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Abstract
Background Population-level vaccine efficacy is a critical component of understanding COVID-19 risk, informing 
public health policy, and mitigating disease impacts. Unlike individual-level clinical trials, population-level analysis 
characterizes how well vaccines worked in the face of real-world challenges like emerging variants, differing mobility 
patterns, and policy changes.

Methods In this study, we analyze the association between time-dependent vaccination rates and COVID-19 health 
outcomes for 48 U.S. states. We primarily focus on case-hospitalization risk (CHR) as the outcome of interest, using 
it as a population-level proxy for disease burden on healthcare systems. Performing the analysis using Generalized 
Additive Models (GAMs) allowed us to incorporate real-world nonlinearities and control for critical dynamic (time-
changing) and static (temporally constant) factors. Dynamic factors include testing rates, activity-related engagement 
levels in the population, underlying population immunity, and policy. Static factors incorporate comorbidities, social 
vulnerability, race, and state healthcare expenditures. We used SARS-CoV-2 genomic surveillance data to model the 
different COVID-19 variant-driven waves separately, and evaluate if there is a changing role of the potential drivers of 
health outcomes across waves.

Results Our study revealed a strong and statistically significant negative association between vaccine uptake and 
COVID-19 CHR across each variant wave, with boosters providing additional protection during the Omicron wave. 
Higher underlying population immunity is shown to be associated with reduced COVID-19 CHR. Additionally, more 
stringent government policies are generally associated with decreased CHR. However, the impact of activity-related 
engagement levels on COVID-19 health outcomes varied across different waves. Regarding static variables, the 
social vulnerability index consistently exhibits positive associations with CHR, while Medicaid spending per person 
consistently shows a negative association. However, the impacts of other static factors vary in magnitude and 
significance across different waves.

Conclusions This study concludes that despite the emergence of new variants, vaccines remain highly correlated 
with reduced COVID-19 harm. Therefore, given the ongoing threat posed by COVID-19, vaccines remain a critical line 
of defense for protecting the public and reducing the burden on healthcare systems.
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Background
By March 1st, 2023, the COVID-19 pandemic caused 
over 102 million reported cases and 1.1 million deaths in 
the United States. Vaccine development and distribution 
have been at the forefront of efforts to combat the impact 
of the disease. Three vaccines are currently available in 
the U.S., developed by Pfizer-BioNTech, Moderna, and 
Johnson & Johnson. Initial randomized clinical trials 
demonstrated the safety and efficacy of these vaccines, 
with vaccine efficacies against severe disease (hospital-
ization and death) ranging from 73.1 to 96.7% [1–3]. The 
clinical trials were designed to estimate the direct effect 
of vaccines against severe disease at the individual level 
[4]. However, as vaccines roll out to a broader population, 
uncertainties such as the emergence of new variants, 
variable immune responses, the quality of cold-chain 
storage, and other confounding factors can impact a vac-
cine’s efficacy [5]. Hence, evaluating real-world vaccine 
protection against COVID-19 health outcomes poses a 
challenge.

Several published studies have attempted to quan-
tify the real-world impact of the COVID-19 vaccines on 
health outcomes. For example, a study in Qatar assessed 
the vaccines’ effectiveness against severe, critical, or fatal 
Omicron infections using test-negative case-control anal-
ysis, and found previous infections and vaccination are 
effective against symptomatic Omicron infections [6]. An 
observational study conducted in Israel using national 
surveillance data showed that the two doses of the Pfizer-
BioNTech mRNA vaccines are 97.2% effective in prevent-
ing COVID-19-related hospitalizations [7]. A Danish 
study estimated vaccine effectiveness against COVID-19 
hospitalization using a cohort study design, and found 
that two doses of the vaccine provide high protection 
against hospitalization for the Alpha and Delta variant, 
and even higher protection against hospitalization for the 
Omicron variant [8]. A similar cohort study was applied 
in Singapore and the United Kingdom to determine 
whether booster shots reduce the severity of COVID-19 
infections during the Omicron wave, and found consis-
tent results that the risk of severe COVID-19 outcomes 
reduced after receiving booster mRNA vaccines [9, 10].

Most existing literature on the population-level effects 
of COVID-19 vaccination is based on individual-level 
data and observational studies. Specifically, these stud-
ies relied upon detailed individual-level data to assess the 
direct effectiveness of vaccination by comparing health 
outcomes between vaccinated and unvaccinated individ-
uals exposed to the same environment. However, these 
studies may be subject to confounding by unmeasured 
factors and inconsistent quality of individual-level data. 

Further, in the U.S., such high-resolution data is unavail-
able at the population-level, so alternative strategies must 
be engaged to evaluate the impact of vaccine at a regional 
level.

