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Abstract 

 The trajectory of COVID-19 epidemic waves in the general population of Belgium was analysed by defining quan-
titative criteria for epidemic waves from March 2020 to early 2023. Peaks and starting/ending times characterised 
nine waves numerated I to IX based on the daily reported incidence number (symbol INCID) and three “endemic” 
interval periods between the first four waves. The SIR compartmental model was applied to the first epidemic 
wave by fitting the daily prevalence pool (symbol I) calculated as the sum of the daily incidence rate and estimated 
number of subjects still infectious from the previous days. The basic reproductive number  R0 was calculated based 
on the exponential growth rate during the early phase and on medical literature knowledge of the time of gen-
eration of SARS-CoV-2 infection. The first COVID-19 wave was well fitted by an open SIR model. According to this 
approach, dampened recurrent epidemic waves evolving through an endemic state would have been expected. 
This was not the case with the subsequent epidemic waves being characterised by new variants of concern (VOC). 
Evidence-based observations: 1) each epidemic wave affected less than a fifth of the general population; 2) the Vth 
epidemic wave (VOC Omicron) presented the greatest amplitude. The lack of recurrence of the same VOC during suc-
cessive epidemic waves strongly suggests that a VOC has a limited persistence, disappearing from the population 
well before the expected proportion of the theoretical susceptible cohort being maximally infected. Fitting the theo-
retical SIR model, a limited persistence of VOCs in a population could explain that new VOCs replace old ones, even 
if the new VOC has a lower transmission rate than the preceding one. In conclusion, acquisition of potential defective 
mutations in VOC during an epidemic wave is a potential factor explaining the absence of resurgence of a same VOC 
during successive waves. Such an hypothesis is open to discussion and to rebuttal. A modified SIR model with epi-
demic waves of variable amplitude related not only to  R0 and public health measures but also to acquisition of defec-
tive fitting in virus within a population should be tested.

Keywords Infectious disease dynamic, SIR model

Introduction
Specific definitions describe the mode of propagation of 
a pathogen agent in a cohort or in a population. While 
these definitions look easy to understand intuitively, they 
are relatively difficult to convert into a unified method of 
measurement. In the original background publications 
of Ross and Kermack [1, 2], the mathematical develop-
ment of infectious epidemiology prioritised the prag-
matic usage of measurement tools. During the three-year 

*Correspondence:
Jean Vanderpas
jean.vanderpas@ulb.be
1 Centre de recherche Epidémiologie, biostatistiques, recherche clinique, 
School of Public Health, Université libre de Bruxelles (ULB), Route de 
Lennik 808, 596, 1070 Brussels, CP, Belgium

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-024-17951-x&domain=pdf
http://orcid.org/0000-0003-0623-5612
http://orcid.org/0000-0001-8899-9549


Page 2 of 13Vanderpas et al. BMC Public Health          (2024) 24:638 

COVID-19 pandemic, the same paradox was observed: 
on the one hand, mathematicians/bioinformatics analysts 
developed very refined models of dynamic infection by 
integrating various subgroups of a population according 
to age, sex, living at home or type of institution, travel, 
nonpharmaceutical and vaccination intervention [3]; on 
the other hand, health professionals were pragmatically 
involved in collecting basic data such as daily incidence 
rates of reported COVID-19 cases [4] and seroprevalence 
data of SARS-CoV-2 immunity, at least in the general 
population [5], as required by international survey organ-
isations during a pandemic. Communication between 
both groups of professionals was limited, not only for dif-
ferent backgrounds of knowledge but also for difficulties 
in sharing the same scientific language. The manuscript 
goes back to some basic methodological questions on SIR 
model from experts in epidemiology, in continuation of 
the pre-Covid experience obtained in the field of infec-
tious epidemiology diffused through courses at Impe-
rial College, London (Fraser Christophe and colleagues, 
2018) [6], the need of clarification being reinforced by the 
mass of literature since the emergence of Covid (more 
than 9 000 publications from 2020 to present with key 
words “Covid SIR model”).

Do we agree on the definition of I in the SIR model ?
When discussing with health professionals in the field, a 
frequently erroneous understanding of “I” in the infec-
tious dynamic SIR model refers intuitively and errone-
ously to “incidence rate” in place of “prevalence pool of 
infected/infectious cases” [7]. In addition to conceptual 
mistakes, such misunderstandings could have conse-
quences on modelling the SIR/SEIR model and on the 
measurement of basic reproductive number  R0. In the 
present pragmatic approach, it is proposed to show step 
by step how to integrate field observations by infection 
control teams with the SIR model in a general popula-
tion. The classical epidemiology language is used, refer-
ring mainly to Elisabeth Halloran book chapter [8] and to 
infectious epidemiology books [9–11]. The objective of 
this research is to present the trajectory of the epidemic 
over 3 years in Belgium. This paper is intended to help 
communication between actors in the field of infection 
control practice and data analysts.

