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Abstract 

Background In Zimbabwe, anthrax is endemic with outbreaks being reported almost annually in livestock, wildlife, 
and humans over the past 40 years. Accurate modelling of its spatial distribution is key in formulating effective control 
strategies. In this study, an Ensemble Species Distribution Model was used to model the current and future distribu-
tion of anthrax occurrence in Zimbabwe.

Methods Bioclimatic variables derived from the Beijing Climate Centre Climate System Model were used to model 
the disease. Collinearity testing was conducted on the 19 bioclimatic variables and elevation to remove redundancy. 
Variables that had no collinearity were used for anthrax habitat suitability modelling. Two future climate change 
scenarios for different Representative Concentration Pathways (RCP), RCP4.5 and RCP8.5 were used. Model evaluation 
was done using true skill, Kappa statistics and receiver operating characteristics.

Results The results showed that under current bioclimatic conditions, eastern and western districts of Zimba-
bwe were modelled as highly suitable, central districts moderately suitable and southern parts marginally suit-
able for anthrax occurrence. Future predictions demonstrated that the suitable (8%) and highly suitable (7%) areas 
for anthrax occurrence would increase under RCP4.5 scenario. In contrast, a respective decrease (11%) and marginal 
increase (0.6%) of suitable and highly suitable areas for anthrax occurrence were predicted under the RCP8.5 scenario. 
The percentage contribution of the predictors varied for the different scenarios; Bio6 and Bio18 for the current sce-
nario, Bio2, Bio4 and Bio9 for the RCP4.5 and Bio3 and Bio15 for the RCP8.5 scenarios.

Conclusions The study revealed that areas currently suitable for anthrax should be targeted for surveillance and pre-
vention. The predicted future anthrax distribution can be used to guide and prioritise surveillance and control 
activities and optimise allocation of limited resources. In the marginally to moderately suitable areas, effective disease 
surveillance systems and awareness need to be put in place for early detection of outbreaks. Targeted vaccinations 
and other control measures including collaborative ‘One Health’ strategies need to be implemented in the predicted 
highly suitable areas. In the southern part where a high decrease in suitability was predicted, continued monitoring 
would be necessary to detect incursions early.
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Background
Anthrax is a zoonotic disease of concern that occurs nat-
urally in herbivorous wildlife and livestock thereby signif-
icantly affecting human livelihoods and biodiversity. The 
disease is one of the neglected tropical diseases which is 
caused by the gram-positive spore-forming bacterium 
Bacillus anthracis [1]. In terms of geographic distribution 
and endemism, anthrax is found in several regions across 
the globe such as Asia, Australia, North and South Amer-
ica, Southern parts of Europe, sub-Saharan Africa and 
Central and South America [2, 3]. The spatial distribution 
of the disease is attributed to the ability of B. anthracis to 
form spores that thrive well under diverse environmental 
conditions [4]. Although the disease burden of anthrax 
in herbivores is not fully known, studies have shown that 
anthrax outbreaks occur almost every year killing thou-
sands of animals and transmitting the disease to humans 
upon consumption of the meat [1]. The disease is of global 
concern as it results in high animal mortality with subse-
quent threats to human health [5, 6]. Despite a decrease 
in reported livestock anthrax cases globally in the past 
decade [7] between 20,000 to 100,000 cases of the disease 
are still being recorded each year especially in developing 
countries [4]. The disease also affects human beings with 
1.83 billion people living within high anthrax-risk areas 
and Africa recording the highest human incidences of the 
disease [4]. In fact, human anthrax cases often associated 
with animal anthrax epidemics in resource poor commu-
nities occur at least every year in African countries such 
as Zambia, Zimbabwe, and Ethiopia [8, 9]. Thus, there is 
need to develop or adopt methods that allow for better 
understanding of current and future spatial distribution 
of anthrax as a preamble to identifying potential anthrax 
hotspots [10].

