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Abstract 

Background  As a global public health problem, anemia affects more than 400 million women of reproductive age 
worldwide, mostly in Africa and India. In the DRC, the prevalence of anemia has decreased slightly from 52.9% in 2007, 
to 46.4% in 2012 and 42.4% in 2019. However, there is considerable regional variation in its distribution. The aim of this 
study is to determine the factors contributing to anemia in women of reproductive age and to explore its spatial 
distribution in the DRC.

Methods  Based on the Bayesian Multilevel Spatial Ordinal Logistic Regression Model, we used the 2013 Democratic 
Republic of Congo Demographic and Health Survey (DHS-DRC II) data to investigate individual and environmental 
characteristics contributing to the development of anemia in women of reproductive age and the mapping of ane‑
mia in terms of residual spatial effects.

Results  Age, pregnancy status, body mass index, education level, current breastfeeding, current marital status, con‑
traceptive and insecticide-treated net use, source of drinking water supply and toilet/latrine use including the prov‑
ince of residence were the factors contributing to anemia in women of reproductive age in DRC. With Global Moran’s 
I = -0.00279, p-value ≥ 0.05, the spatial distribution of anemia in women of reproductive age in DRC results from ran‑
dom spatial processes. Thus, the observed spatial pattern is completely random.

Conclusion  The Bayesian Multilevel Spatial Ordinal Logistic Regression statistical model is able to adjust for risk 
and spatial factors of anemia in women of reproductive age in DRC highlighting the combined role of individual 
and environmental factors in the development of anemia in DRC.
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Introduction
As a global public health problem, anemia impairs 
women’s health and well-being and increases the risk of 
adverse maternal and newborn outcomes in low- and 
middle-income countries affecting half a billion women 
of reproductive age worldwide. In 2011, 29% of non-preg-
nant women and 38% of pregnant women were anemic 
[1]. About 20% of maternal deaths are caused by anemia 
[2]. Pregnancy, intestinal infestation, low level of educa-
tion, use of an unimproved water source, low wealth index 
and underweight are listed as risk factors [3].

Anemia in women of reproductive age has conse-
quences such as premature delivery [4], miscarriage [5], 
low birth weight [6], stunting of the child’s growth [7], 
Impaired cognitive function [8] and increased suscepti-
bility to infection [4].

Africa and India have the highest rates of anemia, with 
nearly 50% of women affected, including 40% of maternal 
deaths [9]. In DRC, the prevalence of anemia in women 
has decreased slightly from 52.9% in 2007 to 46.4% in 
2012 and 42.4% in 2019 [10].

To reduce the burden of anemia, it is necessary to gen-
erate adequate evidence in terms of the role and con-
tribution of individual and household factors as well as 
the geographic risk profile of anemia [3]. Ordinal data 
such as altitude-adjusted hemoglobin levels are used 
when measurements are limited to categories [11]. How-
ever, the Multilevel Model describes observations with 
a nested nature: women of reproductive age are nested 
within households and communities including the envi-
ronment [12].

Based on Bayes’ theorem, Bayesian statistics ana-
lyzes data and estimating the observed and unobserved 
parameters of a statistical model with a joint probabil-
ity distribution, known as the "prior distribution" and 
the "data distribution" [13]. A typical Bayesian process 
involves capturing available knowledge about the statis-
tical model parameter via the prior distribution, usually 
before data collection, determining the likelihood func-
tion using information about the available parameters of 
the observed data, and combining both the prior distri-
bution and the likelihood function [14]. Bayesian analy-
sis answers research questions by expressing uncertainty 
about unknown parameters using probabilities. It is 
based on the fundamental assumption that not only the 
outcome of interest, but also all unknown parameters 
of a statistical model are essentially random and subject 
to prior beliefs [15]. Using Bayes’ theorem in the form 
of an a posteriori distribution, inferences are made to 
reflect updated knowledge and balance prior knowledge 
with observed data. Bayesian inferences are optimal 
when averaged over the joint probability distribution and 

inference for these quantities is based on the conditional 
distribution given the observed data [16].