Material and methods
Pragmatic definition of epidemic and epidemic waves
In common professional language, an “infectious epi-
demic” is characterised by a time trajectory of non-
stationary variation in the number of new cases of 
infection in a cohort or in a population with three phases: 
increase, peak and decrease of incidence rate. No a pri-
ori standardised accepted mathematical criteria define 

infectious epidemic and infectious epidemic waves. For 
the COVID-19 propagation in the general Belgian popu-
lation, the epidemic peaks were pragmatically defined a 
posteriori on two proposed criteria: 1°) peaks as maxima 
of the moving daily case reporting average rolling from 
7 days before to 7 days after a specified date and 2°) to 
discard small fluctuations: the smoothed number of cases 
on peak day must be at least 30% above the number of 
cases two weeks before (peak day -14). When the inter-
wave interval presented a period of fluctuations with 
multiple minimal values, the last prepeak minimal value 
and the first postpeak minimal value were taken as the 
starting date and ending date of successive waves. The 
interval period between two nonoverlapping epidemic 
waves – from the first postpeak minimal value of a wave 
to the last prepeak minimal value of the following wave – 
was defined as an interwave endemic period [12].

From daily incidence to daily prevalence pool of infectious 
cases
The daily number of newly reported cases in Belgium 
were clinically defined during before April 2020 and con-
firmed by laboratory tests (practically, PCR Sars-Cov-2 
tests) thereafter. Data were openly available through the 
databank of Sciensano, the Belgian public health insti-
tute [13]. This daily incidence rate of reported cases is 
symbolised as INCID. The same public open data bank 
shares the epidemic trajectories of VOC in a subsam-
ple of 5-10% of positive samples diagnosed in Belgium, 
obtained through sentinel laboratories (without clini-
cal criteria of selection) considered representative of the 
whole country. VOC genomic sequencing began on 15 
February 2021, i.e., when VOC Alpha was predominant.

Seroprevalence data after the first epidemic in cohorts 
representative of the general population have been pub-
lished by another group [5], with their summary in 
Table 2. Seroprevalence after the second wave was taken 
from the Sciensano databank [13].

To be coherent with the SIR model, the daily preva-
lence pool I compartment represents the number of new 
COVID cases on a specified day INCID day i + the num-
ber of prevalence pool of previous days still infected and 
infectious (prevalence pool I day i-1) [8] (the method of 
determining the prevalence pool I is developed in more 
detail in the Results section (Table 3)).

Ordinary differential equations of the SIR method were 
solved with a commercial computer software (Berke-
ley-Madonna Inc.) [14].This program fits the observed 
daily prevalence pool data (discrete data) to I of the SIR 
method (continuous function) by a recursive Runge‒
Kutta method of numerical approximation [15]. The 
optimization algorithmic process of this software for 
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obtention of parameters is based on the simplex method 
of Nelder-Mead for minimisation [16].

The statistical distribution of the epidemic parameters 
Ro, ß - infection rate or γ – recovery rate were not cal-
culated with this computer software, and would require 
other programs based on Markov Chain Monte Carlo 
(MCMC) methodology (three chapters  9, 10, 11 on 
MCMC in reference [10]).

Results
Epidemiologic descriptive analysis of the three‑year 
COVID‑19 epidemic in Belgium
When looking at the trajectory of reported COVID-19 
incidence in Belgium (Fig.  1), visual inspection of the 
figure of smoothed daily reported case data shows a 
sequence of 9 waves numbered I to IX defined by their 
peaks and their prewave and postwave minimal values. 
These 9 waves were recognised over the three-year period 
March 2020 – begin January 2023. The first four waves 
were separated by three interwave intervals, I-II, II-III 

and III-IV, compatible with an unstable endemic inter-
val. The last five waves overlapped without an interwave 
interval. The number of reported cases varied greatly, 
from < 2.000 cases-day-1 for wave I to 52.141 cases-day-1 
for wave V (truncated at 20.000 cases-day-1 in Fig. 1).

Table 1 shows the descriptive analysis of the data after 
having defined the time milestones start - peak - end. The 
upper part describes the epidemic waves. The wave start 
times ranged over the four seasons: 4 in winter (waves I, 
III, V, VI), 1 in spring (wave VII), 2 in summer (waves II, 
VIII), and 2 in autumn (waves IV, IX). The length of the 
wave period varied from 66 days (Wave V) to 133 days 
(Wave III). Each wave was characterised by a predomi-
nant variant of concern. The number of reported cases at 
peak time and the total number during the wave reached 
a maximum during the fifth wave, at levels more than 
20 times greater than during the first wave or the ninth 
wave. The lower part describes the three interwave peri-
ods/intervals for waves I to IV. The length of these inter-
vals varied between 56 and 97 days. Due to fluctuating 

Fig. 1 Descriptive analysis of the nine epidemic covid waves in general population – Belgium. Daily evolution of the number of Covid-19 reported 
cases smoothed with moving average from Day i-3 to Day i+3 (7 days moving average). Wave epidemic periods defined by peaks encircled 
by green vertical lines. Interwave endemic intervals defined by green vertical lines without interspersed peaks
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variations, there are no peaks clearly defined during these 
“endemic” intervals. The total number of cases during 
these intervals ranged from 20.848 during the first inter-
wave period I-II to 160.138 cases for the third interwave 
period III-IV.