Zimbabwe has an estimated cattle herd of ~ 5.5 mil-
lion with 90% of the national cattle herd under the small-
holder sector [11]. Over the years, the national herd has 
declined due to increased mortality from anthrax and 
tick-borne diseases such as January disease and Heart 
water [12]. Previous studies have reported the follow-
ing cattle deaths emanating from tick-borne diseases in 
Zimbabwe: 3,430 in 2017; 1,133 in 2018; 1,903 in 2019; 
2,772 in 2020 and 1,478 died in 2021 [13]. In fact, it has 
been reported that cattle deaths from tick-borne diseases 
can be as high as 9% of the national heard [14]. This is 
despite an increase in the surveillance and disease con-
trol measures to curtail the occurrence and spread of 
tick-borne diseases by the Department of Veterinary Ser-
vices [14]. Typical anthrax outbreaks in the country are 
usually recorded during the dry (July to October) and wet 
(November to February) seasons.

Anthrax is transmitted via several modes in live-
stock and wildlife. Ingestion of spores during grazing 

in landscapes that previously experienced anthrax out-
breaks is the primary mode of transmission in animals 
[15, 16]. Scavenging animals, biting flies or poor disposal 
of infected animal carcasses facilitate disease transmis-
sion through exposing vegetative cells to oxygen thereby 
resulting in spore formation [17]. Vaccination and proper 
carcass disposal are the main methods of control in the 
event of outbreaks.

The spatial distribution of anthrax is influenced by 
several factors which include livestock density, soil pH, 
availability of surface water, rainfall, temperature dynam-
ics and vegetation cover [18]. High livestock density 
increases interaction among individual animals thereby 
increasing anthrax transmission [19]. The interaction 
usually occurs as livestock forage for resources includ-
ing when searching and drinking surface water. The 
interaction is especially intense during the dry season 
when there are limited waterholes thereby resulting in 
increased interaction as livestock from different geo-
graphical regions mix unlike in the wet season when 
water sources are ubiquitous [20]. During the dry sea-
son when pastures are scarce and the grass has become 
shorter, there is a high probability for animals to con-
sume the grass together with soil particles often lead-
ing to abrasions in the mouth thus increasing chances 
of disease transmission in contaminated areas. On the 
other hand, soils which are slightly alkaline (pH of 6.74) 
and contains high calcium levels help to maintain the B. 
anthracis spore cell wall integrity. This results in contin-
ued persistence of anthrax in endemic areas. Of late, cli-
mate change seems to be a key driver influencing anthrax 
occurrence and distribution [21]. Heavy rains and floods 
following a long dry period combined with high tem-
perature results in transportation and deposition of B. 
anthracis spores in low-lying areas as well as speeding up 
the bacterium life cycle [22].

Numerous studies covering different aspects of anthrax 
have been carried out at different spatial and tempo-
ral scales in Zimbabwe. These studies include those that 
assessed the ecological niche of B. anthracis [23, 24] 
and those that focused on spatial and temporal distribu-
tion of anthrax [9, 25], anthrax in animals [26–28] and 
humans [29–39]. Studies have also assessed influence 
of politics on anthrax control [40] as well as its impact 
on rural livelihoods [9]. Although these studies have 
improved the understanding of anthrax ecology, spread 
and dynamics in both space and time, they lack futuris-
tic insights into the potential effects of climate change 
on anthrax occurrence in Zimbabwe. Information on the 
distribution of anthrax is important for anthrax control 
and management strategies, such as the targeted vaccina-
tions, optimizing resource allocation and prioritisation of 
prevention and control strategies in high-risk areas [41]. 
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This is particularly important in a resource-poor coun-
try such as Zimbabwe, where the anthrax vaccines are 
often inadequate to cover all livestock across the country. 
Therefore, the objectives of this study were to determine 
the current distribution of anthrax outbreaks as well as 
predict the future habitat suitability and distribution of 
anthrax occurrence using bioclimatic predictors. This is 
important to inform surveillance, control and prevention 
strategies which need to be undertaken by veterinary and 
public health personnel.