Geographic differences in the causes of anemia are 
partially explained by the large-scale variability of envi-
ronmental factors, particularly nutritional and infectious 
causes. Environmental factors in anemia tend to show 
a high degree of spatial dependence, that is, geographic 
clustering [17]. The study of geographic heterogeneity in 
a health outcome benefits from the multilevel or spatial 
mixed model. In the multilevel model, geographic het-
erogeneity is modeled as a random effect [18]. Whereas 
in the spatial mixed model, geographic heterogeneity is 
assessed by specifying a spatial correlation structure for 
the individual residuals. A comparative study of a mul-
tilevel model and a spatial mixed model to investigate 
the effects of location on health outcomes showed lower 
deviance for the spatial mixed model than for the multi-
level model, and that Moran’s I statistic showed residual 
spatial autocorrelation not accounted for by the mul-
tilevel model [19]. Ignoring heterogeneity in statistical 
studies can lead to biased parameter estimates [20].

Many studies have explored the factors affecting ane-
mia in women of reproductive age using DHS-DRC I and 
II data. Given the diversity of the Congolese population 
in terms of culture, ethnicity, and geographic location, 
distinct characteristics such as dietary habits, lifestyle, 
and socioeconomic status related to geographic regions 
are unique and pose the risk of geographic heterogene-
ity in the causes of anemia in women of reproductive age. 
Studies of geographic heterogeneity in modeling ane-
mia with the flexible ordinal approach are also very few 
worldwide and nonexistent in DRC.

Our study aims to specifically answer two questions:

–	 What is the likelihood that a woman of reproductive 
age living in the DRC will develop anemia?

–	 What is the likelihood that one province in the DRC 
is more likely to have significantly more cases of ane-
mia in women of reproductive age than another?

The main objective of this study is to determine the 
factors contributing to anemia in women of reproduc-
tive age and to explore the spatial distribution of this 
condition.

The contribution of this study is the application of the 
multilevel and spatial Bayesian ordinal logistic regres-
sion model. The study has the advantage of identifying 
and mapping anemia in women of reproductive age in 
DRC in terms of residual spatial effects. This study will 
have important implications for targeting policy as well 
as for finding omitted variables that could explain resid-
ual spatial patterns. Exploring patterns of factors affect-
ing anemia by geographic region is therefore essential to 
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inform policy for targeted anemia control and prevention 
programs.

Methods
Study area
Our study focused on the DRC, Africa’s second largest 
country after Algeria. The DRC stretches from the Atlan-
tic Ocean to the eastern plateau, covering most of the 
Congo River basin. The country shares borders with nine 
neighboring countries, including the enclave of Cabinda. 
Located in Central Africa, the DRC is crossed by the 
equator and stretches across the Congo Basin.

Study data source and sampling strategy
Our study is drawn from the 2013–2014 Demographic 
and Health Survey (DHS-DRC II) data, which applied 
a three-stage stratified cluster sampling technique. 540 
clusters were drawn as Primary Sampling Units repre-
senting neighborhoods in urban areas or villages in rural 
areas. While 18,360 households, including 5,474 in urban 
areas in 161 clusters and 12,886 in rural areas in 379 clus-
ters, were drawn as Secondary Sample Units. Thus, all 
women aged 15–49 usually living in the selected house-
holds, or present on the night before the survey, were eli-
gible for the survey. In addition, in a subsample of every 
other household, a hemoglobin test was administered 
to estimate the prevalence of anemia among all women 
identified in the households [10].

The strategy of collection by cascades was envisaged by 
survey pools whose number of clusters varied from 10 in 
the Mweka pool to 20 in the Lubumbashi pool, with the 
exception of 36 clusters carried out in the pool in the city 
of Kinshasa Province. Thus, 34 pools were identified [10].

