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Abstract 

Background  Malaria is one of the major vector-borne diseases most sensitive to climatic change in West Africa. The 
prevention and reduction of malaria are very difficult in Benin due to poverty, economic insatiability and the non 
control of environmental determinants. This study aims to develop an intelligent outbreak malaria early warning 
model driven by monthly time series climatic variables in the northern part of Benin.

Methods  Climate data from nine rain gauge stations and malaria incidence data from 2009 to 2021 were extracted 
from the National Meteorological Agency (METEO) and the Ministry of Health of Benin, respectively. Projected rela-
tive humidity and temperature were obtained from the coordinated regional downscaling experiment (CORDEX) 
simulations of the Rossby Centre Regional Atmospheric regional climate model (RCA4).

A structural equation model was employed to determine the effects of climatic variables on malaria incidence. We 
developed an intelligent malaria early warning model to predict the prevalence of malaria using machine learn-
ing by applying three machine learning algorithms, including linear regression (LiR), support vector machine (SVM), 
and negative binomial regression (NBiR).

Results  Two ecological factors such as factor 1 (related to average mean relative humidity, average maximum 
relative humidity, and average maximal temperature) and factor 2 (related to average minimal temperature) affect 
the incidence of malaria. Support vector machine regression is the best-performing algorithm, predicting 82% 
of malaria incidence in the northern part of Benin.

The projection reveals an increase in malaria incidence under RCP4.5 and RCP8.5 over the studied period.

Conclusion  These results reveal that the northern part of Benin is at high risk of malaria, and specific malaria control 
programs are urged to reduce the risk of malaria.
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Introduction
The impacts of climate change on human health have 
attracted more attention in recent years. There is increas-
ing evidence of adverse effects of climate change on 
health worldwide, both direct effects and indirect effects 
mediated by disruption in ecological and socioeconomic 
systems.

The warming of our planet due to the emission of 
greenhouse gases (GHGs) is now a major challenge for 
countries worldwide. Due to its low adaptive capacity 
and high sensitivity of socioeconomic systems, Africa is 
the most vulnerable continent to the impacts of climate 
change [1, 2].

Malaria is considered one of the major vector-borne 
diseases most sensitive to changes in environmental con-
ditions such as climate variables and land use change. 
The transmission of malaria is linked with changes in 
temperature, rainfall, humidity and the level of immunity 
in humans [3, 4]. Socio economic factors also influence 
the occurrence of malaria in both rural and urban areas 
[5, 6]. The burden of mortality and morbidity is worse in 
poor countries, especially in West Africa [5].

Malaria is a vector-borne disease caused by the infec-
tion of red blood cells with protozoan parasites of the 
genus Plasmodium, where the parasites enter the human 
body through the bite of an infected species of Plasmo-
dium that infects humans. The driver of malaria in Africa 
is the mosquito of the Anopheles Plasmodium falcipa-
rum, which causes most of the severity and deaths attrib-
utable to the disease and resists treatment [3]

Despite the efforts made over the decades by the Benin 
government, malaria caused 95% of deaths. Northern 
provinces have the highest prevalence of malaria in Benin 
[7]. The situation will be very harmful if specific action 
is not taken now to reduce the risk of malaria infec-
tion in Benin. Several authors have shown that there is 
a strong relationship between the prevalence of malaria 
and climatic variables [8–11]. In Northern Benin, mete-
orological factors have a strong link with the incidence or 
prevalence of malaria [12, 13]. Rainfall ensures the persis-
tence of larval sites with continuous vector biting rates in 
Benin [14].

Modelling the links between climatic factors and the 
incidence of malaria can help provide a good idea of the 
relationship between the incidence of malaria and cli-
matic factors. A malaria early warning model can pro-
vide insights and indications to researchers and public 
health decision makers about future outbreak and risks 
in Northern Benin.