Methods
Study area
The study was conducted in Zimbabwe, a country in 
southern Africa bound by longitudes  250 E and  340 E 
and  latitudes150 S and  230 S (Fig.  1). Elevation is high-
est in the eastern parts of the country (> 2500  m above 
sea level – a.s.l) and lowest in the southern and northern 
parts of the country where it reaches less than 300 m a.s.l. 
The climate in the country is characterised by warm-wet 

months from November to May, cool-dry months (June 
to August) and hot-dry months (September to Novem-
ber). Annual rainfall is highest (> 1500 mm) in the east-
ern highlands and lowest in the western and southern 
parts of the country where it is less than 400 mm. Tem-
perature ranges from an average low of 15  °C in July to 
around 24 °C in November. The soils are predominantly 
of granitic origin covering 46% of the country. Zimbabwe 
is characterized by both extensive and intensive livestock 
production combined with dryland and irrigated crop 
farming and vast wildlife conservation areas.

Data sources
Under the Animal Health and Public Health Acts of 
Zimbabwe, anthrax is a notifiable disease and report-
ing all observed and confirmed outbreaks in animals 
and humans is therefore mandatory [9, 24]. Hence, the 
surveillance system for anthrax in both the animal and 
human sectors is based on notification [9]. Furthermore, 
all district veterinary offices and animal health centres 

Fig. 1 Location of Zimbabwe within the Southern African development community in Africa
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are required to submit animal disease reports to the pro-
vincial veterinary offices where the data is collated.

The collated disease information from all the prov-
inces is then submitted to the Information Management 
Unit (IMU) in the Department of Veterinary Services 
(DVS) where it is electronically stored. The confirma-
tion is based on clinical signs and microscopic examina-
tion of blood smears with no culture [24]. In this study, 
a total of one hundred and twelve (112) georeferenced 
data of confirmed cattle anthrax outbreaks from October 
2011 up to January 2015 were obtained from the Infor-
mation Management Unit (IMU) of the DVS. The IMU 
uses the Military Grid Reference System to georeference 
the location of anthrax outbreak sites and the data is con-
verted to latitude/longitude using an Excel spreadsheet 
converter freely available online [24]. The geolocation of 
some anthrax outbreak sites was also captured using the 
Global Positioning System (GPS) device. Anthrax out-
breaks were identified and defined by their spatio-tempo-
ral distance; that is separated by their locality and/or time 
[9]. This was also cross-checked based on the expertise 
of veterinary staff who directly followed outbreaks of the 
disease. Table 1 provides the attributes of the data con-
tained in the anthrax dataset that was used in the study.

Apart from the attributes presented in Table  1, the 
dataset also contained information on the date the 
anthrax case was reported to the veterinary officer, date 

for final diagnosis, date interventions started, vaccines 
used, number of animals treated, sex and age of animal 
as well as the outbreak status. However, since the inter-
est was on modelling the spatial distribution of anthrax 
in the context of climate change, only locational data was 
important. Data on cases and deaths were later used for 
validating the modelled spatial distribution of anthrax.

Predictor variables
Twenty predictor variables, which included 19 biocli-
matic variables and elevation, were considered for niche 
modelling (Table 2). The bioclimatic variables for the cur-
rent climate consisting of temperature and precipitation 
related factors and their derivatives were freely down-
loaded from the world climate data website at (http:// 
world clim. org/ versi on2.1). The bioclimatic variables 
were based on the Beijing Climate Centre Climate Sys-
tem Model for the current and future climate scenarios 
i.e., 4.5 and 8.5 Representative Concentration Pathways 
(RCP) [42]. The term “representative” means that each 
RCP provides only one of many possible scenarios that 
result in a particular radiative forcing. RCP4.5 is the 
intermediate stable path where the radiative forcing sta-
bilizes at approximately 4.5Wm2 and 6.0Wm2 after 2100. 
On the other hand, RCP8.5 assumes that the radiative 
forcing will reach more than 8.5Wm2 by 2100 and will 
continue to increase over a period of time [43]. The data 

Table 1 Description of the attributes of the dataset used in modelling potential climate change impacts on the spatial distribution of 
anthrax

Attribute Description

Year The year the disease was reported

Month The month during which the case/death was reported

Owner’s name The name of the person owning the livestock

Province The administrative province in which the case was recorded

District The administrative district in which the case was recorded

Type of observation Whether the observation is initial or follow-up to a previously reported case(s)

Type of locality The environment in which the case was observed ie.e, dip tank, village, grazing area etc