One such approach is to rely on compartmental and 
agent-based models to simulate transmission and disease 
outcomes both in the presence and absence of vaccines 
implementation for the same population. Watson et al. 
applied this method to estimate the impact of varying 
vaccine uptake rates on mortality across multiple coun-
tries and found that vaccines prevented 14·4  million 
COVID-19 deaths in 2021 [11]. However, this approach 
is subject to many assumptions and is limited in its ability 
to estimate accurate effectiveness. Alternatively, statisti-
cal methods such as time series and regression analysis 
can be implemented to evaluate the association between 
vaccination coverage and healthcare outcomes across dif-
ferent locations. One study using this strategy evaluated 
the association between vaccination coverage and the 
COVID-19 cases growth rate for all 50 U.S. states in the 
U.S. using a structural nested mean model and found a 
1% increase in vaccination coverage was associated with 
a 1.02% reduction in case growth rate [12]. However, the 
scope of this study is limited to cases between March and 
May 2021. Another study utilized linear regression to 
analyze vaccine coverage and natural immunity in rela-
tion to mortality during the Delta and Omicron waves. It 
found that vaccine coverage reduced COVID-19 mortal-
ity, but seroprevalence and prior infection rates were not 
associated with mortality [13]. However, this method has 
limitations in capturing dynamic changes and non-linear 
relationships between variables. A different study by Bol-
lyky et al. [14] applied regression analysis to determine 
how vaccination coverage amongst other factors (e.g., 
presence of comorbidities, political partisanship, race, 
and ethnicity) impacted health outcomes (standardized 
infections and deaths) in the U.S. at the state level, and 
determined that higher vaccination rates were associ-
ated with lower death rates. The scope of this study varies 
from ours in its focus on the association between static 
variables and COVID-19 health outcomes for a fixed time 
window between January 1st, 2020, and July 31st, 2022, 
while our study expands the analysis by incorporating 
novel dynamic variables to capture behavioral changes 
over time, and explicitly evaluating the different variants 
independently. A recent study evaluated the time-varying 
relationship between vaccination, mobility, and COVID-
19 health outcomes before and after the Omicron waves 
[15]. They found the significance of the vaccine’s impact 
in reducing case rates diminished during the Omicron 
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surge, while its efficacy in lowering case-fatality rates 
remained substantial throughout the pandemic.

Our study contributes to the existing literature by pri-
oritizing case-hospitalization risk as the outcome vari-
able, breaking aggregated mobility into activity-related 
engagement levels, modeling previous infections as a 
dynamic variable, including an interaction between 
the completed primary series and booster rate for the 
Omicron wave, and considering the critical static fac-
tors such as comorbidities, social vulnerability, race, and 
state healthcare expenditures. Despite numerous stud-
ies assessing the effectiveness of vaccines, most have 
not accounted for the relative impact of vaccines across 
different populations and variant waves, while consider-
ing dynamic potential confounding factors. Therefore, a 
more comprehensive understanding of vaccines’ impact 
across diverse populations and COVID-19 waves is cru-
cial in developing informed public health policies that 
can effectively mitigate the spread of the virus and ensure 
equitable distribution of healthcare resources.

Methods
Study design
The primary objective of this study is to analyze the 
association between COVID-19 vaccination rates and 
COVID-19 case-hospitalization risk (CHR) in the U.S. 
while controlling for potential confounding effects. Time-
dependent COVID-19 CHR is chosen as the modeled 
response variable to gain insights into the factors influ-
encing COVID-19 harm; CHR serves as both a proxy for 
disease severity at an individual level, and captures the 
burden on the healthcare system at a population level. 
We use Generalized Additive Models (GAMs) to perform 
the analysis because of their ability to capture nonlinear 
dynamics. Data used include novel dynamic covariates 
that may potentially contribute to COVID-19 CHR, such 
as naturally derived immunity from prior COVID-19 
infection, local healthcare infrastructure, activity-related 
engagement levels in the population, and government 
policies, alongside various static variables that have been 
identified to be significant in previous studies [14, 16, 17] 
such as comorbidities, social vulnerability index (SVI), 
race, and state healthcare expenditures. By controlling 
for these factors, we aim to provide a more comprehen-
sive understanding of the association between vaccina-
tion rate and COVID-19 CHR at the population level. 
To further elucidate the role of potential driving factors, 
we also model reported case incidence rates (CIR) as 
a separate response variable and compared the factors 
associated with COVID-19 transmission versus those 
associated with COVID-19 CHR. Our framework explic-
itly captures the spatial variation in the modeled relative 
associations through a variable transformation procedure 
(discussed in detail in the methods section). The study 

was conducted for 48 states in the U.S. for the period 
between April 19th, 2021, the date at which the vac-
cines were approved for all adults in the U.S., to March 
1st, 2022. This period covers the pre-Delta (character-
ized by the predominance of the Alpha variant and other 
variants), Delta, and Omicron waves (predominance of 
the BA.1.1 variant) of COVID-19, which are each evalu-
ated independently. To distinguish between COVID-19 
variant-driven waves, we utilized SARS-CoV-2 genomic 
surveillance data and identified the dominant variant for 
each state and point in time, to determine time windows 
so the distinct variant-driven waves can be modeled inde-
pendently. For the Omicron wave, we also considered the 
added benefit of booster doses on COVID-19 health out-
comes. Specifically, we evaluated the interaction between 
the completed primary series and booster rate on reduc-
ing COVID-19 CHR. West Virginia and New Hampshire 
were omitted in this study due to a decrease in cumula-
tive vaccination rates over the study period, likely due to 
reporting errors. Results from this analysis help improve 
our understanding of the real-world relative impact of the 
available COVID-19 vaccines against COVID-19 CHR 
at the population-level over time, and can help inform 
future public health policies to reduce harm.

Data sources and collection
We collected state-level time-series data and static vari-
ables from publicly available databases. All time-series 
data were aggregated to the weekly level. A summary of 
the variables and their respective sources are listed in 
Tables 1 and 2, and detailed explanations of each variable 
are provided in Appendix Sect.  1.2. A 3-week moving 
average was applied to all time-series variables to miti-
gate the effects of potential noise and reporting issues, 
with the exception of the government policy index. 
Regarding the age groups covered in the dataset, with the 
exception of activity-related engagement levels, all vari-
ables include data for both children and adults.