To model the risk of contracting malaria, various sta-
tistical techniques were used [9, 10, 15–17]. The major-
ity of approaches [18] are unable to identify the direct 
and indirect impacts of climatic factors on the incidence 

or prevalence of malaria. The specification of direct and 
indirect effects is possible with the structural equation 
model (SEM) [19]. Latent variables can be included in 
SEM, such as the idea of "socio health characteristics," 
which is made up of a number of indicators and is the-
oretically supported by the confirmatory factor analysis 
built into SEM [20]. In this study, we used SEM meth-
odology to investigate the causal connections among 
meteorological variables and their effects on malaria 
transmission.

Study site, population, and climate
The study area is located in the northern part of Benin 
and covers the provinces of Atacora, Donga, and Borgou 
(Fig. 1). The climate of the study area is hot and humid 
[21] and is characterized by one dry season and one rainy 
season. The rainy season lasts from May–October when 
the ITCZ is in its northern position. Rainfall is maximal 
(253.61  mm) in August and minimal (1.90) in January. 
The dry season is from November–April when the ‘Har-
mattan’ winds blow in from the northeast, bringing air 
from the Sahara Desert [22].

Data collection
Dependent variables
Monthly malaria cases in each district of the provinces of 
Borgou, Atacora, and Donga were collected from Janu-
ary 2009 to December 2021 at the Ministry of Health 
of Benin. These data include the entire population con-
firmed to be infected by malaria. A patient is declared to 
have malaria when the disease is confirmed at a labora-
tory by microscopy or rapid diagnosis [23]

Independent variables
Monthly weather data on temperatures (maximum, 
mean, and minimum), wind speed, and relative humidity 
(maximum, mean, and minimum) were retrieved over the 
period 2009 to 2021 from the meteorological stations of 
Parakou Airport and Natitingou operated by the National 
Meteorological Agency of Benin. Monthly precipitation 
data for the period of 2009 to 2021 from seventeen rain 
gauge stations were extracted from the rain gauge sta-
tions and meteorological stations summarized in Table 1.

Data processing
Factor analysis
The monthly average incidence of malaria and the cli-
matic data were matched. Univariate normality and mul-
tivariate (Henze-Zirkler and Anderson‒Darling) tests 
were used to evaluate the data distribution. The conven-
tional statistical procedure distribution was used to per-
form analyses of correlation, regression, and collinearity.
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Exploratory Factor Analysis (EFA)
Exploratory factor analysis (EFA) is used to identify con-
founding latent ecological factors from the collection of 
observable environmental variables affecting the trans-
mission of malaria [24, 25].

Varimax rotation was employed to determine the con-
nection between the latent components and indicators 
(Table  2). There were a variety of undiscovered factors 
influencing malaria infection. Data fitting using correla-
tion and regression analysis, as well as exploratory factor 
analysis, is used to create the initial model.

The model was further scrutinized based on the param-
eter estimates, the model’s applicability of the correlation 
coefficient of the equation in the model, and the model 
fitting indicators falling within an acceptable range [26].

Confirmatory Factor Analysis (CFA)
Confirmatory factor analysis’s main objective is to use a 
single latent variable to shed light on the covariances or 
correlations between a large number of observed vari-
ables [19]. In the prior model, seven observed indica-
tors were examined. After 30 iterations, weighted least 
squares were employed to assess the convergence of the 
parameters in compliance with the model t rule (t = p * 
(p + 1)/2 = 7 * 8/2 = 28) [27].

Structural Equation Model (SEM)
Structural equation models (SEM) were used to carry out 
the confirmatory analysis [20]. The distinction between 
dependent variables and independent variables takes 
precedence over the distinction between latent and 

Fig. 1  Map of the study area
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observable variables [25]. Covariances between depend-
ent variables or between dependent variables and inde-
pendent variables do not vary freely; rather, the model’s 
free parameters are used to describe them. According to 
[18], the hypothesized model structure placed the corre-
lations between the independent variables at zero.