The availability of SARS-CoV-2 PCR diagnostic tests 
was low until the end of 2020, and the magnitude of the 
first wave had to be compared to data obtained by sero-
prevalence data reflecting the cumulative incidence of 
COVID-19, including clinical cases and asymptomatic 
cases [5, 17]. Table 2 shows that during the 20 April to 
13 June 2020 period, i.e., the a posteriori cumulative 
incidence of Wave I, the seroprevalence of SARS-CoV-2 
antibody-positive tests varied between 4,74% and 
5,25%. Extrapolating to the general 11.4 million Belgian 
population, this represents an approximate number of 

540 thousand cases of seroimmune conversions dur-
ing the first wave, to be compared to the 9 times lower 
number of 61.622 reported cases by PCR during the 
first wave in Table 1.

Seroprevalence after wave II was available in blood 
donors, showing that 18,70% of this cohort was infected 
by SARS-CoV-2 during the first two epidemic waves. 
When subtracting the estimated number infected dur-
ing the first wave in the general population, an esti-
mated 1.6 million seroconversions during the second 
wave is calculated. This number is three times greater 
than the number of reported cases during the second 
wave in Table 1.

Table  3 shows the way to convert prevalence pool I 
from the daily incidence rate INCID. The pooled preva-
lence I corresponds to the sum of the daily incidence rate 

Table 1 Time milestones, duration, variant of concern, daily incidence no. at peak and wave amplitude of the nine Covid-19 epidemic 
waves - Belgium

WHO Variant VOC World Health Organization Variant of Concern (Pango lineage). Viral genomic sequencing in Belgium became available during the Wave III (2021) 
epidemic. Previous viral genomes (? Ancestral and ? Wuhan) are inferred from European SARS-CoV-2 surveillance

Epidemic wave  
(start year)

Start Peak End Length
(days)

Main
WHO Variant VOC

No. reported cases

Peak Wave

Wave I (2020) 1 Mar 8 Apr 27 Jun 118 ? Ancestral (Pre-VOC) 1.617 61.622

Wave II (2020) 24 Aug 25 Oct 1 Dec 99 ? Wuhan (Pre-VOC) 16.147 503.678

Wave III (2021) 10 Feb 25 Mar 23 Jun 133 Alpha (B1.1.7) 4.857 346.034

Wave IV (2021) 30 Sep 25 Nov 22 Dec 83 Delta (B1.617.2) 17.982 796.193

Wave V (2021) 23 Dec 22 Jan 27 Feb 66 Omicron (BA.1) 104.540 1.529.867

Wave VI (2022) 28 Feb 23 Mar 6 May 87 Omicron BA.2 (BA.2) 11.292 385.454

Wave VII (2022) 28 May 10 Jul 3 Sept 98 Omicron BA.5 (BA.5) 7.915 338.848

Wave VIII (2022) 3 Sept 8 Oct 12 Nov 70 Omicron BA.F (BA.5) 3.167 134.735

Wave IX (2022) 12 Nov 16 Dec > 9 Jan 119 Omicron BA.F (BA.5) 1.468 61.087

Inter‑wave period 
(start year)

Start End Length
(days)

Main transition
WHO Variant VOC

No. reported 
case Inter‑Wave

Inter I-II (2020) 28 Jun 23 Aug 56 ? Ancestral (Pre-VOC)
➔ ? Wuhan (Pre-VOC)

20.848

Inter II-III (2020) 2 Dec 4 Feb 62 ? Wuhan (Pre-VOC)
➔ Alpha (B.1.1.7)

145.234

Inter III-IV (2021) 24 Jun 29 Sept 97 Alpha (B.1.1.7)
➔ Delta (B.1.617.2)

160.138

Table 2 Post-Wave I SARS-CoV-2 seroprevalence data on a large sample collection in general population through outpatients referred 
to medical lab’s in Belgium in 2020 (reference [5]) and post-Wave II SARS-CoV-2 seroprevalence in blood donors (reference [13]). Last 
column: estimated no. of cases from seroprevalence data on basis of a 11,4 million Belgian population

Period collection Median seropositive prevalence (CI95) after wave I Estimated total no. seroconversions 
during Wave I

20 to 26 Apr 2020
18 to 25 May 2020
8 to 13 June 2020

5,25% (4,22% - 6,35%)
6,20% (5,05% - 7,31%)
4,74% (3,65% - 5,85%)

5,25%+6,20%+4,74%
3

*11,4 millions
≈ 540 thousand seroconversions

Seroconversions during Wave II
First week 2021 18,70% (15,60% - 21,70%) (18,70%*11,4 millions) – 540 thousand

≈ 1,6 million seroconversions
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+ the number of subjects having been infected previ-
ously and still infected and infectious. When a cohort is 
defined by its initial incidence rate INCIDi, the number 
of subjects of this cohort remaining infected and infec-
tious on the following days decreases as a theoretical 
exponential function with a coefficient rate γ:

