likely 
require community-based and culturally aware public 
health interventions that can help reduce vaccine hesi-
tancy. Indeed, rather than viewing unvaccinated indi-
viduals as a threat to public health, it should be taken 
as an opportunity to educate and work with these indi-
viduals to address their concerns, particularly given the 
skepticism that may be associated with the emergency 
use authorizations that have allowed the rapid rollout of 
COVID-19 vaccines [46, 47].

Limitations
This study had some limitations that should be taken into 
consideration when interpreting our findings. First, we 
note that our findings are relevant to the promotion of 
vaccines across the population and emphasize the impor-
tance of continued vaccine research and efforts to provide 
ongoing protection as vaccine-induced immunity wanes. 
However, our data are from a period in which individuals 
were receiving third doses and facing the rising prevalence 
of the Omicron variant. Therefore, our results should not 
be read as predictive scenarios. Rather, they should be 
interpreted in the context of a pandemic-related mass-
vaccination effort, during which there was uneven uptake 
of vaccines across social networks due to a variety of fac-
tors within and outside the control of individuals.

Second, we note that our survey utilized an online, opt-
in convenience sampling methodology to study the effects 
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of interest. Online sampling is now a widespread method-
ology, particularly since the decline in reliability of other 
opt-in sampling strategies such as random digit dialing 
methods. Point estimates from this study are therefore 
likely to be non-representative and may be biased. How-
ever, we note that studies show that epidemiological and 
behavioural estimates from web and telephone surveys 
are typically comparable, and that online samples may 
have advantages to other survey methods (e.g., reduced 
favourable reporting; [51]). This is because the direction 
of bias may be random. While population weights may 
partially adjust for this issue, the direction and magnitude 
of potential biases are unknown. Replication in a popula-
tion-based sample is warranted. Furthermore, our weight-
ing method does not make any assumptions regarding the 
statistical relationship between weighting variables (i.e., 
each variable included in the weighting variable is itera-
tively fit until target weights are met, without trying to 
match marginal weights).

Third, it is important to acknowledge that our sam-
ple size was relatively modest. Replicating our findings 
in a larger sample could offer more robust evidence and 
enhance the accuracy of our measurements. However, 
we must acknowledge that replicating the study will pre-
sent significant challenges, particularly given the current 
stage of the pandemic. Tracking the vaccination statuses 
of individuals within contact networks may prove to be a 
daunting task.

Fourth, self-reported data may be unreliable, particu-
larly estimates regarding characteristics of participants’ 
social networks. People may be overly confident in esti-
mating their network’s vaccination status, guideline 
compliance, and vaccine history of their social network 
contacts, which may result in a systematic bias toward 
the hypothesis that vaccine status homophily exists. Fifth, 
we do not intend to imply causality in describing any 
of the relationships between vaccine status and vaccine 
homophily. Further qualitative and quantitative studies 
are needed to understand the processes that give rise to 
vaccine homophily and how best to respond to these net-
work characteristics.

Our modelling assumptions did not consider vac-
cine efficacy against infectiousness, except that if infec-
tion itself is prevented, so is infectiousness. We made 
this choice partly because the evidence for a reduction in 
infectiousness due to vaccination is still emerging [52, 53]. 
Additionally, during the study period, almost everyone in 
the population had been exposed to the infection, which 
suggests that the majority might exhibit some reduction 
in infectiousness due to vaccination or natural immunity. 
This generally impacts the probability of infection given a 
contact. A recent study suggests a 22% reduction in infec-
tiousness post-vaccination [52]. We found that our results 

remain robust with a reduction in infectiousness around 
that value, which slightly impacts the total infection. 
Detailed modelling of the interaction between acquired 
and natural immunities, and their efficacy against infec-
tiousness, would require more data and details, which are 
beyond the scope of the current study.

Conclusion
The present study identified evidence of homophily in 
COVID-19 vaccine uptake. Unvaccinated individuals 
are more likely to have unvaccinated network contacts, 
conditions that create increased risk of COVID-19 trans-
mission among unvaccinated individuals. Neverthe-
less, vaccine homophily varies considerably, and further 
research is needed to understand the factors that shape 
vaccine homophily within social networks. Vaccine sta-
tus-specific prevention guidelines may help to mitigate 
the risks to communities posed by the unique risk pro-
files of unvaccinated individuals.
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