The SEM approach is defined by the following system 
of Eq. (1), where the observed variables can be written as 
a linear combination of the potential components plus 
residual terms. Thus, we provide the following mathe-
matical SEM representations of Fig. 2:

(1)
Factor I = �1, 1(Average mean relative humidity)+ �1, 2(Average maximum relative humidity)
+β1, 2(Average Maximum temperature)+ γ 1(malaria incidence)+ e1
Factor II = �2, 1(Average minimum temperature)+ γ 2(malaria incidence)+ e2

where λ1,1, λ1,2, λ2,1, β1,2, and γ1, γ2 are coefficients or 
weights assigned to the respective variables in the equa-
tions, representing their relative importance or contribu-
tion to the factors.and (e1, e2) are the residual terms.

Machine learning
A famous quote attributed to George Box is “All mod-
els are wrong; some models are useful” [28] that will 
be used to make an accurate prediction of malaria 
incidence. We used a random sampling method to 
define a training set and test set to train the model 

Table 1  Locations of rain gauges and meteorological stations

Station Latitude DEG°MIN’SEC’’ Longitude DEG.FRAG​ Longitude DEG°MIN’SEC’’ Latitude DEG.FRAG​

BIRNI 09°59′24’’ 1.529987 001°31′48’’ 9.990087

PENESSOULOU 09°14′24’’ 1.551297 001°33′05’’ 9.239867

TANGUIETA 10°37′02’’ 1.266561 001°16′00’’ 10.61712

KOUANDE 10°19′55’’ 1.692409 001°41′33’’ 10.33185

NATITINGOU 10°19′00’’ 1.383333 001°23′00’’ 10.31667

KALALE 10°17′24’’ 3.381675 003°22′54’’ 10.29007

BEMBEREKE 10°12′00’’ 2.666667 002°40′00’’ 10.2

BOUKOUMBE 10°10′00’’ 1.1 001°06′00’’ 10.16667

NIKKI 09°56′00’’ 3.2 003°12′00’’ 9.933333

BASSILA 09°01′22’’ 1.665544 001°39′56’’ 9.022698

MATERI 10°43′48’’ 1.012 001°00′43’’ 10.73

COPARGO °’’’ °’’’

PEHUNCO 10°13′48’’ 2.003 002°00′11’’ 10.2299

PERERE °’’’ °’’’

N’DALI 09°51′00’’ 2.7 002°42′00’’ 9.85

PARAKOU_AEROPORT 9°21′00’’ 2.6 2°36′00’’ 9.35

NATITINGOU_PEPORIYAKOU 10°22′42’’ 1.358889 001°21′32’’ 10.37833

Table 2  The Varimax method rotated each indicator in the load factor on the two potential factors

Indicators Factors Factor1(F1) Factor2(F2)

I1 Monthly Average Precipitation

I2 Monthly Average Minimal Temperature 0.98
I3 Monthly Average Maximal Temperature -0.82
I4 Monthly Average Mean Relative Humidity 0.98
I5 Monthly Average Maximal Relative Humidity 0.94
I6 Monthly Average Wind Speed 0.37

I7 Monthly Average Malaria Incidence 0.48
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and to evaluate the performance of the models to pre-
dict. As our number of observations is small, we ran-
domly selected 90% of the data for training and 10% 
for testing a predictive model. To develop the malaria 
outbreak warning model, we applied three different 
machine learning algorithms, including the support 
vector machine (SVM), linear regression (LiR), and 
negative binomial regression (NBiR) models.

To find the best prediction algorithm, we calculated 
the mean absolute error (MAE), mean square error 
(MSE) and root mean square error (RMSE) of the pro-
posed models (SVM, LiR and BiRM) on the prediction of 
malaria incidence [29].

Results
Exploratory Factor analysis (EFA)
Two latent factors were identified: factor 1 (related to 
average mean relative humidity, average maximum 
relative humidity, and average maximal temperature) 
and factor 2 (related to average minimal temperature). 
At an α = 5% level of significance, χ2 = 18.56, df = 8, P 
value = 0.017, the two identified factors explained 67% of 
the total variation. This finding offers an adequate expla-
nation for the prevalence of malaria in the study area.

