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Abstract
Background  In many areas of China, over 30% of tuberculosis cases occur among the elderly. We aimed to 
investigate the spatial distribution and environmental factors that predicted the occurence of tuberculosis in this 
group.

Methods  Data were collected on notified pulmonary tuberculosis (PTB) cases aged ≥ 65 years in Zhejiang Province 
from 2010 to 2021. We performed spatial autocorrelation and spatial-temporal scan statistics to determine the clusters 
of epidemics. Spatial Durbin Model (SDM) analysis was used to identify significant environmental factors and their 
spatial spillover effects.

Results  77,405 cases of PTB among the elderly were notified, showing a decreasing trend in the notification rate. 
Spatial-temporal analysis showed clustering of epidemics in the western area of Zhejiang Province. The results of 
the SDM indicated that a one-unit increase in PM2.5 led to a 0.396% increase in the local notification rate. The annual 
mean temperature and precipitation had direct effects and spatial spillover effects on the rate, while complexity of 
the shape of the greenspace (SHAPE_AM) and SO2 had negative spatial spillover effects.

Conclusion  Targeted interventions among the elderly in Western Zhejiang may be more efficient than broad, 
province-wide interventions. Low annual mean temperature and high annual mean precipitation in local and 
neighboring areas tend to have higher PTB onset among the elderly.
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Background
Tuberculosis (TB) is one of the deadliest infectious dis-
eases, causing substantial concern globally. The single 
agent of this disease, Mycobacterium Tuberculosis (MTB), 
is transmitted by the respiratory tract causing lesions in 
nearly all tissues and organs [1]. In 2022, an estimated 
10.6  million people worldwide fell ill with TB, with an 
incidence of 133 cases per 100,000 people and 1.3  mil-
lion deaths [1]. Although continuous efforts had been 
implemented in high burden countries, China, as one of 
30 high burden countries, still accounts for 7.1% of global 
cases [1]. Among the affected population, the elderly 
group had contributed to a substantial part [2]. Along 
with aging, influencing factors such as the decreased 
immune function, cognitive deficiency, and insufficient 
social and family care might also lead to increased mor-
bidity and PTB transmission risk in this special group [3, 
4]. Thus, increasing attentions was directed on lowering 
the reactivation of latent pulmonary TB (PTB) infection 
and preventing new infections among the elderly.

Increasing evidence demonstrated that the domi-
nated drivers of PTB development not only included 
personal factors such as gender, malnutrition, Acquired 
Immune Deficiency Syndrome (AIDS), diabetics, smok-
ing and alcohol consumption, but were also associated 
with environmental factors and spatial locations [5–7]. 
For environmental factors, available research showed 
that atmospheric pollutants such as PM2.5 and SO2 were 
associated with notification rate of PTB, partly even with 
a lag effect [8, 9]. It was possible that atmospheric pol-
lutants may affect the susceptibility of TB in individual 
level by the possible mechanism of inducing damage in 
the tracheobronchial mucosa, and triggering systemic 
immune responses through inhibition of the synthesis 
and secretion of inflammatory mediators [8]. Besides, 
meteorological factor such as humidity can influence the 

transmission of MTB in the environment, thereby alter-
ing the risk of infection in the population [6]. However, 
the spillover effect caused by environmental factors is 
denoted that these factors not only affect the local epi-
demic but also impact surrounding regions, which was 
explored for TB onset in limited literature. In addition, 
the pattern of communicable diseases generally showed 
a diversity in spatial distribution. Thus, spatiotemporal 
analysis has been widely used in epidemiological research 
to identify temporal and spatial clusters of infectious dis-
eases. However, among the elderly, the spillover effect of 
environmental factors and the spatial characteristics of 
PTB onset remain unclear [10, 11].

Our study aimed to analyze and determine the spatial 
and temporal distribution characteristics and risk clus-
tering of the elderly PTB in Zhejiang Province, eastern 
China, as well as to identify environmental factors that 
have direct and spillover effects on notification rate of 
PTB. These findings may provide important empirical 
evidence for health policy formulation and public health 
resource allocation.

Methods
Study area
Zhejiang Province is located in the eastern coastal region 
of China and has a total area of 100,000 km2 and 11 cities 
like Hangzhou, Ningbo, Wenzhou, Jiaxing, Huzhou, Sha-
oxing, Jinhua, Quzhou, Zhoushan, Taizhou, and Lishui 
[12]. Data from the Zhejiang Provincial Bureau of Statis-
tics 2021 show that the resident population is 65.4  mil-
lion, of which 14.2% (9.26 million) are ≥ 65 years old. The 
location of Zhejiang Province was mapped in Fig. 1.