Data collection was done through a questionnaire 
whose content was developed and translated into the 
four main national languages: Kikongo, Lingala, Swahili 
and Tshiluba. In the 18,171 households surveyed, 19,097 
women aged 15–49 were eligible for the individual sur-
vey, and 18,827 of them were successfully interviewed, 
representing a response rate of 99%, slightly higher in 
rural areas than in urban areas (99% versus 98%) [10]. 
Our analysis was based on a sub-sample of women 
(N = 9280) that were tested for anemia.

Study variables
Outcome variable
Blood samples for the anemia test collected from women 
aged 15–49 years who voluntarily consented to be tested 
were taken from a drop of blood taken by finger prick 
and collected in a microcuvette. Hemoglobin analysis 
was performed on site using a battery-operated portable 
HemoCue analyzer. The complete sampling procedure 

and anemia test data are available in the full DHS-DRC 
II report [10].

According to WHO, for pregnant and non-preg-
nant women aged 15–49  years, any form of anemia 
was defined as a hemoglobin concentration < 120  g/L 
and < 110  g/L, respectively. The four levels of altitude-
adjusted hemoglobin based on the WHO hemoglobin 
thresholds for diagnosis of anemia were categorized into 
i) No anemia, i.e., 120 g/L and above, ii) Mild anemia, 110 
to 119 g/L), iii) Moderate anemia, 80 to 109 g/L, and iv) 
Severe anemia, < 80 g/L [21].

Predictive variables
Predictive variables for anemia were selected based on 
the literature review. In 2017, WHO described the deter-
minants of anemia, including biological, infection and 
inflammation-related determinants, genetic disorders of 
hemoglobin, and social, behavioral, and environmental 
determinants [22]. Predictors of anemia include factors 
at the individual, household and community levels.

At the individual level, eight factors were identi-
fied. These were age, pregnancy status, nutritional sta-
tus, breastfeeding status, level of education, occupation 
and use of contraceptives and insecticide-treated nets. 
Household-level factors were household economic well-
being index, access to drinking water and household 
toilets. Community factors were place of residence and 
province.

Data analysis
Data management and processing
Data processing and analysis was performed using Stata/
BE 17.0 (StataCorp). In order to obtain reliable statisti-
cal estimates, complex survey data were weighted using 
sample weight, primary sampling unit, and strata prior to 
any statistical analysis. Survey weights were used in both 
univariate and bivariate analysis to ensure representative-
ness and to account for nonresponse. Due to practical 
difficulty, weights were not used in the multilevel Bayes-
ian modeling [23].

Weighted frequencies, weighted percentage, mean, 
standard deviation, and standard deviation of the mean, 
or standard error, were used for descriptive analysis. 
Pearson’s χ2 test for categorical variables was used. 
Bayesian Multilevel Ordinal Logistic Regression analysis 
was performed to estimate the posterior Odds ratio and 
associated 95% credible intervals.

Common techniques for handling missing data
We used leastwise deletion of observations, a Missing 
Completely At Random (MCAR) mechanism, which is 
one of three types developed to handle missing values. 
Thus, we removed all incomplete observations from the 
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analysis. The disadvantage of this method is the reduc-
tion of the sample size [24]. Thus, of the 9,461 initial 
observations, 9,280 remained which was the subject of 
our study that is 98.08%.

Bayesian multilevel ordinal logistic regression
Referring to the DHS data set based on multi-stage strati-
fied cluster sampling, the structure of the data in the 
population was hierarchical. The grouping of data points 
into geographical regions provides a natural two-level 
hierarchical structure of the data, i.e. women are nested 
within provinces [25]. In this analysis, we proposed the 
Multilevel mixed-effects ordered logistic regression 
Model to fit the woman’s two levels of anemia by one 
or more independent variables, with random intercepts 
by id, using default normal priors, flat priors for the cut 
points, and default inverse gamma priors for the vari-
ance of the random intercepts. Next, we displayed the 
posterior odds ratio and associated 95% credible intervals 
[26]. This Model contains both fixed effects and random 
effects at different levels and analyzes the effects of the 
woman’s individual characteristics, such as age and body 
mass index, and the effects of the characteristics of the 
environment experienced by the woman, such as the 
household’s economic well-being index and the woman’s 
household’s access to drinking water [27].