We investigate the Guttman-Kaiser and Cattell scree 
plots to find the number of components to be retrieved 
[30, 31]. The exact number of factors is equal to the num-
ber of eigenvalues greater than one in the population 
correlation matrix (Table 3). We calculated the eigenval-
ues (2.80, 1.12, 0.29, 0.19, -0.04, -0.09, and -0.20) using 
the correlation matrix. These values showed that there 
were two factors that affected the incidence of malaria. 

According to [32], the number of particularly large eigen-
values in the screen plot test is purportedly correlated 
with the number of factors used in the study.

The scree plot shown in Fig. 3 depicts the relative pro-
portion of variation accounted for by the components 
and was created from the analysis of the matrix table 
(Table 3). The parallel indication in the scree plot displays 
the eigenvalues of the first two components greater than 
unity, and the succeeding components lower than unity 
likewise line up beneath the parallel indicator. The scree 
plot confirmed that there are exactly two latent factors.

Pearson’s cross-correlation between ecological vari-
ables and the prevalence of malaria at different lag effects 
from 0 to 3 months is shown in Table 4. The lagged corre-
lation effects between climate variables and the incidence 
of malaria in Northern Benin are shown by lag0, lag2 and 
lag3 (e.g., 0 months, 1 month and 2 months) in Table 4. 
Average precipitation, average mean relative humid-
ity, and average maximum relative humidity all exhibit a 
positive correlation with the incidence of malaria at lag 
effects of 0 months and 1 month, with respective values 
of (0.05,0.423, 0.431) and (0.015,0.554, 0.576). The aver-
age mean relative humidity, average maximum relative 
humidity, and wind speed all had positive correlations 
with the incidence of malaria at lag effects of two months 
(0.526, 0.524, and 0.038, respectively).

These findings suggest that meteorological factors at 
lags of 1 and 2 months would be favourable for mosquito 
reproduction and the end of their incubation periods 
(EIPs), which are essential for mosquitoes to transmit 
malaria vectors to people. Owing to the positive correla-
tion between wind speed and malaria incidence in this 

Fig. 2  The initial model shows the relationship between malaria incidence and climate factors; the black gray rectangle indicates measurement 
variables, while the black gray ellipse is the latent variable
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study area, the transmission of malaria will be particu-
larly high at a lag effect of two months, and the neigh-
boring districts that are asymptomatic may contract the 
disease. For the development of mosquito breeding sites 
and their ability to infect humans, the 1-month lag effects 

of precipitation and relative humidity are more than suf-
ficient. On the other hand, average minimum  tempera-
tures, average maximum and mean relative humidity and 
average wind speed are all excellent for mosquito devel-
opment and disease transmission on a high scale.