Dip tank The name of the dip tank from which the case was reported from

Grid Reference Location on a map expressed in terms of northings and eastings

Tentative diagnosis A preliminary diagnosis of an animal disease made by a veterinary surgeon physicians 
according to physical examination and clinical findings

Lab diagnosis A diagnosis that is based on laboratory reports or test results

Final Diagnostics Done based on provisional diagnosis and investigations

Infection source The origin from which a host acquires the infection

Date of onset The date when the outbreak started

Census Total population of animals in the district

Cases Number of reported cases of the disease

Deaths Number of reported deaths of animals from the disease

Post-mortem A surgical procedure involving a thorough examination of a carcass by dissection 
to determine the cause, mode, and manner of death

http://worldclim.org/version2.1
http://worldclim.org/version2.1
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contain 19 variables, consisting of 11 temperature covari-
ates (Bio1-Bio11) and 8 precipitation covariates (Bio 
12-Bio 19) (Table 2). The data used are average values for 
the period 1970–2000 available at a spatial resolution of 
30  s i.e., ~ 1  km2. The Digital Elevation Model was also 
downloaded from world climate data website [44].

Testing for collinearity
Before modelling the distribution of anthrax outbreaks, 
the twenty variables were first tested for collinearity using 
the Variance Inflation Factor (VIF) [44]. Collinearity 
between environmental variables leads to model overfit 
[45]. VIF thus provides an estimate of how much variabil-
ity of a predictor variable is explained by the rest of the 
predictor variables in the model [46]. On the other hand, 
correlation analysis provides the strength of relationship 
between two or more continuous variables. When the 
predictor variables are correlated, they explain part of the 
same variance in the dependent variable, thus reducing 
its statistical significance [47]. As a rule of thumb, VIF 
values greater than 10 represents collinearity [48]. The 
spatial distribution of anthrax outbreaks was then mod-
elled under current and future climate after eliminating 
11 of the 20 input variables that were highly correlated 
(Table 3).

Modelling niche of anthrax
In this study, an ensemble of eight machine learning algo-
rithms was used to model the potential impact of climate 
change on the distribution of anthrax as well as identify 
areas at risk in Zimbabwe. Specifically, General Lin-
ear Model (GLM), Multiple Adaptive Regression Spline 
(MARS), Surface Range Envelope (SRE), Generalised 
Boosted model (GBM), Random Forest (RF), Classifica-
tion Tree Analysis (CTA), Flexible Discriminant Analy-
sis (FDA) and Maximum Entropy (MaxEnt) were used 
to predict ecologically suitable anthrax habitats. These 
SDMs were selected based on their relatively higher pre-
dictive power (ROC > 0.6) than the discarded models. To 
cater for the variability among algorithms, an ensemble 
modelling approach was used to integrate various SDMs 
constructed through different modelling algorithms [49]. 
Ensemble modelling reduces over fitting since it incor-
porates all different Species Distribution Models (SDMs) 
to develop an output model [50]. The analysis was per-
formed in R Version 4.1.0 environment (R Core Team, 
2019) using the BIOMOD2 package [51]. The model was 
calibrated using 80% of the occurrence points (presence 
and pseudo-absence) as training data and 20% of test 
data for evaluation [52]. One hundred and twelve points 
of presence data from October 2011 up to January 2015, 
were used in modelling. To determine overall suitability, 
the probability of each model output was multiplied by 
a given weight for different models. After multiplying by 
weight, each output was divided by the number of mod-
els used to get the final probability.

Model validation
The area under the receiver operating characteristic 
(ROC) curve, true skill statistic (TSS) and Kappa statis-
tic were used to determine the accuracy of the ensem-
ble model [53]. In this study, the models with greater 
than fair predictive accuracy i.e., ROC > 0.6 were used 