(vertical columns in Table  3). The exponential coef-
ficient γ corresponds to the transition coefficient I to R 
in the SIR model. The prevalence pool  Ii (last column in 
Table 3) is the sum on day i of the values obtained in a 
row. The equation can be greatly simplified by observ-
ing that prevalence pool I follows the structure of a series 
with two terms [18]: the incidence rate of the day and the 
prevalence pool of the previous day multiplied by  e-γ:

The early epidemic phase during the first 25 days of 
COVID-19 epidemic wave I (between 1 and 25 March 
2020) is analysed as an exponential function model (Fig. 2). 
Curves are compared for y-values expressed as daily inci-
dence of reported cases (INCID) or as calculated preva-
lence pool I. The growth rate coefficient r value was 0,1684 
 day-1 for INCID and 0,2069  day-1 for Prevalence Pool.

Determination of the basic reproductive number  R0
Determination of the basic reproductive number R0 
necessitates the knowledge of growth coefficient r = 
0,2069  day-1 for prevalence pool I (Fig. 2) and the knowl-
edge of serial time interval defined as the time interval 
between the onset of symptoms in the primary (infector) 

(1)
� INCID i = initial INCIDday i ∗e

−γ ∗(day i−initial day i)

(2)
Prevalence pool I day i = INCIDday i + Prevalence pool I day i−1 ∗ e

−γ

and secondary case (infected). Pragmatically, a close 
approximation of serial time is obtained by the gen-
eration time Tg defined as the sum of the average latent 
period (from contamination to infectiousness) and half 
the average infectious period. The generation time Tg 
reported from a meta-analysis in the clinical literature 
for SARS-CoV-2 corresponds to a mean incubation time 
of approximately 5 days [19] + half the mean duration 
of viable shedding of virus in the general population of 
approximately 8.4 days [20]. Estimated Tg = 9,2 days will 
be chosen as the initial value at this step for all epidemic 
waves and will be fitted later by analysis of the SIR model:

The inverse of time generation 1/Tg also corresponds to 
γ, the coefficient of transition of I➔R in the SIR model:

The basic reproductive number R0 was estimated on 
the basis of the growth rate r of the prevalence pool and 
the Tg generation time fixed at 9.2 days from the medical 
literature [21, 22]:

When having determined  R0 and γ, the transition coef-
ficient β, “force of infection”, between compartments S to 
I in the SIR model is calculated as follows [9, 21]:

(3)

Tg = mean incubation time

+
1

2
mean duration of viable viral shedding

= 5 days+ 4, 2 days = 9, 2 days

(4)γ =
1

Tg
=

1

9, 2 days
= 0, 11 days−1

(5)
R0 = r ∗ Tg + 1 ≈ (0, 2069 ∗ 9, 2)+ 1 = 2, 9035

Table 3 Conversion of daily incidence rates INCID day i to daily prevalence pool I day i during follow-up of an epidemic. Initial values 
of reported daily incidence rates are in bold characters. Each column represents the expected daily number of cases remaining 
infected and infectious during follow-up according to the exponential decrease of INCID initial with exponential decrease rate (γ 
coefficient). The prevalence pool I day i (last column) corresponds to the sum within each row. The calculus of the prevalence pool is 
simplified by summing the incidence of the day i and the prevalence pool of the preceding day multiplied by number e exponent -γ: 
Prevalence pool I day i = INCIDday i + Prevalence pool I day i−1 ∗ e−γ

Day i � INCIDi = initial INCIDdayi ∗e
−γ ∗(day i−initial day i)

= � Prevalence pool day i−1∗e
−γ Preval. pool I day i

0 INCID0 I0=INCID0

1 INCID0*e-γ*1 INCID1 I1=INCID1 +  I0*e-γ

2 INCID0*e-γ*2 INCID1*e-γ*1 INCID2 I2=INCID2 +  I1*e-γ

3 INCID0*e-γ*3 INCID1*e-γ*2 INCID2*e-γ*1 INCID3 I3=INCID3 +  I2*e-γ

4 INCID0*e-γ*4 INCID1*e-γ*3 INCID2*e-γ*2 INCID3*e-γ*1 INCID4 I4=INCID4 +  I3*e-γ

5 INCID0*e-γ*5 INCID1*e-γ*4 INCID2*e-γ*3 INCID3*e-γ*2 INCID4*e-γ*1 INCID5 I5=INCID5 +  I4*e-γ
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Fitting the observed prevalence pool I data of wave 1 
to open the SIR model
The boxes and arrows (Fig. 3) represent the sequence of 
compartment Susceptible ➔ Infectious ➔ Recovered, 
with the transition coefficients as Greek letters β, γ for S 
to I and I to R transitions. To maintain a stable N number, 
λ as a parameter of entry in the S compartment is in equi-
librium with µ representing mortality, migration or travel 
for exit of the S, I and R compartments. The “open” SIR 

(6)
β = R0 ∗

γ = 2,9035 ∗ 0,11 day−1
= 0,3194 day−1

model implies exchange inside a population by demo-
graphic movements with other groups.