Data sources and definitions
Surveillance data of PTB cases notified from 2010 to 
2021 in Zhejiang Province were collected from the 

Fig. 1  Location of the Zhejiang Province in China
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Tuberculosis Information Management System (TBIMS). 
All included PTB cases were diagnosed and classified 
based on the National Diagnostic Criteria for Pulmo-
nary Tuberculosis (WS 288–2008 and WS 288–2017) and 
Classification of Tuberculosis (WS 196–2017) issued by 
the Ministry of Health of the People’s Republic of China. 
PTB cases were extracted only for individuals aged ≥ 65 
years with variable information of demographic and 
medical details; extrapulmonary TB and non-tuberculous 
mycobacterial cases were excluded.

Daily weather data were gathered from the China 
Meteorological Data Sharing Center between 2010 
and 2020 (http://data.cma.cn/site). The meteorologi-
cal factors collected included annual mean tempera-
ture (°C), annual mean precipitation (mm), and annual 
mean relative humidity (%). Air pollution data included 
annual mean particulate matter with diameter of less 
than 2.5 μm (PM2.5, µg/m3) and sulfur dioxide (SO2, 
µg/m3) by each county. PM2.5 and SO2 commonly co-
exist in the atmospheric environment. High-resolution 
(1  km) annual PM2.5 data were from the Atmospheric 
Composition Analysis Group at Washington Univer-
sity in St. Louis (https://sites.wustl.edu/acag/datasets/
surface-pm2-5/). The SO2 data were obtained from the 
GIOVANNI web-based application (https://giovanni.
gsfc.nasa.gov), with a spatial resolution of 0.5° × 0.625°. 
We used the percentage of greenspace and the SHAPE_
AM to represent the scale and form of greenspace. We 
obtained the 30  m annual land cover datasets in China 
from 1990 to 2021, which is the first Landsat-derived 
annual China land cover dataset (CLCD) on the Google 
Earth Engine (GEE) platform(https://doi.org/10.5281/
zenodo.5816591). The Fragstats version 4.2 programs 
were used to measure the percentage of greenspace and 
the SHAPE_AM in each county. Socio-economic factors 
were acquired, including Gross Domestic Product (GDP) 
per county and the density of population. The 2010–2020 
GDP per county was obtained from the Zhejiang Statisti-
cal Yearbook. The population density was collected from 
the Worldpop platform (https://www.worldpop.org/) 
with a spatial resolution of 1 km × 1 km.

Statistical analysis
Spatial autocorrelation analysis
R software (version 4.4.2) was used to visualize the gen-
eral epidemic characteristics, GeoDa software (version 
1.18.0) was used for spatial autocorrelation analysis. 
The spatial autocorrelation analysis of PTB data aimed 
to determine whether objects with similar attributes are 
gathered or scattered in the study space and identify risk 
regions, including global and local spatial autocorrela-
tion [13]. Moran’s I index, calculated by constructing the 
queen adjacency matrix, is the classic measurement indi-
cator of spatial autocorrelation:
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Xi  and Xj  represent the autocorrelation coefficient 
from counties i  and j , and n  represented the number of 
counties in Zhejiang Province. The spatial weight matrix 
wi,j  = 1 represents that county i  is adjacent to county j , 
and wi,j  = 0 represents non-contiguous [14]. The Moran’s 
I Index ranged from − 1 to 1. The closer Moran’s I is to 
1, the more likely it is to exhibit a strong positive spatial 
autocorrelation. Conversely, the closer Moran’s I is to 
-1, the more likely there is to be a strong negative spa-
tial autocorrelation. If Moran’s I is 0, there is no spatial 
heterogeneity.

Local spatial autocorrelation was further performed 
when the global Moran’s I was significant (P < 0.05), and it 
used local indications of spatial autocorrelation (LISA) to 
reflect spatial clusters [15]. In the LISA map, “High-Low” 
indicated that high incidence was surrounded by low 
incidence, “High-High” indicates hot-spots and “Low-
Low” indicates cold-spots [16]. The regional units for this 
study were 90 counties in Zhejiang Province.