We used the "Bayesian equal tail CrI" method that 
returns threshold values of the posterior distribution to 
represent a credibility interval with the 95% probability of 
interest of the mass of the distribution around the center 
of the distribution [28].

Considering Two-Level Model, where for a series of M 
independent clusters, and subject to a set of fixed effects 
xij, a set of cutpoints k, and a set of random effects uj, 
the cumulative probability that the response was in a cat-
egory greater than k was [29]:

for j = 1,…, M clusters, with cluster j consisting of i = 1,…, 
nj observations. The cutpoints k are labeled k1, k2,…, kk-1, 
where k is the number of possible outcomes. H(.) is the 
logistic cumulative distribution function that represents 
cumulative probability.

The 1 × p row vector xij are the covariates for the fixed 
effects. xij does not contain a constant term because its 
effect is absorbed into the cutpoints. For notational con-
venience, we suppress the dependence of yij on xij.

The 1 × q vector zij are the covariates corresponding 
to the random effects and can be used to represent both 
random intercepts and random coefficients. The random 
effects uj are M realizations from a multivariate normal 
distribution with mean 0 and q x q variance matrix. They 

(1)

are not directly estimated as model parameters but are 
instead summarized according to the unique elements of 
Σ, known as variance components.

From [1], we can derive the probability of observing 
outcome k as follows:

where k0 was taken as -∞ and kK was taken as + ∞.
From this, the model can also be written in terms 

of latent linear response, where the observed ordinal 
responses yij are generated from the latent continuous 
responses, such that:

And

The errors ϵit are distributed as logistic with mean 0 
and variance π2/3 and are independent of uj.

We also assumed informative precedence, i.e. Nor-
mal(0,10); μprovince is the province-level effect, which 
follows a normal distribution with a mean of zero. 
The model was fitted with Stata 17.0 BE-Basic Edition 
software for the "Bayesian multilevel ordered logistic 
regression" command using "Random-walk Metropolis–
Hastings sampling" for MCMC iterations = 12,500 and 
Burn-in = 2,500.

Analysis of spatial autocorrelation
Spatial autocorrelation analysis determines the system-
atic spatial variation in a mapped variable. When adjacent 
observations have similar data values, the map shows 
positive spatial autocorrelation. However, when these 
adjacent observations tend to have highly contrasting 
values, the map shows negative spatial autocorrelation 
instead [30]. Several statistical techniques exist to detect 
the presence of these values. Currently, spatial autocor-
relation is tested using the global Moran index (Moran’s 
I). The value of Moran’s I is between -1 and 1. A value 
close to 1 indicates strong positive spatial autocorrela-
tion (clustered anemia), while a value close to -1 indicates 
strong negative spatial autocorrelation (scattered ane-
mia). If Moran’s I is close to 0, it indicates that there is no 
spatial autocorrelation. A statistically significant Moran’s 
I (p < 0.05) leads to the rejection of the null hypothesis, 

yij =

Nonanemicifhemoglobinlevel > 11.9g/dl

Mildanemicifhemoglobinlevel10.0to11.9g/dl

Moderateanemicifhemoglobinlevel7.0to9.9g/dl

Severeanemicifhemoglobinlevel < 7.0g/dl
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as the anemia was randomly distributed, and shows the 
presence of spatial autocorrelation [31]. Hotspot analysis 
was performed using the Gettis-OrdGi* statistic.