Table 2 Bioclimatic variables used for modelling

Bioclimatic variable Description

Bio1 Annual mean temperature

Bio2 Mean diurnal range

Bio3 Isothermality

Bio4 Temperature seasonality

Bio5 Maximum temperature of the warmest month

Bio6 Minimum temperature of the coldest month

Bio7 Temperature annual range

Bio8 Mean temperature of wettest quarter

Bio9 Mean temperature of driest quarter

Bio10 Mean temperature of warmest quarter

Bio11 Mean temperature of coldest quarter

Bio12 Annual precipitation

Bio13 Precipitation of wettest month

Bio14 Precipitation of driest month

Bio15 Precipitation seasonality

Bio16 Precipitation of wettest quarter

Bio17 Precipitation of driest quarter

Bio18 Precipitation of warmest quarter

Bio19 Precipitation of coldest quarter

DEM Digital Elevation Model

Table 3 Environmental variables used for modelling the spatial 
distribution of anthrax after removing highly correlated variables

Variable VIF

Bio2 7.41

Bio3 3.38

Bio4 9.36

Bio6 6.71

Bio9 9.88

Bio15 4.77

Bio18 2.79

Bio19 3.45

DEM 2.75
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to build an ensemble from the individual model out-
puts. A model with a predictive accuracy of greater 
than 0.5 is regarded as useful while a ROC of 0.6 is 
regarded as a better model [54]. Based on the perfor-
mance of the Ensemble Species Distribution Model, the 
ensemble model was regarded as suitable in predict-
ing environmental suitability for the anthrax outbreaks 
in Zimbabwe under different climate scenarios as it 
had ROC > 0.7, TSS and Kappa > 0.6. The employment 
of multiple metrics for model validation is a standard 
practice that ensures the reliability of the model results 
and helps uncover errors and inconsistencies from dif-
ferent angles [54–58]. For instance, [54] clearly demon-
strated how TSS can overcome some of the weaknesses 
associated with Kappa statistic while preserving the 
positive aspects of the evaluation technique.

Change detection
The modelling output maps showing probability of 
anthrax occurrence were reclassified into nominal 
classes in ArcGIS Version (10.3.1). Nominal classes were 
assigned after ranking the probability of occurrence of 
anthrax, 0–0.25 marginally suitable, 0.251–0.5 moder-
ately suitable, 0.51–0.75 suitable and 0.751–100 highly 
suitable based on previous studies [59]. An overlay anal-
ysis based on current and future suitability of anthrax 
occurrence was performed to determine where and in 
what direction suitability of anthrax occurred.

Results
Current distribution of anthrax occurrence
The spatial distribution of anthrax modelled under cur-
rent climate shows that the eastern (Chimanimani, 
Makoni, Marondera, Mutare, Mutasa and Wedza), north-
ern (Bindura, Makonde, Mazowe and Mt Darwin) and 
western districts (Hwange, Lupane, Tsholotsho, Bubi 
and part of Gokwe North) of Zimbabwe are highly suit-
able for anthrax occurrence (Fig. 2). On the other hand, 
the central parts of Zimbabwe are moderately suitable for 
anthrax occurrence with Kadoma, Kwekwe, Gweru, some 
parts of Chirumhanzu and Gokwe South, Harare, Mudzi 
and UMP being notable districts (Fig. 2). In contrast, the 
southern districts (Beitbridge, Gwanda, Mwenezi and 
Chiredzi) are marginally suitable for the disease occur-
rence (Fig. 2).

A high correlation is observed between anthrax cases 
recorded in the country (cattle, livestock and humans) 
and the modelled current bioclimatically suitable areas 
for the disease (Table 4).

Future distribution based on the RCP4.5
The distribution of anthrax occurrence is projected to 
significantly expand under the RCP4.5 with the cen-
tral and eastern parts modelled as highly suitable for 
the disease. Under this pathway, Nyanga and Chipinge 
in the eastern parts of the country and UMP, Shamva 
and Zvimba in the northern parts of the country are 
expected to increase in both spatial and intensity of 
suitability (Fig.  3). Conversely, the southern regions 
which are currently marginally suitable are expected 
to be suitable for anthrax transmission. In contrast, the 
western (Hwange and Tsholotsho) and some northern 
districts are anticipated to become less suitable for the 
disease.