Spatial-temporal scan statistic
The Kulldorff spatial-temporal scan statistic was used to 
analyze the PTB clusters in two dimensions of time and 
space, available in SatScan (version 10.1.1), free software 
for space-time data analysis. It imposes a cylinder around 
each point specifically, the base area of the cylinder var-
ies across the area being searched, while the height of the 
cylinder varies across each year of the study period [17]. 
Based on the Poisson distribution model, we used the 
Monte Carlo randomization method to calculate the log-
likelihood ratio (LLR) and relative risk (RR) of clusters 
using the actual and expected values to test statistically 
significant clustering under a 95% confidence interval 
(CI) and determine the effective clustering level [16]. The 
coordinates and radii of the clusters detected from the 
SatScan outputs were visualized using ArcGIS (version 
10.4).

Spatial durbin model
The Spatial Durbin Model (SDM), which is based on the 
Spatial Lag Model (SLM) and Spatial Error Model (SEM), 
has certain advantages. It can identify the spatial spillover 
effect of environmental variables in neighboring regions 
on notification rate of PTB [18]. First, the Lagrange mul-
tiplier test (LM test) was used to determine the choice of 
SEM. Secondly, the likelihood ratio (LR) test was used 
to determine whether SEM should be transformed into 
SDM. Finally, using the Horsman test, we chose fixed-
effects SDM [19]. Therefore, after adjusting for spa-
tial confounding factors, we used SDM to examine the 

http://data.cma.cn/site
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
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https://www.worldpop.org/
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association between notification rate of PTB among the 
elderly population and environment factors with Stata/SE 
15.0 software. The SDM has the following form:

	 Yit = ρWY it + αIn + βXit + θWXit + u

Where Y  denotes the notification rate of PTB in the 
elderly population, X  represents the independent vari-
able including environmental and socioeconomic fac-
tors, t  represents the year, i  represents the county unit. 
In is the column vector of the elements, and W  is the 
spatial weight matrix. The spatial weight matrix used 
in this study is the queen adjacency matrix based on 
the geographical adjacency relationship. The error term 
is represented by u  and ρ , α , β , θ  are the influencing 
coefficients, respectively.

Results
Description of general characteristics
From 2010 to 2021, 77,405 PTB cases among the elderly 
were notified in Zhejiang Province. A total of 45,492 
cases (58.8%) were laboratory-confirmed and 31,913 
(41.2%) were clinically diagnosed. The notification rate 
of PTB has dropped from 138.67 cases per 100,000 to 
81.22 per 100,000, showing an overall decreasing trend. 
Among the number of annual cases, the highest was in 
2019 (n = 7218) and the lowest in 2013 (n = 5857), with 
more male than female PTB cases each year. Males 
accounted for 73.3% (56,726 cases) (Fig.  2A). The num-
ber of monthly PTB cases showed a periodic trend, with 
more cases in the summer and autumn and fewer in win-
ter, especially in February (4,940 cases, 6.4%) (Fig.  2B). 
The top three cities in Zhejiang Province according to 
notification rate of PTB were Quzhou, Jinhua, and Hang-
zhou, with more than 100 cases per 100,000 people in at 
least 10 years. The city of Quzhou had the fastest decline 

Fig. 2  General epidemiological characteristics of PTB among the elderly in Zhejiang Province, 2010–2021. Notes: (A) Number of cases by sex each year; 
(B) The monthly fluctuation of PTB cases; (C) Changes in notification rate in 11 cities; (D) Proportion of pathogenic results per year
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in cases (Fig. 2C). Since 2018, the number of pathogen-
positive cases has significantly exceeded the number of 
pathogen-negative cases, especially in 2021, with 4924 
cases (70.8%) of pathogen-positive (Fig.  2D). Regard-
ing age distribution, patients aged 65–69 are the most 
(29.5%, 22,854 cases). In terms of diverse source, 78.9% 
(61,093 cases) came from referral and passive cases find-
ing and 84.9% (65,718 cases) of all patients were resi-
dents of local. In terms of occupation among PTB cases, 
the top three notable occupations were farming (73.4%, 
56,817 cases), retired workers (14.7%, 11,405 cases), and 
a combination of domestic, housework, and waiting for 
work (8%, 6,191 cases).

Environmental factors between 2010 and 2020 for 
annual PM2.5 concentrations showed an overall decreas-
ing trend. However, during this period, SO2 concentra-
tions and temperature showed an overall increasing trend 
while precipitation showed an increasing trend until 
2013 followed by a subsequent decreasing trend. Regard-
ing socioeconomic factors, the GDP per county was 
increased as population density increased.