Dynamic variable transformation
To ensure the precise estimation of each dynamic vari-
able’s impact, a variable transformation mechanism must 
be used to account for the effects of time trends in the 
data. For example, the completed primary series rate is 
always increasing with time for all locations modeled, 
hence it can be difficult to distinguish how much of the 
observed associations between vaccination rate and 
COVID-19 health outcomes are due to the variable inter-
action or the passage of time. Moreover, the main focus 
of this study lies in modeling spatial differences and con-
sidering location-specific variations that influence the 
observed associations. Consequently, we applied the fol-
lowing transformation to all dynamic variables to remove 
the time trend and redefine the relative variable (RV t

i ):
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Where RV t
i  represents the transformed variable for state 

i  at week t , V t
i represents the original variable for state 

i  at week t  without the transformation, 1
n

∑
j V t

j  repre-
sents the mean of the original variable at week t , over 

all locations being modeled n, e.g., the national mean 
across the U.S. A RV t

i  larger than one indicates that state 
i  has a higher variable value compared to the national 
mean at week t, while RV t

i  lower than one indicates 
that state i  has a lower variable value compared to the 
national mean, at week t. After normalization, the final 
set of time-dependent variables included in the analysis 
are: Relative case-hospitalization rates (RCHRt

i ), rela-
tive reported case-incidence rate (RCIRt

i ), relative com-
pleted primary series rate (RCPSRt

i ), relative booster 
rate (RBRt

i ), relative weekly testing rate (RWTRt
i ), rela-

tive gym visits (RGV t
i ), relative physician visits (RPV t

i

), relative university visits (RUV t
i ), relative previous 

infection (RPIt
i ), and relative government policy (RGPt

i

). These newly transformed variables enable an explicit 
evaluation of the relative association between each of 
them and the COVID-19 health outcome of interest 
within a single multi-state model. Moreover, this vari-
able transformation procedure facilitates assessing indi-
vidual state’s performance relative to national dynamics. 
It emphasizes evaluating the expected outcomes when a 
state’s performance diverges from the national average.

The dynamic variables, with and without variable 
transformation, are visually depicted in Appendix figure 
S2. Among all the variables, the rankings of RCPSRt

i  
remain relatively stable across time, as seen in Appen-
dix figure S2b2. This stability indicates a more consistent 
spatial-temporal pattern of variation among vaccination 
rates across states. On the other hand, all other dynamic 
variables exhibit more noticeable spatial ranking changes 
over time. The changing spatial-temporal rankings of 
other dynamic variables highlight the importance of con-
sidering spatial differences through time and evaluating 
their influence on COVID-19 health outcomes.

Statistical analysis
The generalized additive model (GAM) was selected as 
the statistical model for this analysis because of its ability 
to capture complex and nonlinear relationships between 
the set of covariates and the outcome variables of inter-
est in each state. We independently model each variant-
driven wave during the study period to allow for different 

Table 1 Summary of dynamic variables in the model
Variable 
Name

Variable Description Source

Output variables
Case-hospi-
talization rate 
(CHR)

Weekly new admissions of patient with 
confirmed COVID-19 normalized by lagged 
reported cases for each state.

[18, 19]

Reported 
case-
incidence rate 
(CIR)

Weekly number of confirmed cases normal-
ized by state population.

[18]

Dynamic input variables
Partial vac-
cination rate

Percentage of the total population that re-
ceived at least one dose of COVID-19 vaccine 
approved or authorized for use in the United 
States.

[20]

Completed 
primary series 
rate

Percentage of the population that received 
the second dose in a two-dose COVID-19 
vaccines primary series or one dose of a 
single-dose COVID-19 vaccine primary series 
approved or authorized for use in the United 
States.

[20]

Booster vac-
cination rate

Percentage of the total population that re-
ceived an updated (bivalent) booster dose.

[21]

Weekly test-
ing rate

Total number of weekly tests conducted for 
each state normalized by population.

[22]

Gym visits Number of weekly visits to gyms per person. [23, 24]
University 
visits

Number of weekly visits to universities per 
person.

[23, 24]

Physician 
visits

Number of weekly visits to physicians per 
person.

[23, 24]

Government 
policy index

Quantitative measure of government policies 
implemented in response to the COVID-19 
pandemic across various domains including 
health, social, and economic policies.

[25]

Previous 
infections

Infections reported within a time window 
preceding the modeled output, e.g., sum from 
4 to 16 weeks ahead of the output variables.

[18]

Table 2 Summary of static variables in the model
Static input 
variables

Description Mean St.d. Min Max Source

Black proportion The proportion of the population identified as Black. 0.112 0.019 0.006 0.378 [26]
Social vulnerability 
index (SVI)

The Social Vulnerability Index utilizes data from the U.S. Census to assess the relative 
level of social vulnerability in each census tract. By analyzing 14 social factors, the SVI 
categorizes tracts into four closely interrelated themes and then aggregates them as a 
single indicator of social vulnerability.

0.468 0.152 0.137 0.771 [27]

Adults at high risk The proportion of the population over 18 years old is at high risk of serious illness if 
infected with Coronavirus.

0.383 0.036 0.300 0.493 [28]

Medicaid 
spending

Total Medicaid spending in thousands of dollars for each state normalized by the 
population.