Results
The exploratory results for the sampled population presented 
in Table 1 estimate that 38.45% of DRC women of reproduc-
tive age in the sample are anemic (weighted sample).

The results in Table  2 indicate that pregnancy status, 
body mass index, education level, age at first birth, cur-
rent breastfeeding and contraceptive use are potential 
factors associated with anemia, although these results do 
not control for the impact of other factors.

Referring to Table  3, Multilevel Bayesian Ordinal 
Logistic Regression analysis indicates that age, pregnancy 
status, Body Mass Index, education level, current breast-
feeding, current marital status, use of contraceptives and 
insecticide-treated nets, source of drinking water and 
use of toilets or latrines are significantly associated with 
anemia in women of reproductive age in the Democratic 
Republic of Congo.

Anemia in women of childbearing age evolves in an 
inverted "U" shape with age. For a one-unit increase in 
age, women aged 20–29 have a 9% increased risk of 
developing anemia compared with younger women 
(OR = 1.09; CrI95%: 1.01–1.17), while women aged 40 
and over have an 11% increased risk of developing ane-
mia compared with younger women (OR = 1.11; CrI95%: 
1.01–1.19), given that other variables are held constant in 
the model.

Pregnancy status determines anemia risk in women 
of childbearing age. Pregnant women have a 29% lower 
risk of developing anemia than non-pregnant women 
(OR = 0.70; CrI95%: 0.64–0.76), given that other variables 
are held constant in the model.

The risk of anemia increases with body mass index 
in women of childbearing age. For a one-unit increase 
in body mass index, overweight and obese women are 
respectively 39% and 13% more likely to develop ane-
mia than those of normal weight (OR = 1.39; CrI95%: 
1.26–1.51 and OR = 1.12; CrI95%: 1.002–1.24).

The risk of anemia in women of childbearing age 
decreases with increasing level of education. For a one-
unit increase in education level, women with second-
ary/university education have a 9% lower risk of anemia 
than women with no education (OR = 0.90; CrI95%: 
0.83–0.98).

Continuous breastfeeding determines the risk of 
anemia in women of childbearing age. Breastfeeding 
women have a 9% increased risk of developing anemia 
compared to non-breastfeeding women (OR = 1.09; 
CrI95%: 1.03–1.15).

The use of contraceptive methods determines a 
woman’s risk of anemia during her reproductive years. 
Women using contraceptive methods to space births 
have a 25% lower risk of developing anemia than those 
not using them (OR = 0.75; CrI95%: 0.69–0.82).

Insecticide-treated net use determines the risk of 
anemia in women of childbearing age. Unexpectedly, 
women sleeping under insecticide-treated mosquito 
nets have a 7% increased risk of developing anemia 
compared to those not using them (OR = 1.07; CrI95%: 
1.02–1.13).

Household wealth influences anemia in women. 
Women from middle-income households have a 7% 
higher risk of developing anemia than those from poor 
households (OR = 1.07; CrI95%: 1.005–1.12).

Sources of drinking water had significant impact on 
women’s anemic status. Unexpectedly, women whose 
drinking water came from improved sources were 15% 
more likely to develop anemia than those whose water 
came from unimproved sources (OR = 1.15; CrI95%: 
1.06–1.24).

Sanitation facilities have a negative impact on the ane-
mic status of women of childbearing age. Women using 
improved latrines have a 6% lower risk of developing ane-
mia than women using unimproved latrines (OR = 0.93; 
CrI95%: 0.87–0.99).

Referring to Table 4, the spatial distribution of anemia 
in women of reproductive age in the DRC was identified 
as dispersed (Global Moran’s I = -0.00279, p-value ≥ 0.05). 
Not being able to reject the null hypothesis, it is entirely 
possible that the spatial distribution of attribute values 
of the features is the result of random spatial processes. 
Thus, the observed spatial pattern of values could well be 
one of countless possible scenarios of a completely ran-
dom structure.