Table 3  Correlation matrix of climatic variables and malaria incidence

Item Mean Std.Dev Average 
Precipitation

Average 
minimal 
temperature

Average 
maximal 
temperature

Average 
mean relative 
humidity

Average 
maximal 
relative 
humidity

Average 
Wind 
Speed

Average
Malaria 
incidence

Average Precipi-
tation

113.96 71.58 1.00

Average mini-
mal tempera-
ture

21.76 1.40 -0.01 1.00

Average maxi-
mal tempera-
ture

33.53 2.25 -0.14 0.16 1

Average mean 
relative humid-
ity

65.43 13.03 0.12 0.32 -0.76 1

Average 
maximal relative 
humidity

83.38 11.72 0.06 0.39 -0.67 0.96 1

Average Wind 
Speed

2.03 0.37 -0.18 0.36 -0.01 0.04 0.05 1

Average malaria 
incidence

28.22 6.10 -0.04 -0.18 -0.48 0.42 0.43 -0.2 1

Fig. 3  The Cattell scree plot presents the eigenvalues of the components for identifying the number of climatic factors to be considered using 
the information in Table 3
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Confirmatory factor analysis
CFA was used to confirm how many factors should be 
extracted from the meteorological variables. Analy-
sis was performed on seven observed indicators. Four 
observable indicators were kept in the final model 
thanks to two latent components. Upon the initial mod-
el’s correction (Fig.  4), the fit indices were significantly 
better than they had been, and the standardized residual 
distribution was smaller than it had been with the initial 
models. The recommended cut-off values for TLI and 
CFI are 0.90, and those for RMSEA are 0.06 to validate 
the CFA model. CFI > 0.90 or RMSEA 0.06 denotes a 
solid model [33] The robust Tucker‒Lewis index (TLI), 
robust comparative fit index (CFI), and approximate 
root mean square error (RMSEA) fitting indices were in 
the acceptable range, which indicates that the model fits 
the data very well (TLI = 1, CFI = 1, SRMR = 0.008, and 
RMSEA = 0). Every latent variable was significant and 
had a loading above 50%.

Structural equation model (SEM)
The Henze-Zirkler test revealed the nonnormality of the 
data set (P value = 0). The means, standard deviations, and 
bivariate correlations for all variables included in the analy-
sis are shown in the correlation matrix Table 3. Multicol-
linearity among the variables was discovered through study 
of the correlation matrix table. Numerous predictors are 
highly correlated, notably among the meteorological  fac-
tors, as seen by the size of the connections. Given the SEM 
analytical technique’s superior handling of intercorrelated 
independent variables through the development of latent 
constructs and direct and indirect pathways, which avoid 
the propensity to distort coefficient estimates, this is one of 
the requirements for using it [20].

A graphic depiction of the model under analysis is 
shown in Fig. 2. It is vital that suggested cut-off values 
are confidently within an acceptable range before look-
ing at the relationships shown in the model. When the 
model shown in Fig. 2 is examined, the following values 
are found: chi-square (348.113 df = 10, not significant), 
RMSEA (0.000), TLI (1), CFI (1), and SRMR (0.008). 
These numbers demonstrate that the model success-
fully fits the data and may be applied to determine how 
ecological factors affect the prevalence of malaria.

Effects of climatic variables on the incidence of malaria
The analysis of the model (Fig.  2) reveals that the 
direct effect of factor 1 is 0.84 and that of factor 2 is 
-0.58. The direct effects of average maximal tempera-
ture, average maximal relative humidity, average mean 
relative humidity, and average minimum temperature 

Table 4  Cross-correlation between climatic variables and 
malaria incidence

Variables 0 Month 1Month 2 Months

Average Precipitation 0.05 0.015 -0.073

Average minimal temperature -0.183 -0.007 0.156

Average maximal temperature -0.483 -0.456 -0.073

Average mean relative humidity 0.423 0.554 0.526

Average maximal relative humidity 0.431 0.576 0.554

Average Wind Speed -0.195 -0.119 0.038

Fig. 4   The final model path diagram shows the relationship between malaria incidence and climate factors; the black gray rectangle indicates 
measurement variables, while the gray ellipse is the latent variable
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on the incidence of malaria were -0.86, 0.78, 0.71 and 
1, respectively. The indirect effects of average mean 
relative humidity, average maximal temperature and 
factor 2 are indicated as 1.59, 1, and 0.39, respectively.

0.78, 2.30, 0.14, 1, 0.84, and -0.19 are the total respec-
tive effects of average maximal relative humidity, average 
mean relative humidity, average maximal temperature, 
average minimal temperature, factor 1 (F1), and factor 2 
(F2). Among the two factors identified by EFA, factor 1 
had the highest direct effect and the highest total effect 
on the incidence of malaria in the study area. We con-
clude that factor 1 is the most influential hidden climatic 
factor in the incidence of malaria. Therefore, average fac-
tor 1 can be used to model and predict the incidence of 
malaria in the northern part of Benin.

Intelligent malaria outbreak warning model
The next stage is to choose the algorithm that would 
accurately forecast the prevalence of malaria in the study 
areas. The most significant hidden climatic element in 
the prevalence of malaria was discovered in the preced-
ing section as factor 1, which was indicated by average 
maximal relative humidity, average mean relative humid-
ity, and average maximal temperature.