1.807 0.550 0.860 3.099 [29]
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driving factors for different variants. To define the vari-
ant waves, we clustered each state-week pair based on 
the dominant circulating variant based on SARS-CoV-2 
genomic surveillance data downloaded from GISAID 
[30]. The three waves are classified as: (1) Pre-Delta 
Wave, (2) Delta Wave, (3) Omicron Wave, and each state 
is labeled with its most dominant variant each week 
to define the windows. Details of this classification are 
described in Appendix Sect.  1.1, and the assignment of 
state-week pairs is shown in Appendix figure S1.

The primary set of models treat weekly state-level 
RCHR as the response variable, with separate models 
generated independently for each variant wave, namely 
Pre-Delta-RCHR, Delta-RCHR, and Omicron-RCHR. 
These three models have the form:

 

RCHRt
i ∼ Gamma(µ, ϕ)

log (µ) = α + f1
(
RCPSRt−2

i

)
+ f2

(
RWTRt−2

i

)
+

f3
(
RGV t−2

i

)
+ f4

(
RPV t−2

i

)
+

f5
(
RUV t−2

i

)
+ f6

(
RGPt−2

i

)
+

f7 (RPIt
i ) + β1 (Blackproportion) +

β2 (SV I) + β3 (Adultsathighrisk)
+β4 (Medicaidspending)

 (1)

Where α  represents the intercept, βi  represent the 
parametric coefficients of each static variable, and fi are 
spline smooth functions of the relative dynamic variables. 
Additionally, a model is constructed for the Omicron 
wave, incorporating an interaction between completed 
primary series and booster rate (Omicron-Booster-
RCHR). The Omicron-Booster-RCHR has the form:

Fig. 1 Results for the Pre-Delta-RCHR (Blue), the Delta-RCHR (Orange), and the Omicron-RCHR (Red). a-g: Accumulated local effects (ALE) of dynamic 
variables. Shaded areas in each plot indicate 95% confidence intervals. h-k: Estimated slopes for each static variables, the upper and lower band indicate 
95% confidence intervals. m: Deviance explained for each model. ‘***’: variable significant at p < 0.001. ‘**’: variable significant at p < 0.01. ‘*’: variable sig-
nificant at p < 0.05. ‘’: variable significant at p > 0.05
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i
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+ f3

(
RGV t−2

i

)
+ f4

(
RPV t−2

i

)
+

f5
(
RUV t−2

i

)
+ f6

(
RGPt−2

i

)
+

f7 (RPIt
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β2 (SV I) + β3 (Adultsathighrisk) +
β4 (Medicaidspending)

 (2)

Where f1 represent a smooth interaction function 
between RCPSRt−2

i  and RBRt−2
i . For all the mentioned 

models above, the weekly state-level RCHR is assumed to 
follow a Gamma distribution with a log link. This choice 
of the Gamma family accounts for the positively skewed 
distribution of the outcome variable. We use thin plate 
regression splines as the smoothing basis for all fi and 
set the basis dimension to three to maximize the inter-
pretability of the models. The basis dimension refers to 
the maximum possible complexity of each smooth term; 
a large basis dimension could overfit the data and result 

in highly non-linear relationships between input and out-
come variables.

To consider the sequential process of infection lead-
ing to hospitalization we introduce a time lag between 
each of the input variables relative to the outcome vari-
able, which is denoted by the superscript. The timeline 
of this model is introduced as follows: the modeled rela-
tive case-hospitalizations rate (RCHRt

i ), occur at time 
t. Infections resulting in hospitalization, are assumed to 
occur at time t-2, to account for a one week incubation 
period [31], and one additional week between symptoms 
onset and hospitalization [32]. Note, this timeline aligns 
with the definition of the CHR variable, which is nor-
malized by the number of reported infections one week 
prior, which assumes a one week delay between when 
infection occurred and when it is reported. To accurately 
reflect the conditions presented at the time of infection, 
each of the variables related to vaccination (RCPSRt−2

i

), activity-related engagement levels (RGV t−2
i , RPV t−2

i

Fig. 2 Results of Omicron-Booster-RCHR for just the Omicron wave with the additional inclusion of an interaction effect between the relative completed 
primary series rate and the relative booster rate. a: Two-dimensional contour plot for the interaction between relative completed primary series rate and 
relative booster rate. The deeper red indicates a more positive effect on the RCHR, and the deeper blue indicates a more negative effect to the RCHR. b-
g: Accumulated local effects (ALE) of dynamic variables. Shaded areas in each plot indicate 95% confidence intervals. h: Estimated slopes for each static 
variables, the upper and lower band indicate 95% confidence intervals. ‘***’: variable significant at p < 0.001. ‘**’: variable significant at p < 0.01. ‘*’: variable 
significant at p < 0.05. ‘’: variable significant at p > 0.05
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, RUV t−2
i ), policy (RGPt−2

i ), and testing (RWTRt−2
i ) 

are also lagged by two weeks relative to the case-hospi-
talization risk. Lastly, the past infections variable, defined 
as stated above to capture the role of recently acquired 
immunity from infection in protecting from severe dis-
ease upon reinfection, is equal to the total infection rate 
in the population summed over the prior 4 to 16 weeks. 
This time window is explicit in the definition of RPIt

i  
(see Appendix Sect.  1.2). A sensitivity analysis explores 
diverse immunity durations and is detailed in Appendix 
Sect. 2.5.