Based on Gettis-OrdGi statistical analysis, this study 
identified 173 hot spots, or clusters of anemia, and 16 
cold spots, no clustering of anemia, of women of repro-
ductive age in DRC. These identifications are shown in 
dark blue to white in Fig. 1 below.

Table 1  Description and categorization of the dependent 
variable

Anemia Weighted number Weighted 
percentage

Severe anemia 38 0.34

Moderate anemia 884 8.53

Mild anemia 2872 29.58

No anemia 5486 61.55
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Table 2  Bivariate analysis of factors associated with anemia in women of reproductive age (weighted)

Predictors Anemia No anemia Total

Severe Nw(w%) Moderate Nw(w%) Mild Nw(w%) Nw(w%) Nw(w%)

Age (years) Chi2(9) = 6.0977 P = 0.7295

  < 20 3 (8.41) 50 (6.74) 178 (6.23) 316 (5.17) 547 (5.63)

  20–29 20 (4.895) 448 (54.21) 1,450 (49.26) 2,787 (50.83) 4,705 (50.65)

  30–39 9 (26.91) 315 (31.50) 988 (36.25) 1,869 (34.85) 3,181 (34.95)

  40–49 6 (15.73) 71 (7.55) 256 (8.26) 514 (9.15) 847 (8.77)

Pregnancy Chi2(3) = 47.0253 P < 0.001

  No
  Yes

24 (57.61)
14 (42.39)

578 (64.57)
306 (35.43)

2,572 (89.72) 300 (10.28) 4,729 (86.66) 757 (13.34) 7,903 (85.58) 1,377 (14.42)

Body mass index Chi2(9) = 25.1563 P = 0.0033

  Normal weight
  Underweight
  Overweight
  Obese

29 (82.37)
8 (14.18)
1 (3.45)
0 (0.00)

677 (75.14)
106 (10.95)
87 (12.33)
14 (1.59)

2,161 (72.88)
382 (14.38)
261 (9.87)
68 (2.87)

3,954 (71.34)
690 (11.17)
712 (14.35)
130 (3.15)

6,821 (72.16)
1,186 (12.11)
1,061 (12.81)
212 (2.92)

Level of education Chi2(9) = 21.6940 P = 0.0111

  No education 6 (13.97) 173 (15.26) 583 (17.10) 1,235 (21.30) 1,997 (19.52)

  Primary 17 (43.65) 428 (46.18) 1,298 (43.72) 2,460 (44.13) 4,203 (44.18)

  Secondary 15 (42.38) 274 (36.79) 977 (38.54) 1,745 (33.68) 3,011 (35.41)

  Higher 0 (0.00) 9 (1.77) 14 (0.64) 46 (0.90) 69 (0.89)

Currently breastfeeding Chi2(3) = 17.7695 P < 0.001

  Non-breastfeeding 
women

15 (49.00) 390 (43.34) 888 (30.47) 1,698 (30.11) 2,991 (31.41)

  Breastfeeding women 23 (51.00) 494 (56.66) 1984 (69.53) 3,788 (69.89) 6,289 (68.59)

Current marital status Chi2(6) = 11.2088 P = 0.0846

  Never in a union 2 (4.08) 29 (2.54) 138 (5.38) 288 (3.99) 397 (4.28)

  Married/Living 
with a partner

30 (80.44) 802 (91.80) 2,475 (85.39) 4,776 (87.50) 8,083 (87.22)

  Widowed/ Divorced/
Separated

6 (15.48) 53 (5.67) 259 (9.23) 482 (8.50) 800 (8.50)

Recent work Chi2(3) = 0.8029 P = 0.8487

  No recent work 6 (15.87) 218 (25.38) 662 (24.12) 1,308 (24.74) 2,194 (24.58)

  Working 32 (84.13) 666 (74.62) 2,210 (75.88) 4,178 (75.26) 7,086 (75.42)