Spatial autocorrelation analysis
A spatial autocorrelation analysis was conducted on the 
notification rate of PTB among the elderly in Zhejiang 
Province from 2010 to 2021. The results showed that 
the global Moran’s I statistic ranged from 0.522 to 0.695, 
with a higher statistical significance each year (P < 0.01) 
(Table 1). This indicates that the elderly PTB in Zhejiang 
Province was not randomized and showed significant 
spatial heterogeneity and positive spatial correlation at 
the county level. The map of the LISA cluster showed 
that the hotspot regions were mainly concentrated in 
the western part of Zhejiang Province, including parts of 
Quzhou, Jinhua, Hangzhou and Lishui. Although hotspot 
regions change dynamically annually, several counties 

(e.g., Jiande, Tonglu, Chun’an, Kecheng, Qujiang, Jiang-
shan, Changshan, and Kaihua) remained hotspots 
throughout the study period. In addition, during the 
study period, the coldspot regions changed dynamically, 
and their coverage was gradually expanded (Fig. 3).

Spatiotemporal scan statistic
The spatial-temporal cluster of notified PTB cases 
in Zhejiang Province was determined using a spatio-
temporal scanning method. During the 12-year study 
period, one most likely cluster and two secondary clus-
ters were identified. The most likely cluster was high-
risk regions at the specific period, in which the number 
of PTB cases observed was significantly higher than 
expected (LLR = 2744.1, RR = 2.4, P < 0.001). The highest 
risk regions located in the western part of the province, 
including five counties of Hangzhou (Lin’an, Fuyang, 
Jiande, Chun’an and Tonglu), six counties of Quzhou 
(Qujiang, Kecheng, Jiangshan, Changshan, Kaihua and 
Longyou), and four counties of Jinhua City (Jindong, 
Wucheng, Lanxi and Pujiang). The other two second-
ary clusters were protective clusters (RR < 1, P < 0.001) 
(Fig. 4).

Spatial durbin model analysis
All SDM models presented in this study used time-fixed 
effects. The results showed that annual mean precipita-
tion had significantly positive direct effects and spatial 
spillover effects on the notification rate of PTB among 
the elderly. Each unit increase in precipitation rised the 
notification rate in the local and neighboring areas by 
0.167% and 0.287%, respectively. The direct effects and 
spatial spillover effects of  annual mean temperature on 
notification rate were negative at the 5% level. The direct 
effect of annual mean relative humidity was significantly 
negative on the occurrence of PTB while the direct effect 
of PM2.5 was positive. A one-unit increase in PM2.5 led 
to a 0.396% increase in the notification rate. We found 
no direct effect of SO2 on the notification rate of PTB in 
this populationbut existing a significantly negative spatial 
spillover effect. Moreover, the percentage of greenspace 
did not affect the notification rate among the elderly; 
however, the SHAPE_AM was negatively associated with 
the rate in neighboring counties (Table 2).

Sensitive analysis
To assess the robustness of the SDM model, we per-
formed additional analyses using the Wald test, and the 
results showed that the model fitted well and had good 
robustness (Table 3).

Table 1  Spatial autocorrelation analysis of PTB notification rate 
among the elderly population in Zhejiang, 2010–2021
Year Moran’s I index Z-score P-

val-
ue

2010 0.525 8.246 0.001
2011 0.547 8.454 0.001
2012 0.527 8.277 0.001
2013 0.522 7.980 0.001
2014 0.591 8.698 0.001
2015 0.573 8.369 0.001
2016 0.572 7.278 0.001
2017 0.597 8.663 0.001
2018 0.624 9.138 0.001
2019 0.695 9.671 0.001
2020 0.578 8.435 0.001
2021 0.620 9.267 0.001
2010–2021 0.675 9.717 0.001
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Discussion
With the challenges of an aging population, the burden 
of PTB in China has persisted as a public health con-
cern [3]. This study described the general characteristics 
and spatiotemporal distribution, and explored the influ-
ence of environmental factors on the occurrence of PTB 
among the elderly. These findings may inform future tar-
geted interventions for PTB prevention and control for 
this high-risk population as well as promoting the alloca-
tion of health resources.