A secondary set of analogous models treats RCIR as 
the response variable, namely the Pre-Delta-RCIR, the 
Delta-RCIR, the Omicron-RCIR, and the Omicron-
Booster-RCIR. The first three models adopt the same 
form as Eq. (1), while the Omicron-Booster-RCIR follows 
the same form as Eq.  (2). To account for the sequential 
process leading to infections, all lags between dynamic 
covariates, and RCIR have been reduced by one week. 

This results in eight models, with four models fit to 
RCHR, and four models fit to RCIR. The exact formula-
tion of models with RCIR as outcome variable are docu-
mented in Appendix Sect. 2.6.

The selection of covariates for each model relies on 
correlation-based feature selection, taking into account 
both Pearson’s correlation between variables and the 
concurvity measures derived from GAMs. For compre-
hensive information on the selection criteria of static 
variables, please refer to Appendix Sect.  2.1. Addition-
ally, Appendix Sect.  2.2 provides detailed documenta-
tion on the selection of dynamic variables, particularly 
those related to activity-related engagement levels. The 
impact of each dynamic variable is quantified by comput-
ing the Accumulated Local Effects (ALE) of each smooth 
term on outcome variables. The local effect refers to the 
change in model output when a particular input feature 
is changed while keeping all other features constant. The 
ALE method aggregates the local effects of each input 

Fig. 3 Results for the Pre-Delta-RCIR (Blue), the Delta-RCIR (Orange), and the Omicron-RCIR (Red). a-g: Accumulated local effects (ALE) of dynamic vari-
ables. Shaded areas in each plot indicate 95% confidence intervals. h-k: Estimated slopes for each static variables, the upper and lower band indicate 95% 
confidence intervals. m: Deviance explained for each model. ‘***’: variable significant at p < 0.001. ‘**’: variable significant at p < 0.01. ‘*’: variable significant 
at p < 0.05. ‘’: variable significant at p > 0.05
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feature across its entire range. By accumulating these 
local effects, we gain insight into how changes in each 
input variable influence the outcome variable across its 
entire range. Data processing, visualization, and analysis 
were carried out using R 4·0 and Python 3·8.

Results
GAMs analysis for the relative case-hospitalization rate 
(RCHR) as the outcome
In our analysis, we evaluated goodness-of-fit based on 
several metrics. For models with relative case-hospital-
ization risk (RCHR) as the outcome variable, the deviance 
explained ranges between 46.8% and 72.3% (Fig. 1m) for 
each variant wave. Moreover, we assessed the correlation 
between observed RCHR and predicted RCHR, which 
exhibited strong positive correlations ranging from 0.67 
to 0.81 (Appendix Sect. 3.1). These findings provide com-
pelling evidence of the models’ effectiveness in capturing 
and predicting the case-hospitalization rate.

The relative completed primary series rate, and relative 
previous infections consistently displayed strong negative 
associations with RCHR across different waves (Fig.  1a 
and b). Of particular note is that relative previous infec-
tions consistently ranked the highest in terms of ALE 
across the different waves. Figure 1c reveals the impact of 
the relative government response index gradually flatten-
ing out from the pre-Delta to the Omicron wave. Regard-
ing activity-related engagement levels, their effects on 
RCHR appear inconsistent across different waves, as 
exemplified by the relative physician visits, which slightly 
changed from negative to positive effects as the analy-
sis progressed from the pre-Delta to the Omicron wave 
(Fig. 1e). Lastly, the relative weekly testing rate served as 
a control variable to address the state-level differences in 
testing rates. The result revealed a negative correlation 
between the relative weekly testing rate and RCHR. Nev-
ertheless, it is noteworthy that this association exhibited 
a decrease from the pre-Delta wave to the Omicron wave, 
as illustrated in Fig. 1g.

Regarding the static variables, adults at high risk exhib-
ited a declining positive association with RCHR. Addi-
tionally, states with higher Social Vulnerability Index 
(SVI) consistently showed higher RCHR. Among racial 
groups, the proportion of Black positively associated with 
RCHR during the Pre-Delta wave but did not exhibit a 
significant impact since the Delta wave. With healthcare 
systems variables, Medicaid spending per person consis-
tently showed a negative association with RCHR.

With the exception of the completed primary series 
rate, the effects of all other variables modeled in the 
Omicron-Booster-RCHR remained consistent with the 
results for the Omicron-RCHR shown in Fig. 1. Figure 2a 
show the interaction between two vaccine-related vari-
ables in a two-dimensional variable space. The solid black 

lines represent the contour lines. The contour lines cor-
respond to points that have an equivalent impact on the 
hospitalization rate, with the values marked on each line 
indicating the actual interaction effect of these points on 
the RCHR. Figure  2a reveals that the RCHR decreases 
along the direction of increasing the relative booster rate 
and the relative completed primary series rate.

GAMs analysis for the relative reported case-incidence rate 
(RCIR) as the outcome
The GAMs using relative reported case-incidence rate 
(RCIR) as the outcome variable consistently demonstrate 
lower performance than those GAMs with RCHR as the 
outcome variable. Specifically, all GAMs for RCIR have 
deviance explained values below 40%, and correlations 
between observed RCIR and predicted RCIR range from 
0.43 to 0.61 (Appendix Sect.  3.2). The observed perfor-
mance pattern indicates a more intricate and dynamic 
relationship concerning COVID-19 transmission, par-
ticularly evident during the Omicron wave.