To develop the malaria outbreak warning model, we 
applied three different machine learning algorithms, 
including support vector machine (SVM), linear regres-
sion (LiR), and negative binomial regression (BiR) mod-
els. After training and testing the different algorithms 
(Fig.  5), we assessed the performance of each model to 
identify the best algorithm that has good accuracy in pre-
dicting the incidence of malaria in the northern part of 
Benin (Table 5).

Table 5 shows the MAE, MSE, and RMSE for the SVM, 
LiRM, and BiRM models. The examination of these 
errors enables us to find that the SVM model offers the 
best-optimized solution for forecasting more than the 
two other models. We conclude  that the support vector 
machine (SVM) performs best at predicting the preva-
lence of malaria in Northern Benin.

Prediction of malaria incidence under scenarios RCP4.5 
and RCP8.5
The RCA4 regional climate model used in this study was 
developed at the Swedish Meteorological and Hydrologi-
cal Institute and has provided nearly 120 simulations in 
the CORDEX project (Coordinated Regional Climate 
Downscaling Experiment). The model considers the 
physical, chemical, and biological processes by which 
ecosystems affect climate at various spatial and tempo-
ral scales. Projected rainfall, temperature and relative 
humidity were retrieved from the coordinated regional 
downscaling experiment (CORDEX) simulations of the 

Rossby Centre Regional Atmospheric regional climate 
model (RCA4). The CORDEX-Africa data used in this 
work were obtained from the Earth System Grid Fed-
eration server (https://​esgf-​data.​dkrz.​de/​search/​cordex-​
dkrz/) driven by the RCA4 model. We have predicted 
the incidence of malaria with the Intelligent Malaria 
Outbreak Model we built (SVM model) by using the 
downloaded CORDEX data under two representative 
concentration pathway (RCP) scenarios (RCP4.5 and 
RCP8.5) in the northern part of Benin with the RCA4-
downscaled driving by the regional climate models 
RCA4/HadGEM, RCA4/CSIRO, and RCA4/MIROC over 
the 2021–2030, 2031–2041 and 2041–2050 periods.

Regional climate models RCA4/HadGEM2, RCA4/
CSIRO, and RCA4/MIROC over the 2021–2030, 2031–
2040 and 2041–2050 periods are associated with an 
increase in malaria incidence under the RCP4.5 scenario 
(Fig.  6). RCA4/HadGEM2 is associated with a decrease 
in the incidence of malaria over the period 2041–2050 
under the same scenario.

The incidence of malaria will decrease under the 
RCP8.5 scenario driven by RCA4/CSIRO and RCA4/
MIROC over the 2021–2030 period (Fig. 6). An increase 
in malaria incidence is associated with RCA4/HadGEM2 
over the same period under RCP8.5 (Fig. 6).

Overall, the findings suggest that malaria incidence 
will increase over 2021–2050 under scenarios RCP4.5 
and RCP8.5 except for the 2021–2030 period, when the 
incidence of malaria will decrease under RCP8.5 due to 
climate change. With regard to the findings of this study, 
the northern part of Benin is at high risk of malaria.

Discussion
The malaria early warning model can be a good tool in 
the control of malaria transmission. In the northern part 
of Benin, climatic factors indicated by average mean rela-
tive humidity, average maximum relative humidity, and 
average maximal temperature are the most influential 
meteorological variables of malaria infection. This fac-
tor has a positive effect on the incidence of malaria. This 
result is consistent with the finding of [27], where malaria 
incidence is positively associated with minimum temper-
ature and relative humidity.