To fit the prevalence pool I data to the SIR model, ini-
tial values of S, I and R have to be fixed.

Initial S value  (S_time_0): for an epidemic with a new path-
ogen, initial susceptible population  S_time_0 corresponds to 
N = the cumulative incidence of infected subjects during 
an epidemic wave plus the initially susceptible subjects who 
have escaped to the epidemic wave symbolised as  S_time_∞. 
The value of  S_time_∞ is obtained by Equation 7 (N,  S_time_0 
and  S_time_∞ expressed in percentages). By the bisection 
method [23], a value of  S_time_ ∞ = 6,15% is obtained, with 
N =  S_time_0 = 100% for a new epidemic and  R0 = 2.9035:

To determine the estimated N number of cases exposed 
to epidemic wave 1, the observed cumulative number of 
reported infections during the epidemic wave (61.622 
cases) is divided by (100% -  S_time_∞):

Initial value I was initially fixed as the number of initial 
prevalence pools in Fig. 2 (47 cases). It was modified to 
200 cases to better fit the SIR model to the observed data.

Initial value R  (R_time_0) – recovered pool – was initially 
fixed as null for a new emerging virus.

(7)
R0 =

Ln(S_time_0/S_time_∞)

N − S_time_∞
= 2,9035

→ S_time_∞

(8)
N = 61.622/(100%− 6, 15%) = 65.703 ≈ 66.000

Fig. 2 Comparison of prevalence pool I and incidence rate during first wave. Daily number of reported cases during the first 25 days of the first 
Covid-19 wave in Belgium, from 1st to 25 March 2020. Incidence = daily incidence rate. Prevalence pool calculated according to equation in Table 3: 
prevalence pool (day i) = INCIDi + prevalence pool (day i-1) *  e-γ

Fig. 3 Open SIR model of epidemic trajectory. Dynamic model 
of evolution of an epidemic within an open cohort or population (i.e. 
λ as entry of new susceptible cases by births, immigration or in-travels 
being equal to µ (deaths)). S = Susceptible compartment, I = 
Infectious compartment, R = Recovered compartment. βSI = product 
of transition coefficient ß by S compartment and by prevalence pool 
I. γI = product of transition coefficient γ by prevalence pool I



Page 7 of 13Vanderpas et al. BMC Public Health          (2024) 24:638  

Figure 4 shows the trajectory of prevalence pool I(t) 
and of the other compartments S(t) and R(t) after fit-
ting the observed data of the prevalence pool by ordi-
nary difference equations. The initial values of the 
number of cases in each compartment were as follows: 
N = 66.000 ≈  S_time_0;  I_time_0 = 200;  R_time_0 = 0. The 
initial attributed values of the transition coefficients 
were as follows: ß for S ➔  I = 0,3194 (Equation  6); 
γ for I ➔ R = 0,11 (Equation  5). Initial  I_time_ 0 value 
and transition coefficients β and γ were submitted 
to fitting, with a domain of fitting between 0 and 500 
for  I_time_0, between 0.15 and 0.45 for β, and between 
0.08 and 0,20 for γ. After fitting the ordinary differ-
ence equations with Berkeley-Madonna software based 
on Nelder-Mead algoritms [16], the adjusted values of 
β and γ were, respectively, 0.39306 and 0.13083 (to be 
compared to their initial values of, respectively, β = 
0,3194 (equation  4) and γ = 0.11 in equation  2). The 
initial value of I  I_time_0 was fixed at 200 (to be com-
pared to the initial value of  I_time_0 = 47 cases obtained 
from Fig.  2). The prevalence pool I trajectory (green 
line) shows that the modelized curve was close to the 

observed data (open red circles) over the entire period. 
The susceptible compartment (blue, left axis) decreased 
from a maximal initial value of 66.000 in a classical sig-
moid shape and attained a final minimal value  S_time_∞ 
= 786 at day 126 (representing 1,19% of  S_time_0 = 
66.000), a much lower proportion than the expected 
 S_time_∞ = 6,15% of  S_time_0 in equation 6. The recovered 
compartment (violet line, right axis) followed a shape 
symmetrical to that of the susceptible compartment.

Open SIR model (with demographic movements): 
expectation after first wave
Classically, an open SIR model evolves as a recurrent 
emergence of new waves with the same pathogen until 
an endemic stable plateau is reached. When the cohort 
to new arrivals (births, travellers) reaches an equilib-
rium between new infections and new entries, a stable 
endemic state is attained progressively. Figure 5 describes 
such a process. The same values for initial variables  S_

tim_0 ,  I_time_0,  R_time_0 and for transitions coefficients ß, γ 
were employed as in Fig. 4, and the horizontal time axis 
was extended from 126 days (Fig. 4) to 600 days (Fig. 5). 