Figure  3a illustrates a strong negative association 
between the relative completed primary series rate and 
RCIR during the Pre-Delta and Delta waves. However, 
this association vanished during the Omicron wave, coin-
ciding with a decline in model performance (Fig. 3m). The 
ALE plot of the relative previous infection rate (Fig. 2b) 
revealed an insignificant association between previous 
infection and RCIR during the pre-Delta and Delta waves 
but a significant negative association during the Omicron 
wave. Additionally, when the relative government policy 
index is greater than one, the ALE plots demonstrate a 
negative trend; however, the magnitude of this effect is 
relatively smaller compared to other dynamic variables 
examined in the analysis. Similar to GAMs for RCHR, 
the activity-related engagement levels exhibited inconsis-
tent patterns across different waves. Notably, the ALE of 
relative university visits reverses direction from negative 
to positive between the pre-Delta wave and the later two 
waves.

For the static variables, adults at high risk were con-
sistently positively associated with RCIR across differ-
ent waves. However, the other static variables, including 
racial groups, SVI, and healthcare expenditures, do not 
show a consistent or significant impact across different 
waves.

Figure 4 illustrates the results of the Omicron-Booster-
RCIR for just the Omicron wave with the additional 
inclusion of an interaction effect between the completed 
primary series rate and the relative booster rate. This 
interaction effect is presented as a dimension contour 
map in Fig. 4a.

The incorporation of the relative booster rate does not 
result in an improvement in the model fit; the deviance 
explained for Model Omicron-Booster-RCIR remains at 
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17%. As depicted in Fig. 4a, it is evident that only states 
with both a high relative completed primary series rate 
and a high relative booster rate exhibits a slightly negative 
impact, approximately − 0.1, on the RCIR. The findings 
from Model Omicron-RCIR, when combined with Omi-
cron-Booster-RCIR, suggest that the covariates examined 
in this study do not contribute significantly to explaining 
the variation in RCIR during the Omicron wave. These 
results highlight the need for further research to iden-
tify other factors that may better capture the dynamics of 
COVID-19 transmission during this specific period.

Discussion
This analysis aims to characterize the relationship 
between population-level COVID-19 vaccine administra-
tion and pandemic-induced healthcare burdens, taking 
into account essential and confounding real-world pro-
cesses. Our results point to three significant conclusions:

  • Population-level vaccination is always significantly 
associated with reduced COVID-19 case-
hospitalization risk.

  • Increased recent (1–4 months prior) infections 
are also consistently and strongly associated with 
reduced case-hospitalization risk.

  • Local factors, activity-related engagement levels, 
and policy measures are important to the model’s 
explanatory power, supporting the importance 
of considering these factors on population-
level outcomes. However, their associations are 
inconsistent over time and across different variants.

Each of these conclusions is explained in more detail in 
the sections below. In each section, we discuss the find-
ings regarding case-hospitalization risk and compare 
them with the results related to the reported case inci-
dence rate. In general, our results strongly support the 
importance of population-level vaccination and align 
with extant research on the role of acquired immunity in 

Fig. 4 Results of the Omicron-Booster-RCIR for just the Omicron wave with the additional inclusion of an interaction effect between the relative com-
pleted primary series rate and the relative booster rate. a: Two-dimensional contour plot for the interaction between relative completed primary series 
rate and relative booster rate. b-g: Accumulated local effects (ALE) of dynamic variables. Shaded areas in each plot indicate 95% confidence intervals. h: 
Estimated slopes for each static variables, the upper and lower band indicate 95% confidence intervals. ‘***’: variable significant at p < 0.001. ‘**’: variable 
significant at p < 0.01. ‘*’: variable significant at p < 0.05. ‘’: variable significant at p > 0.05
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reducing severe outcomes. However, it should be noted 
that the case incidence rate has a reduced association 
with vaccination during the Omicron wave and much 
less consistently meaningful associations with previous 
infection rates. Additionally, our analysis reflects the 
complexity of the evolution of human behavior during 
the pandemic, given the dynamic role of activity-related 
engagement levels and policy. It also supports the recog-
nition of the epidemiological vulnerability of socially and 
economically underserved communities.

Vaccines protect against COVID-19 case-hospitalization 
risk for pre-Delta, Delta and Omicron waves
Our study reveals a strong and statistically significant 
association between vaccine uptake rates and reduced 
COVID-19 case-hospitalization risk. This relationship 
was consistent across each of the variant waves mod-
eled, and is consistent with earlier findings that vaccine 
protection against severe illnesses does not significantly 
wane in response to new variants. In contrast, when we 
modeled reported case-incidence rates as the response 
variable, we observed a decreasing effect of vaccines from 
the pre-Delta to the Omicron wave (Fig.  3a). This out-
come aligns with existing literature highlighting the rapid 
waning of the vaccines’ effectiveness against infection 
[33, 34]. Nonetheless, while vaccines may offer reduced 
protection against infection, our results indicate that they 
continue to provide substantial protection against hos-
pitalization risk and help alleviate the burden on health-
care systems. Additionally, although the value of booster 
shots for protection against severe cases of COVID-19 is 
still being studied [35], results from our analysis provide 
evidence supporting the effectiveness of booster doses 
against hospitalization risk caused by the Omicron vari-
ant (Fig.  2). Conversely, the findings obtained from our 
Omicron-Booster-RCIR model reveal that the interaction 
between the booster and completed primary series rates 
has a relatively limited impact on Omicron infection 
(Fig. 4). However, it is crucial to emphasize that despite 
the diminished effectiveness of mRNA boosters against 
Omicron infections, vaccines still serve the essential pur-
pose of reducing the harm of COVID-19 in the face of 
emerging variants.