In this study, the notification rate of PTB among the 
elderly population was decreased, which was consistent 
with the general population in the province [15]. Rea-
sons for this decrease are likely multifactorial but may 
be mostly due to the implementation of DOTS and the 
National TB Control Program, which include strength-
ening government dominance, refining public health 
systems, improving case notification, and increasing the 
financial budget for PTB in Zhejiang province, China. In 
addition, this trend may be partly attributed to improve-
ments at the provincial-level in pathogenic diagnosis 
using new technology, such as use of GeneXpert MTB/
RIF, since 2017. This method allows detection of the 
MTB complex in less than two hours, promoting early 
identification and treatment of PTB cases and reduc-
ing the transmission of PTB among elderly people [20]. 
This also explains the successive increase in the propor-
tion of pathogen positivity since 2017 [21]. Furthermore, 
the coronavirus disease pandemic led to an excessive 

reduction in PTB detection and case notification at early 
stage, which may have also caused an underestimation of 
the notification rate in recent years [22].

Notified PTB cases among the elderly fluctuated, with 
the highest number in summer and autumn and lowest in 
February. In winter, factors such as vitamin D deficiency 
due to reduced sunlight, and indoor air pollution and 
crowd gathering due to coldness and Chinese New Year 
may increase the risk of MTB infection and transmis-
sion, respectively. Thus, given the potential incubation 
time between infection and PTB onset and the potential 
delayed time, the high infection rate in the former may 
cause a high activated risk among the elderly in the sum-
mer and autumn [23]. Therefore, elderly people should 
be aware of the risk of PTB infection in winter, and pub-
lic health sectors should strengthen health education to 
reduce clustering, strengthen nutrition, and shorten the 
potential delay from symptom occurrence to the behav-
ior of health-seeking.

The spatial autocorrelation analysis indicated that the 
epidemics were geographically dependent. The hot- and 
cold-spot regions identified in the local LISA maps were 
similar to the most likely risk cluster and the two second-
ary protection clusters identified in the spatial-temporal 
scan statistics. Studies has shown that older adults com-
monly have an estimated 90% PTB due to reactivation 
of LTBI acquired earlier in life rather than due to recent 
transmission [24]. Combined with the limited economic 
level in the western region of Zhejiang Province, we 

Fig. 3  Local spatial autocorrelation of notification rate of PTB among the elderly population in Zhejiang, 2010–2021
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speculated that related influencing factors such as mal-
nutrition should be explored, and possible interventions 
such as vitamin A and C supplementation and standard-
ized preventive treatment should be implemented among 
the latent infection population [25]. In addition, due to 
mass X-ray screening of people aged over 60 or 65 years, 
especially among the elderly with no symptoms, active 
cases were identified earlily and given standardized treat-
ment regimes. This also would help decrease local PTB 
epidemics in the general population.

In the Spatial Durbin Model, our study provided strong 
evidence that meteorological factors were vital factors 

affecting the occurrence of PTB among the elderly. There 
was a significant positive association between annual 
mean precipitation and PTB occurrence, which was con-
sistent with the results of Qin T et al. [26]. The spillover 
effect of precipitation was approximately twice as signifi-
cant as its direct effect, possibly due to Zhejiang Prov-
ince’s coastal location, where frequent air currents aid in 
the formation and dispersal of droplets and suspended 
particles related to TB [26]. These particles can spread 
in all directions with the airflow, significantly impacting 
neighboring areas. Additionally, TB can be transmitted 
through various mediums, including surface water and 

Fig. 4  Spatial–temporal clustering results of PTB among elderly people in Zhejiang Province, 2010–2021
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groundwater formed by precipitation [27]. It could cause 
a longer distance of dissemination in space, leading to the 
expansion of spatial spillover effects. Furthermore, areas 
with higher tuberculosis notification rate often exhibited 

spatial clustering, further intensifying the impact of pre-
cipitation-induced spatial spillover effects [28]. More-
over, the results indicated that the high annual mean 
temperature could reduce the tuberculosis occurrence 
in local region and had a significantly negative spillover 
effect. It was suggested that high temperatures may stim-
ulate the immune system’s response, leading to increased 
inflammation and production of immune effector mol-
ecules, thereby enhancing the ability to clear TB. The 
increase in local temperature reduces outdoor gatherings 
and activities among the elderly [29], potentially inhib-
iting transmission in the external environment. Hence, 
the increased local temperature exerts an indirect influ-
ence on surrounding areas through the spatial spillover 
effects. Also, our study found different effects between 
air pollutants and the risk of PTB occurrence among 
elderly. SO2 has no direct effect on the notification rate 
of PTB. Previous study found no significant correlation 
between SO2 and the risk of TB when long-term expo-
sure or exposure to abnormally high concentrations of 
pollutants was ignored [30, 31], which is consistent with 
our findings. However, SO2 has a notable negative spatial 
spillover effect on the health of the elderly. One potential 
explanation is that low-level SO2 exhibits antimicrobial 
properties by reacting with enzymes and proteins within 
the cell membranes of microorganisms, thereby disrupt-
ing their structure and function, leading to the inhibition 
of microbial growth and reproduction [32]. Therefore, 
considering the distance-decay-effect of SO2, short-term 
exposure to low-level SO2 exhibited an protective effect 
on the elderly in the surrounding region during the dif-
fusion process [33]. Exposure to PM2.5 may increase the 
risk of PTB among the elderly in the local population 
which is consistent with previous studies [34]. Interest-
ingly, there was no spatial spillover effect between PM2.5 
and the tuberculosis occurrence in our study. This may be 
attributed to the “Low-low” distribution of air pollutants 
in Zhejiang province, as well as the special geographi-
cal location and meteorological conditions near the sea, 
which help dissipate PM2.5 [35]. Additionally, greenspace 
can contribute to the dispersal of PM2.5 through deposi-
tion and filtration [36], thereby reducing the negative 
impact of PM2.5 on the health of the elderly in the sur-
rounding counties.