Fig. 4 Open SIR model fitted to observations of the first Covid-19 epidemic wave – Belgium. The evolution of daily prevalence pool I was estimated 
from the daily incidence of reported cases (red circles). These observed values were fitted by ordinary differential equations (ODE) to SIR model. Left 
vertical axis: modelized Susceptible compartment (blue); modelized Recovered compartment (violet). Right axis: modelized daily prevalence pool 
I compartment. The insert contains the equations of ODE in Berkeley-Madonna language, the initial values of S, I and R compartments, the ß and γ 
transition parameters. DT signifies that the fitting of model to observations with ODE was operated for each Δ time = 0,02 days. DTOUT indicates 
the Δ time for output printing
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According to the model, the left part of Fig. 5 shows that 
when extending the model from the first epidemic wave 
to a period of 600 days, epidemic recurrence is expected 
with a semestrial periodic duration and progresses 
toward a stable endemic state of equilibrium. According 
to the SIR model, a significant proportion of the  S_time_0 
cohort remains infected at the end of an epidemic wave 
and guarantees a new dampened epidemic wave when 
new susceptible subjects are introduced – or when public 
health measures are less strict. To keep N stable, the rate 
of introduction of new susceptible subjects symbolised 
by λ is artificially forced to be equal to μ, the rate of exit 
of compartments S, I and R.

The emergence of new variants of concern
To better understand the interplay between variants 
of concern VOC and epidemic waves of reported cases 
(Fig.  6), the epidemic trajectories of waves IV (VOC 
Delta queue of the trajectory), V (Omicron) and VI (VOC 
Omicron subvariant BA.2 part of trajectory) are pre-
sented. When looking at the distribution of variants of 
concern, before the initial day of wave V, there is a pro-
gressive decrease in the VOC Delta of the preceding wave 
and a progressive increase in VOC Omicron. At the end 
of this wave (after Day 70), there is a progressive decrease 
in VOC Omicron and a progressive increase in Omicron 
subvariant BA. The total number of reported cases (yel-
low line) corresponds to the summing of these VOCs.

To further analyse the exponential phase, each VOC is 
analysed individually. Such data covering the early phase 
of propagation of a new VOC have only been available 
since VOC Delta emergence in Belgium [13] (VOC Alpha 
sequencing began to be registered too late after its emer-
gence). Figure 7 compares the growth rates of three VOC 
deltas, Omicron and Omicron BA.2. It is generally assumed 
that the amplitude of an epidemic wave is directly depend-
ent on the growth rate, which is itself directly related to  R0 
by equation 5. Nevertheless, even for VOC Omicron, which 
has the greatest epidemic amplitude in wave V, a small 
fraction of the general population was reported as having 
been affected (13,16%, i.e., 1.5 million of 11.4 million peo-
ple). This discrepancy between elevated growth rate and 
limited propagation in a population is explained by public 
health measures (lockdown, personal equipment (masks), 
hand rubbing with antiseptic agents). Another evidence is 
the lack of persistence of transmission of a VOC variant 
from an epidemic wave to the following one in link with the 
emergence of a new VOC variant (see discussion).

Figure  8 visualises the model trajectory of a fictive 
epidemic due to two theoretical SARS-CoV-2 variants 
1 and 2 with characteristics of propagation similar to 
those of SARS-CoV-2 (direct human to human trans-
mission) emerging simultaneously in a population. Both 
variants differ by their initial ß transition coefficients (ß1 
= 0.40 for variant 1 and ß2 = 0.30 for variant 2). Variant 
1 has a limited number of cycles of transmission: after 
20 days, ß1 equals zero. Variant 2 has no limited number 

Fig. 5 Expected recurrency by open SIR model after first wave of Covid-19 in Belgium. Left part: red circles: reported prevalence pool I data 
for wave 1 epidemic. Lines: prevalence pool I (green line, right axis) and Susceptible compartment (blue line, left axis) fitted to open SIR model 
for epidemic wave 1 with time extension to 580 days. Same initial S, I, R values and ß, γ transition values as in Fig. 4. Right part: the Susceptible – 
prevalence pool I plane representation shows that the model predicts a semestrial period of recurrence (the semestrial period being represented 
with different colors, initial period in blue and time direction indicated by the blue arrow) through a progressively stable endemic state after 4 
semesters
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of cycles of transmission (ß=0.30 remaining constant). 
In this model, the SIR model forecasts the coexistence 
of both variants, with a greater exponential growth of 
variant 1 versus variant 2 during the early phase. After 
the extinction of cycles of transmission of variant 1 on 
day 20, variant 1 is progressively replaced by variant 2. 
When analysing the total shape of both variants, variant 
2 affects a markedly greater proportion of subjects than 
variant (75,1% by variant 2 versus 24,9% by variant 1) of 
initial total population (N = 1000).