Modelled future anthrax distribution under RCP8.5
Unlike RCP 4.5., anthrax distribution under RCP 8.5 
projects a significant shift in suitable regions for athrax 
occurrence (Fig.  4). Specifically, the western and east-
ern parts of the country are projected to become highly 
suitabile for disease transmisssion. The central parts of 
the country are projected to become less suitable for the 
disease while the southern parts are generally projected 
to remain marginally suitable for the disease. Most suita-
ble districts are spatially adjacent to highly suitable areas. 
Central parts ( Kwekwe and Kadoma) and the eastern 
parts (Chipinge, Chimanimani and Nyanga) of the coun-
try are projected to have moderately suitable conditions 
for anthrax. Southern (Gwanda, Beitbridge, Chiredzi, 
Mwenezi, Matobo and Mangwe) and the central parts 
(Gweru, Chegutu and Zvimba) of the country are pro-
jected to be marginally suitable under RCP8.5

A comparison of current and projected anthrax occur-
rence under RCPs 4.5 and 8.5 shows contrasting pat-
terns. For instance, suitable and highly suitable areas for 
the disease are projected to increase by an average of 8% 
and 7%, respectively (Table 5 and Fig. 5) under RCP 4.5. 
In contrast, a decrease (11%) and a marginal increase 
(0.6%) of suitable and highly suitable areas are anticipated 
under RCP8.5, respectively (Table 5 and Fig. 6). The over-
all predicted increase in suitable areas for anthrax due 
to climate change implies likely favorable environmental 
conditions for the disease leading to its potential range 
increase which may lead to outbreaks.

Results show a general increase in areas that are suit-
able for anthrax disease.

Variable of importance in model
The key predictors of anthrax under the current cli-
mate and future RCP (4.5) and RCP (8.5) scenarios 
were determined using the percentage contribution 
of each variable to the model (Table 6). Under current 
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Fig. 2 The current modelled distribution of anthrax occurrence in Zimbabwe using bioclimatic variables based on ensemble modelling

Table 4 Reported human, livestock and wildlife anthrax cases and deaths in Zimbabwe between 2004 and 2023. Please note there are 
data gaps arising from non-availability of data

District Human cases Livestock cases Wildlife deaths Year Source Modelled Anthrax Suitability

Chiredzi 1500 2004 [9] Marginal to moderate

Buhera, Chipinge, Mutare, Mutasa 37 2 2011 High

Mbire and Mt Darwin 40 5 2011 [60] High

Hwange 5 2011 Moderate-high

Hurungwe 3 2011 Marginal-moderate

Buhera, Chipinge, Mutare,Mutasa 49 31 2012 High

Makoni 64 180 June 2013- 
January 2014

[40] High

Hwange 2015 Moderate-high

Bikita 33 2020 [61] High

Marondera 10 2020 [61] High

Gutu 27 2020 [61] High

Hurungwe 36 2022 [62] Marginal-moderate
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climate, Bio18 (precipitation of warmest quarter) and 
Bio6 (minimum temperature of the coldest month) are 
the important predictor variables explaining 54.9% of 
the variation in anthrax occurrence whereas Bio4 (tem-
perature seasonality), Bio9 (mean temperature of driest 
quarter) and Bio2 (mean diurnal range) become more 
important under RCP4.5. Bio 3 (isothermality) and 
Bio15 (precipitation seasonality) are important predic-
tors under RCP8.5. Across the climate scenarios con-
sidered in this study, Bio18 and Bio3 have the highest 
overall gain suggesting that they have the most impor-
tant information that explains anthrax occurrence if 
considered on their own. In fact, when Bio18 or Bio3 
is not included in the model, the percentage gain is 
reduced.

Discussion
Results of this study predicted highly suitable areas for 
anthrax outbreaks in the western and eastern parts of 
Zimbabwe. The current suitability map shows an increase 

in highly suitable areas of anthrax compared to previ-
ous studies. These results suggest an increase in bio-
climatically suitable areas for the disease as well as the 
superiority of ensemble modelling that integrated eight 
species distribution models over a single species dis-
tribution model (MAXENT), e.g., [25]. In contrast, the 
study predicted that the northern parts of the country 
would remain marginally suitable, suggesting that these 
areas could be less likely to experience anthrax out-
breaks and therefore may require less attention relative 
to other districts. However, the overall results suggest a 
variable increase in future distribution of anthrax occur-
rence thereby requiring monitoring of the disease to 
reduce its impacts [33]. Vaccinations are still one of the 
best methods to control anthrax and livestock should be 
vaccinated annually to reduce the incidence of the dis-
ease [9]. The first step in implementing vaccination is to 
determine the priority areas to target hence maps gener-
ated in this study can be used to for targeted surveillance 
and vaccination in the country factoring in their different 