Immunity from recent infection protects against COVID-19 
case-hospitalization risk upon reinfection
Higher past COVID-19 infection levels in a popula-
tion are associated with a decrease in COVID-19 case-
hospitalization risk, indicating immunity gained from 
infection can provide some protection against severe 
disease in the event of reinfection in the future, but only 
for a limited period of time. Our study utilized the total 
number of cases reported in a 12-week window, ranging 
from 4 to 16 weeks prior to the time period modeled, as a 

proxy for recently acquired immunity, and found a strong 
negative association between the previous infection rate 
and future case-hospitalization risk. These results were 
consistent across the different variant waves. This finding 
aligns with other case-control studies that found previ-
ous infections showed strong effectiveness against severe, 
critical, or fatal COVID-19 [6, 36]. Our analysis indicates 
that prior infections from up to 6 months ahead are asso-
ciated with decreased hospitalization risk, but 4 to 16 
weeks has the strongest effect (see Appendix Sect.  2.4 
and 2.5 for this sensitivity analysis). While the waning 
of natural immunity has been established in molecular 
and clinical research [37], our analysis provides addi-
tional insight at the population-level. In our models with 
case-incidence rate as the outcome variable, we found an 
insignificant association between previous infection and 
case-incidence rate during the pre-Delta and Delta waves. 
However, during the Omicron wave, there was a signifi-
cant negative association (Fig. 3b). This finding contrasts 
with existing literature that found, at the individual level, 
previous infection protected against infection pre-Omi-
cron, but this effectiveness decreases substantially during 
the Omicron wave [38]. Nevertheless, at the population 
level, the number of infected individuals is considerably 
higher during the Omicron wave than earlier, while a 
smaller proportion remains susceptible. Consequently, 
the cumulative impact of previous infections becomes 
more pronounced. These results highlight that previous 
infections have a variable and inconsistent impact on 
reinfection at the individual and population levels.

Local factors contribute to variation in COVID-19 health 
outcomes
Existing clinical and statistical studies [14, 16, 17] have 
identified critical indicators for COVID-19 health out-
comes including demographics, comorbidities, social 
vulnerability index (SVI), and healthcare expenditures. 
Results from our model using RCHR as outcome vari-
ables indicate that the SVI is positively associated with 
COVID-19 case-hospitalization risk across all variant 
waves (Fig.  1i). This finding is consistent with existing 
literature [14, 17], which suggests that individuals from 
socially vulnerable regions are more likely to experience 
harmful COVID-19 outcomes. For each new variant 
wave, the proportion of adults at high risk was less asso-
ciated with case-hospitalization risk than for the prior 
wave (Fig. 1h). This result aligns with a cohort study that 
the hazard ratio of hospital admissions with the Omi-
cron variant, compared to the Delta variant, showed a 
more significant drop in the elder age group compared 
to individuals younger than 20 [39]. Our results reveal an 
insignificant association between black proportion and 
case-hospitalization risk during the Delta and Omicron 
waves, which differs from previously identified positive 
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associations across all waves [14]. In the United States, 
the eligibility for Medicaid varies by state, but generally, 
individuals and families with incomes up to 138% of the 
federal poverty level may qualify for coverage [40]. Our 
results reveal a consistent negative association between 
state-level Medicaid spending per person and COVID-
19 case-hospitalization risk (Fig.  1k), which indicates 
the potential protective effect of healthcare expenditures 
in mitigating the impact of the pandemic on vulnerable 
groups. In contrast to the case-hospitalization risk mod-
els, the case-incidence rate models indicate that there is 
no evidence for consistent or significant associations with 
demographics, SVI, or healthcare expenditures across 
variant waves, except for adults at high risk consistently 
positively associated with case-incidence rate (Fig.  3). 
These results suggest that dynamic COVID-19 infection 
risk is complex and changes over time, and the factors 
contributing to transmission vary across waves. Further 
research is needed for a more comprehensive under-
standing of the complex and evolving nature of COVID-
19 transmission.

Activity-related engagement levels are associated with 
COVID-19 health outcomes
At the beginning of the pandemic, several studies evalu-
ated the association between mobility and COVID-19 
transmission with inconsistent findings [41, 42]. One 
possible reason for this inconsistency is that aggre-
gated mobility data may not accurately reflect the risk 
of dynamically changing human behaviors, given that 
a minority of travel activities could be accountable for a 
significant majority of infections [43]. Furthermore, the 
connection between mobility and harmful health out-
comes remains unclear. Our study uses disaggregated 
mobility patterns to capture diverse behaviors between 
populations, specifically relative activity-related engage-
ment levels, to explore the association between these 
variables and COVID-19 severity. To achieve this, we 
divided activities into subcategories based on their pur-
pose. University visits were used to represent school-
related activities, gym visits to signify high-risk indoor 
activities, and physician visits to indicate healthcare-
related visits.