Discussion
The mathematical basis of a model of infectious epidemic 
was developed approximately one century ago, [1, 2] and 
its teaching continues to be largely employed in life sci-
ences to understand the mode of pathogen epidemic 
transmission. In its simplest form of the SIR model, some 
assumptions are needed, such as “homogeneous mix-
ing”, i.e., similar transmission in various categories of 
the population defined by age, sex, socioeconomic level, 
hospitalised/outpatient, etc. More powerful data analysis 
shows, for example, that SARS-CoV-2 transmission is an 

age-dependent variable [24]. Nevertheless, at an 11,4 mil-
lion Belgian people population level, it may be considered 
that “homogeneous mixing” is sufficiently close to reality 
to infer approximately a simplified SIR model.

Which data are correct at a population level?
The “representativeness” of collected clinical data is a 
major question of validity of the model: a nine-times 
greater number of cases during epidemic wave was 
reported a posteriori after wave I by seroprevalence 
(540 thousand cases) [5] versus the 61 thousand clinical 
reported cases to the national public health organism 
[13]. The same discrepancy between the total number of 
reported cases during wave II (504 thousand cases) and 
the number of cases determined after wave II from sero-
prevalence data (1,6 million cases) is documented. These 
discrepancies have partial explanations: a) a posteriori 
and before vaccination programs, approximately 40% of 
infected subjects escape a diagnosis (pauci- or asympto-
matic cases) [25]; b) a lack of accessibility to PCR diag-
nostic tests at least during the 2020 year.

Fig. 6 Trajectories of VOC SARS-CovV2 variants during epidemic waves IV, V and VI. Prevalence pool I (yellow line without marks) subdivided 
according to VOC Sars-CoV-2 variable of concern Delta (blue circles, VOC δ), Omicron (grey circles, VOC ω) and Omicron BA.2 (green circles, VOC 
BA.2)
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Similar SIR pattern and transmission coefficients 
despite method‑limited measurements
Nevertheless, even if the exact number of reported 
COVID-19 cases (including asymptomatic cases) 
remains underreported by daily incidence reporting, 
it may be assumed that the trajectory profile based on 
reported cases remains representative of its trajectory in 
the whole cohort of infectious cases measured a posteri-
ori by seroprevalence before large vaccination programs. 
SARS-CoV-2 vaccination programs intended for the gen-
eral adult population were introduced at the beginning 
of 2021: seroprevalence data were no more informative 
to determine the cumulative incidence of SARS-CoV-2 
infections. At the end of 2021, 92% of the adult Belgian 
population > 18 years old had been vaccinated with at 
least one dose.

Despite these limits of methods of measurements, it 
is expected that the growth rate coefficient r, the transi-
tion coefficients ß (transmission rate) and γ (recovery 
rate) and the basic reproductive number  R0 measured on 
basis of the reported cases adequately reflect the values 
of these parameters in the whole susceptible population, 
which is defined a posteriori as the total population hav-
ing transited from S to R to I, with N being constant and 

even if the amplitude of a wave is underreported by clini-
cal reporting. The SIR model bypasses this difficulty: the 
initial value of susceptible  (S_time_0 also symbolised by  S0) 
is equal to the total number of subjects (generally sym-
bolized by N), this number N remaining constant dur-
ing the whole epidemic (N = S(t) + I(t) + R(t)). With this 
astute, the pattern of an epidemic SIR model remains 
identical whatever the number of cases observed – as 
long as this cohort is representative of a population, of 
course. In agreement with this observation, SIR model of 
the first wave trajectory based on daily clinical reporting 
of cases (Fig. 4, with  S0 = 65.800 cases) or on a a poste-
riori cumulative incidence (Fig. S1, 658.000 cases) shows 
that the general profile of the epidemic trajectory is iden-
tical with identical transition coefficients β and γ and 
identical  R0 values. None of these parameters measure 
the amplitude of an epidemic. This explains that during 
early phase of Covid-19 wave the predictions [26] were 
unconclusive on the expected amplitude of the epidemic.

The limit of propagation of COVID-19 in a population is 
also largely dependent on public health measures such as 
nonpharmaceutical interventions [27] and vaccination [28]. 
The principal limit of the measure of program efficacy is 
to refer to a comparative counterfactual group: how many 

Fig. 7 Comparison of growth rates of three Sars-CoV-2 variants of concern. Exponential growth during the 25 first days of variant wave epidemic. 
Right vertical axis: logarithmic scale on basis 2 for prevalence pool I. The exponential functions I(VOC) = I_time_0 * er*days are fitted to the observed 
data with  I_time_0 as initial value and r as growth rate for each of the three variables of concerns (δ, ω and ω subvariant BA.2)
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people would have been infected in the absence of public 
health intervention? As shown above, this counterfactual 
number is largely dependent on the initially susceptible 
compartment number. It was generally assumed that the 
whole population was susceptible at the beginning of the 
pandemic with a new coronavirus. The limit of propaga-
tion of the virus to a small fraction of the population was 
attributed to the efficiency of public health programs. In 
this representation, a question arises when it is observed 
that a variant of an epidemic wave does not recur at the fol-
lowing wave. The question on SARS-CoV-2 persistence in 
the general population does not put in question the benefit 
of public health interventions; it is nevertheless essential 
to take it into account to measure the realistic efficacy and 
benefit of public health programs, particularly the expected 
amplitude of an emerging epidemic.