Fig. 3 The future projection of anthrax occurrence in Zimbabwe using the Beijing Climate Centre Climate System Model (BCC-CSM-SSP245) 
under the 4.5 representative concentration pathway
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challenges [63]. Therefore, resources could be channelled 
towards areas that are projected to be suitable for anthrax 
in the country [64].

Although this study used cattle anthrax outbreaks only, 
the models were able to predict wildlife areas such as 
Hwange National Park as suitable for the disease. How-
ever, it is well known that the entire periphery and the 

interior of a wildlife area is usually shared by livestock 
and wild animals, and hence the possibility of increased 
anthrax transmission [65]. This means that the distribu-
tion might be expanded if there is spatial overlap between 
wildlife and livestock which is a common phenomenon 
at wildlife-livestock interfaces. The areas close to wildlife 
were predicted to be highly suitable in the future and thus 
need close monitoring and strategic vaccinations to pre-
vent and reduce the likely future anthrax outbreaks [66]. 
Previous research in Kenya predicted anthrax occurrence 
in entire wildlife sanctuaries such as Nakuru National 
Park [67]. Similarly, the present forecast maps predicted 
anthrax occurrence in entire Zimbabwean wildlife areas.

From this study, the occurrence and distribution 
of anthrax was observed to be related to various cli-
mate variables. For example, precipitation of warmest 
quarter (Bio18), minimum temperature of the coldest 
month (Bio6) and precipitation seasonality (Bio15) were 
more important in modelling the current distribution 

Fig. 4 Projected future distribution of anthrax in Zimbabwe using Beijing Climate Centre Climate System Model (BCC-CSM) for the 8.5 
Representative Concentration Pathway

Table 5 Area and percentage change for suitable and highly 
suitable projected anthrax distribution

Suitable area 
km^2

%Change Highly 
suitable area 
km^2

%Change

Current 
climate

201 199.2 101 308.6

RCP4.5 232 584.4 8.0 129 314. 7 7.2

RCP8.5 157 746.2 -11.1 103 746.1 0.6
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of anthrax. Similar findings were observed in western 
Uganda and Western Africa where seasonality of pre-
cipitation and temperature in the warmest months were 
found to affect the distribution of anthrax [1, 44]. Previ-
ous studies by Chikerema et al. [25] showed an increased 
anthrax outbreak occurrence during the hot dry months 
in Zimbabwe. This supports findings of this study where 
precipitation of the warmest quarter contributed more to 
disease occurrence. Districts such as Beitbridge, Gwanda, 
Mwenezi, Chiredzi and Kariba were found to be margin-
ally suitable for anthrax occurrence in both the current 
and future models. This might be due to low precipitation 
in these districts. Chikerema et al. [25] reported rainfall as 
a contributing factor for the temporal and spatial occur-
rence of anthrax in Zimbabwe. The moisture provided 
by precipitation influences anthrax occurrence through 
exposing buried spores, collecting and concentrating 
spores in storage areas, and dispersing spores through 

runoff. The duration of the dry season is also related to 
anthrax occurrence. In addition, animals that graze short 
grasses close to the ground during the dry season are 
more likely to be exposed to spores thereby increasing 
the possibility of anthrax outbreaks. The dry season also 
results in water and forage shortages leading to a higher 
anthrax transmission in livestock and wildlife at remain-
ing water points [6].

Unlike previous studies, this study used ensemble mod-
elling to assess the potential effects of climate change 
on the spatial distribution of anthrax. An Ensemble of 
eight different SDMs was used to understand distribu-
tion of anthrax which has an advantage of reducing omis-
sion and commission errors since all the prediction of 
the eight different models were taken into consideration 
[68]. Ensemble modelling improves model performance 
resulting in better accuracy compared with a single pre-
dictive model [69]. This is achieved through reducing the 

Fig. 5 Change detection for environmental suitability for anthrax occurrence under RCP4.5
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variance component of the prediction error. An ensem-
ble model can make better predictions and perform bet-
ter than any contributing model [70]. Another important 
benefit of the ensemble method is a more robust or reli-
able average performance of the model. Robustness and 

reliability are the main concerns in machine learning pro-
jects. An ensemble reduces the spread or dispersion of 
the predictions [71].