The projection revealed that malaria incidence will 
increase over 2021–2050 under scenarios RCP4.5 and 
RCP8.5, except for the 2021–2030 period, when the inci-
dence of malaria will decrease under RCP8.5 due to cli-
mate change. An increase in malaria incidence will be 
observed in the northern part of Benin over the 2021–
2030, 2031–2040 and 2041–2050 periods under the 
RCP4.5 scenario. Climate change is increasing the risk of 
malaria infection in the study areas. A study carried out 
in Northern Benin found that climate change has a real 

https://esgf-data.dkrz.de/search/cordex-dkrz/
https://esgf-data.dkrz.de/search/cordex-dkrz/
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Fig. 5  Test of the incidence of malaria using SVM, NBiR and LiR
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impact on Anopheles’ density and weakens current and 
future vector control strategies [34]

Climate changes or different weather conditions may 
impact infectious diseases, specifically, those transmit-
ted by insect vectors and contaminated water [6, 35–37]. 
Afrane et  al. [38] confirmed that temperature increases 

promote the rapid digestion of blood supply, which in 
turn promotes a significant increase in fecundity, with 
the development of better reproductive fitness and a 
greater ability to produce more offspring.

A study conducted by Salako in the province of Ali-
bori, Northern Benin, confirmed that the biting rates of 
An. Gambiae is higher in the rainy season than in the dry 
season [13]. Subtil et al. [14] study in South Benin certi-
fied that rainfall ensures the persistence of peri-domes-
tic larval sites in villages with continuous vector biting 
rates. The risk of malaria infection is very high in the 
rainy season in the northern part of Benin. These findings 
confirmed the influence of climate change on the trans-
mission of malaria in the northern part of Benin.

Table 5  Assessment of the Model Performance

Item MAE MSE RMSE Predicted R2

LiR 2.50 11.07 3.33 66%

SVM 1.66 5.89 2.43 82%

NBiR 22.11 504.84 47.22 66%

Fig. 6  prediction of malaria incidence under RCP4.5 and RCP8.5 by RCA4/HadGEM2, RCA4/CSIRO, and RCA4/MIRO over 2021–2030, 2031–2040 
and 2041–2050
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The study carried out by [17] in West Africa found that 
the prevalence of malaria is expected to increase in the 
southern part of the region in the future. This result was 
consistent with our study, which revealed an increase in 
the prevalence of malaria under RCP4.5 and RCP8.5.

The use of climatic factors to predict the risk of malaria 
infection also agrees with the findings of [39], who devel-
oped a simple model of climate-related malaria transmis-
sion that provides insights into the sensitivity of disease 
transmission to changes in precipitation and tempera-
ture. The consideration of climate variables in surveil-
lance systems, as well as the integration of future climate 
projections into epidemiological models to more effec-
tively predict the prevalence and outbreaks within the 
context of a changing climate, is very important [4, 40]

The increase in malaria incidence over the 2021–2050 
period is supported by the projection of the IPCC that 
predicted that malaria may threaten some previously 
unexposed regions of South America and sub-Saharan 
Africa (SSA) in 2050 under the current climate change 
associated with the increase in CO2 concentrations and 
increase in atmospheric temperature [2].

The influence of urbanisation on malaria risk in Afri-
can cities is significant [41]. While Anopheles mosqui-
toes have been discovered to adapt to urban development 
sites over time, they are known to breed more in rural 
settings [42]. Anopheles mosquito resistance to antima-
larial drugs in Africa hinders malaria efforts due to envi-
ronmental factors [43], despite attention being directed 
towards addressing this issue.Continuous monitoring and 
evaluation of current and future malaria transmission 
status in Northern Benin is a mainstay for the success of 
ongoing intervention strategies for malaria control.

Conclusion
In light of the work above, climate factors determine the 
transmission of malaria in Northern Benin. Relative humid-
ity and temperature have a potential influence on the trans-
mission of malaria in the study areas. Relative humidity and 
maximal temperature favor the development of mosquitoes 
breeding sites and increase the transmission of malaria.
in Nord Benin. An intelligent malaria outbreak warning 
model developed by employing a support vector machine 
predicts the incidence of malaria at 82% in the study areas. 
This study reveals an increase in malaria incidence over the 
2021–2050 period under two different scenarios, RCP4.5 
and RCP8.5. The incidence of malaria will decrease under 
the RCP8.5 scenario over the 2021–2030 period. The find-
ings of this study are a powerful tool for stakeholders to 
take specific preparedness actions to lessen the impacts of 
climate change on human health by reducing the emission 
of greenhouse gases in the study area.
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