To date, it has been generally advocated that a progressive 
increase in transmission capacity explains the emergence 
and dissemination of new variants of concern, referring to 
the Darwin process of best survival of the fittest pathogen. 

When the basic reproductive number  R0 of a new VOC 
is obviously greater than the  R0 of a preceding wave, this 
representation is attractive. Nevertheless, when consider-
ing the coexistence of two viral strains with different basic 
reproductive numbers, the model predicts that both strains 
coexist in parallel, with greater propagation of the viral 
strain with greater  R0. In other words, it is not expected 
that a more transmissible variant eliminates the less trans-
missible variant. An example of coexistence of viral strains 
is the case of yearly influenza epidemics: strains with dif-
ferent hemagglutinin A and B characteristics coexist jointly 
during the flu season [29]. The COVID-19 epidemic pre-
sents another trajectory: when a new variant emerges, the 
preceding variant disappears progressively.

Open hypothesis for open discussion
An elevated rate of mutations [30] is described in the cor-
onaviruses. Their genetic adaptation by mutation guaran-
tees the relatively regular emergence of new variants of 
concern. Theoretically, “old” viral strains of VOC could 

Fig. 8 Forecasting an theoretical model of epidemic mixing two SARS-CoV-2 of differing transmissibility force. SIR model was analyzed 
by mixing two SARS-CoV-2 variants differing by their properties introduced simultaneously in a susceptible population at time 0. Variant 1 
is more transmissible than variant 2 (transition coefficient S ➔ I ß1 for variant 1 = 0,40 versus ß2 for variant 2 = 0.30). But variant 1 has a relative 
short persistence (ß1 = 0 after 20 days) while variant 2 has an undetermined persistence (stable ß = 0.30 for more than 100 days). The graph shows 
that variant 1 has an initial advantage of propagation limited in time by its short persistence. the propagation of variant 2 with less transmissibility, 
but greater persistence in the population, predominates. Globally, variant 2 infects a larger proportion of the population. Insert: start-, 
stop- and delta (DT)-times, ordinary difference equations, initial compartment S, I, R values, transition coefficients S ➔ I ß, I ➔ R γ introduced 
for the analysis with Berkeley-Madonna software
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be eliminated by defective mutations. Such a phenom-
enon is described in vitro in a large list of RNA viruses 
(Table 1 in [31]). Heterogeneity of viral fitness for repli-
cation (entry in the cell; replication and assembly within 
the cell and egress of the cell) is also described in some 
articles on SARS-CoV-2 [32]. Moreover, this speculative 
hypothesis could also give an alternative explanation to 
the observed progressive decrease of viral load during 
cross-sectional measurements of Ct values (Cycle thresh-
old) of SARS-CoV-2 PCR measurements [33]. Note that 
in this paper, the authors associate this decrease of viral 
load by a modification of tested population (mainly tested 
in cases with acute phase of infection at the beginning of 
an epidemic wave and in cases with subacute or asympto-
matic phase at the end of a wave).

With this concept in mind, it could explain the dif-
ficulty in predicting the true impact of a SARS-CoV-2 
variant in a population: in addition to determining the 
transmission capacity of a variant by household trans-
mission analysis [34, 35], stochastic model of early 
transmission [3] or S(E)IR transmission model [36], it 
would be necessary to predict the expected capacity of 
persistence of a VOC in a human population.  In some 
severely immunodeficient patients, Sars-CoV-2 infec-
tion has been described as persisting for a long period, 
sometimes more than one year, with a same variant of 
concern [37]. In such cases, more than 30 mutations are 
registered per  year and defective mutations (deletions 
in Spike gene domain) have been documented [38].

We did not try to put the variations of duration and 
amplitude of epidemic waves in relation to public health 
measures (lockdown and nonpharmaceutical interven-
tions or vaccines) playing a major role in the transmis-
sion rate: our analysis of complex interplay between 
VOC was focused on a period of epidemic waves IV, V 
and VI when public health measures seemed grossly to 
be stable and strict in Belgium. Our analysis from the 
field opens a question of the variable persistence capac-
ity of VOC in a population. Maybe cross-sectional stud-
ies not only of viral load [33], but also of virus fitness at 
various intervals during an epidemic wave could bring 
an answer to this up to now very speculative hypothesis.

Conclusion
There is a need to clarify the methodological steps from 
the field data of COVID-19 epidemic characteristics to 
the use of these data in the SIR/SEIR model. The collec-
tion of data in the field requires clear definitions of the 
limits of methods in the representativeness of the sam-
pling. The analysis of data into a mathematical model 
requires an effort of common wording between health 
workers and analysts. Evidence-based questions also 
arise from looking to observations: a limited persistence 

of SARS-CoV-2 variants of concern in the population 
and the absence of recurrence of a VOC at a following 
epidemic wave could be a source of variability in epi-
demic wave amplitude in successive VOC epidemics. 
The validity of this hypothesis is open to discussion.
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