This study took into consideration bioclimatic param-
eters and elevation in modelling anthrax occurrence dis-
tribution in Zimbabwe. Future studies should include 
other environmental factors such as livestock density, 
soil pH and type, vegetation cover and type and water 
sources distribution to determine their influence on 
anthrax occurrence. Factors such as soil pH and type 
influence the survival of anthrax spores [72] and earlier 
studies in the country identified soil type as an important 
predictor followed by variance of vegetation biomass and 
maximum temperature [24]. Furthermore, the occur-
rence of anthrax in endemic areas is usually associated 
with pasture degeneration caused by over utilization or 
drought. The condition of the pastures leads to nutri-
tional stress and herbivores are forced to feed on heavily 
utilized short grass or herbs and thereby contract anthrax 
through ingesting soil containing the spores. Hence, the 

Fig. 6 Change detection for environmental suitability for anthrax occurrence under the 8.5 representative concentration pathway

Table 6 The percentage contribution of the variable for the 
current and future projections

Variable Current 
Percentage (%)

RCP 4.5 
Percentage (%)

RCP8.5 
Percentage 
(%)

Bio2 4.8 14.4 5.3

Bio3 3.4 12.4 31.7

Bio4 4.8 21.3 8.3

Bio6 14.6 6.5 3.7

Bio9 5.2 17.6 1

Bio15 10.6 9.4 26.6

Bio18 40.3 4.1 3.4

Bio19 7.5 3.5 9.9

DEM 8.8 10.2 10.2
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height of the grass in the grasslands and wooded areas 
has an influence on the occurrence of anthrax outbreaks. 
On the other hand, burning is regarded as one of the pre-
ferred method of anthrax control through their extermi-
nation of most spores as was demonstrated during the 
massive wildlife anthrax outbreak in Zimbabwe [27]. The 
method was used to disinfect the soil and vegetation and 
thereby avoid animals using areas of potentially high con-
tamination and the same approach has been used in the  
Kruger National Park to sanitize the environment lead-
ing to a rapid decrease in the number of deaths due to 
anthrax outbreaks. Hence, it is likely that annual and 
extensive bush or grassfires might have an influence on 
the occurrence of anthrax. These environmental variables 
are important in the transmission dynamics of the disease 
and their inclusion in future studies may provide a more 
accurate potential predicted distribution. Although infor-
mation on anthrax cases in human, livestock and wildlife 
is critical for achieving ONE Health, the information is 
not readily available in a consolidated format and would 
be critical for informing anthrax management policies 
and interventions.

Conclusion
This study predicted current and future occurrence of 
anthrax outbreaks by geographic area and species under 
given environmental and climatic parameters. The results 
projected a respective increase and decrease in suitable 
areas under the RCP4.5 and RCP8.5 scenarios. However, 
an overall increase in highly suitable areas was predicted 
under the two climatic scenarios. The results of this study 
showed current and future suitable areas of the disease 
that should be targeted for surveillance, control and pre-
vention. The predicted current and future anthrax distri-
bution can be used as a tool to tackle anthrax. Different 
interventions or strategies can be developed and applied 
across the country to minimize predicted future (2040) 
climate change impacts. In the marginally to moderately 
suitable areas, effective disease surveillance systems and 
awareness campaigns need to be put in place for early 
detection of anthrax outbreaks. Vaccination and con-
trol measures including collaborative One Health strat-
egies need to be implemented in those areas predicted 
to be highly suitable. In the southern part of the country 
with a predicted high decrease in suitability of anthrax 
occurrence, continued monitoring would be necessary 
to detect incursions early. The predictive models and 
associated results provide valuable information that can 
be used to develop new spatially explicit prevention and 
control strategies for anthrax outbreaks in the context of 
climate change.
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