Despite its strengths, this study had some limita-
tions. First, like other surveillance data, some PTB cases 
among the elderly may not be notified owing to a delay 
in seeking health care or not visiting medical institutions. 

Table 2  Spatial Durbin Model results of environmental factors 
and the development of PTB
Dependent 
Variables

SDM

Notifica-
tion rate of 
PTB

(1) Main (2) Wx (3) Direct 
effect

(4) 
Indirect 
effect

(5) 
Total 
effect

An-
nual mean 
precipitation

0.149* 0.177* 0.167** 0.287*** 0.454***
(0.084) (0.094) (0.082) (0.102) (0.059)

An-
nual mean 
temperature

-0.327*** -0.160 -0.349*** -0.329*** -
0.678***

(0.092) (0.109) (0.084) (0.109) (0.067)
An-
nual mean 
relative 
humidity

-0.168** -0.037 -0.167** -0.114 -
0.281***

(0.082) (0.103) (0.075) (0.110) (0.085)

PM2.5 0.389*** 0.003 0.396*** 0.149 0.545***
(0.103) (0.128) (0.096) (0.139) (0.109)

SO2 0.068 -
0.382***

0.0445 -0.470*** -
0.426***

(0.098) (0.119) (0.086) (0.122) (0.085)
PLAND 0.065 0.035 0.072 0.070 0.142

(0.078) (0.177) (0.076) (0.222) (0.248)
SHAPE_AM -0.035 -

0.317***
-0.058 -0.427*** -

0.485***
(0.047) (0.089) (0.045) (0.106) (0.095)

GDP per 
county

-0.159*** -0.101 -0.171*** -0.185* -
0.356***

(0.051) (0.086) (0.044) (0.100) (0.097)
the 
density of 
population

-0.008 0.003 -0.004 -0.008 -0.012
(0.053) (0.151) (0.052) (0.192) (0.207)

ρ 0.289***
(0.035)

σ 0.444***
(0.020)

R2 0.311
SEM-LM 284.742***
SEM-Robust 
LM

1.706

LR test 
(SDM & 
SEM)

87.220***

SLM-LM 294.023***
SLM-Robust 
LM

10.987***

Observa-
tions

979

Hausman 
test

92.410***

Note: ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively. 
The standard errors are indicated in parentheses

Table 3  Robustness tests of the Spatial Durbin Model
Influence coefficient Coefficient of spatial spillover
chi2(9) = 29.83 chi2(9) = 32.86
Prob > chi2 = 0.0005*** Prob > chi2 = 0.0002***
Note: ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively
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Underestimation of the PTB notification rate in this spe-
cific population was unavoidable. Second, in 2019 and 
2021, the administrative regions of several counties in 
Zhejiang Province had changed, and we integrated adja-
cent regions as a whole, which might ignore the spatial-
temporal correlation within the integrated region. Third, 
the environmental factors obtained in this study were 
from the value of annual mean between 2010 and 2020, 
which may have affected the further analysis in 2021 and 
ignored the lag effect, leading to potential bias.

Conclusion
Targeted interventions among the elderly in Western 
Zhejiang may be more efficient than broad, province-
wide interventions. Decreasing environmental pollu-
tion levels, such as PM2.5, and enhancing the diversity of 
greenspace would be beneficial in controlling PTB occur-
rence while the low annual mean temperature and high 
annual mean precipitation in local and neighboring areas 
tend to have higher PTB onset among the elderly.
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