Results shown in Fig.  1d indicate that the state-week 
pairs with relatively higher gym visits are expected to 
observe higher case-hospitalization risk during the Pre-
Delta wave. However, this association did not reach sta-
tistical significance during the Delta and Omicron waves. 
In contrast, when we modeled the case-incidence rate 
as the outcome variable, our analysis revealed a minor 
effect of gym visits, as shown in Fig.  3d. The positive 
impact of gym visits during the Pre-Delta wave may be 
linked to infections among unvaccinated individuals 
engaging in indoor activities. It is supported by existing 

research that unvaccinated individuals have a 2.6 times 
higher likelihood of contracting SARS-CoV-2 than vac-
cinated individuals during indoor activities [44]. More-
over, unvaccinated individuals exhibit a higher likelihood 
of hospitalization [45], leading to a strong positive asso-
ciation between gym visits and case-hospitalization risk 
during the initial phases of vaccination distribution. In 
addition to indoor activity, we also observed a significant 
association between case-hospitalization risk and overall 
visits to hospitals, medical centers, and Outpatient Care 
Centers. Unlike indoor activity, this association transi-
tioned from negative to positive between the pre-Delta 
to Omicron wave. One possible explanation for this find-
ing is that as the pandemic evolved, the public became 
more familiar with the disease and more tolerant of at-
home symptom management; thus, those COVID-19 
patients that sought medical care were more likely to be 
those with more severe symptoms. Finally, visits to the 
university were found to have a relatively minor impact 
on case-hospitalization risk. We hypothesize that this 
is due to the young and relatively healthy demographic 
that frequents visiting schools, while still vulnerable to 
contracting the SARS-CoV-2 virus, they are less likely to 
experience severe outcomes from COVID-19 infection. 
This hypothesis is further supported by the findings from 
the case-incidence rate model, which identified a positive 
association with university visits during the Delta and 
Omicron waves (Fig.  3d). It is worth noting that during 
the Pre-Delta wave, school visits negatively impacted the 
case-hospitalization risk. However, this impact changed 
to a positive association for the later waves. These obser-
vations align with existing research, which has demon-
strated that the younger population exhibits the highest 
increase in susceptibility to the Delta variant compared 
to the pre-Delta variant [46].

More stringent government public health policy is 
associated with reduced COVID-19 case-hospitalization 
risk
Our results indicate that more stringent government 
policies were associated with reduced COVID-19 case-
hospitalization risk during the Pre-Delta and Delta wave. 
This is consistent with previous studies [47]. In particular, 
we found that state-week pairs with a significantly high 
government response index (indicating stricter policy) 
have a stronger negative effect on the case-hospitaliza-
tion risk (Fig. 1c). However, this negative effect decreased 
over time, and was least evident during the Omicron 
wave. The reduced effect of the policy during Omicron 
is likely due to a complex combination of factors, includ-
ing the increasing population level immunity from both 
widespread adoptions of vaccines and prior exposure 
providing more protection from severe disease during 
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this period, combined with a reduction in the govern-
ment’s response to the pandemic over time.

Additionally, weekly testing rates were shown to be 
negatively associated with case-hospitalization risk. 
While this result does not imply a causative relationship 
between testing rate and COVID-19 severity, there are 
various reasons why testing rates may be linked to case-
hospitalization risk. Firstly, it represents a proxy input 
feature to capture the level of healthcare infrastructure 
available to a population. Second, it directly impacts the 
reported case incidence rate, as the number of reported 
cases in a region is a direct function of local testing avail-
ability, thus increased testing will lead to higher reported 
case rates, and lower case-hospitalization risk. Third, 
increased testing can lead to more cases being identified, 
and thus impact people’s awareness and behavior during 
an outbreak. For these reasons testing rate is included as 
a potential control factor in our model.

Limitations
As with all modeling studies, this work is subject to sev-
eral limitations. Firstly, this study was primarily designed 
to determine the association between various poten-
tial risk factors and COVID-19 outcomes, rather than 
to establish causality between these variables. Thus, our 
findings may reflect the role of unobserved confound-
ing factors excluded from our study. Another potential 
limitation is due to the application at the state-level. The 
aggregation of the data to the state-level is unable to cap-
ture the heterogeneities of the communities within each 
state, and it is possible that different associations exist at 
the local level, than are identified at the state-level. Addi-
tionally, we believe the use of the case-hospitalization 
risk in a given state at a given time is a plausible choice 
as a proxy for disease severity at an individual-level, 
and captures the burden on the healthcare system at a 
population-level. However, it is subject to variable case 
reporting and data quality issues across states, which may 
arise due to uneven testing capacity, reporting delays or 
at-home testing. Moreover, it is important to note that 
we have not captured potential behavior changes across 
time, such as alterations in self-protection and risk per-
ception during the pandemic, which could significantly 
influence the population-level health outcomes. Lastly, it 
is important to acknowledge that our variable transfor-
mation, while facilitating a deeper understanding of rela-
tive changes, does come with the inherent consequence 
of diminishing the original meaning these variables ini-
tially conveyed.

Conclusions
This research utilizes publicly available real-world data to 
provide robust evidence of the efficacy of vaccines against 
COVID-19 case-hospitalization risk across various 

variant waves in the United States. More importantly, 
this paper concludes that booster shots offer additional 
protection against severe COVID-19 during the Omicron 
waves. Despite the emergence of new variants, vaccines 
remain the most effective intervention for mitigating the 
harm of COVID-19 and reducing burden on healthcare 
systems. Therefore, given the ongoing threat posed by 
COVID-19 and its potential variants, vaccines continue 
to be the best line of defense for protecting public health 
and preventing the further spread of the virus.
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