Contraceptive use Chi2(3) = 10.5295 P = 0.0153

  Not a user 37 (95.15) 774 (85.44) 2,369 (79.85) 4,465 (79.54) 7,645 (80.19)

  User 1 (4.85) 110 (14.56) 503 (20.15) 1,021 (20.46) 1,635 (19.81)

ITN* user Chi2(3) = 5.3733 P = 0.1480

  Does not sleep on ITN 19 (44.23) 331 (38.40) 1,113 (37.50) 1,931 (33.23) 3,394 (34.97)

  Sleeps on ITN 19 (55.77) 553 (61.60) 1,759 (62.50) 3,555 (66.77) 5,886 (65.03)

Household Well-Being 
Index

Chi2(6) = 9.5767 P = 0.1464

  Poor Household
  Average household
  Rich household

25 (52.81)
2 (4.68)
11 (42.51)

476 (46.87)
170 (17.41)
238 (35.72)

1,422 (45.64)
583 (20.52)
867 (33.84)

2,750 (45.82)
1,178 (21.45) 1,558 (32.73)

4,673 (45.88)
1,933 (20.77) 2,674 (33.35)

Source of drinking water Chi2(3) = 1.3976 P = 0.7062

  Unimproved source
  Improved source

28 (62.67)
10 (37.33)

588 (56.73)
296 (43.27)

1,791 (56.44)
1,081 (43.56)

3,357 (53.66)
2,129 (46.34)

5,764 (54.77)
3,516 (45.23)

Types of toilets/latrines Chi2(3) = 1.3648 P = 0.7139

  Unimproved toilets
  Improved toilets

27 (70.01)
11 (29.99)

592 (59.45)
292 (40.55)

1,822 (60.87)
1,050 (39.13)

3,550 (62.79)
1,956 (37.21)

5,971 (61.96)
3,309 (38.04)

Natural environment Chi2(3) = 3,7832 P = 0.2872

  Urban environment
  Rural environment

12 (37.20)
26 (62.80)

247 (34.57)
637 (65.43)

837 (30.04) 2,035 (69.96) 1538 (28.09) 3948 (71.91) 2,634 (29.25)
6,646 (70.75)

Nw Weighted number, %w Weighted percentage, ITN insecticide-treated nets

ITN* insecticide-treated nets



Page 7 of 11Soda et al. BMC Public Health          (2024) 24:202 	

Discussion
The overall prevalence of anemia in this study is 38.45%, 
a very high level compared to the global prevalence of 
29.9%. The prevalence in our study is variable from that 
reported by WHO in 2019. This suggests, according to 
the WHO, that anemia in women of reproductive age in 
the DRC is a moderate public health problem. In 2019, 

WHO reported a prevalence of 42.4% for the DRC, which 
was comparable to some neighboring countries including 
Burundi with 38.5%, Rwanda with 17.2%, South Sudan  
with 35.6%, the Central African Republic with 46.8%, 
Tanzania with 38.9%, Uganda with 32.8%, Congo- 
Brazzaville with 48.8%, Angola with 44.5% and Zambia 
with 31.5% [22].

Table 3  Multilevel Bayesian Ordinal Logistic Regression Model

Posterior OR*: Odd ratio. SD* standard deviation, Ref* Reference, ITN* insecticide-treated nets

Determinants Posterior OR* SD* [95% credible interval]

Age (years) Ref*: < 20

  20–29 1.0863 0.0408 [1.0114; 1.1749]

  30–39 1.0057 0.0466 [0.9145; 1.1004]

  40–49 1.1055 0.0457 [1.0191; 1.1970]

Pregnancy Ref *: No

  Yes 0.7070 0.0301 [0.6406; 0.7650]

Body mass index Ref*: Normal weight

  Underweight 1.0474 0.0394 [0.9722; 1.1260]

  Overweight 1.3926 0.0641 [1.2640; 1.5185]

  Obese 1.1256 0.0615 [1.0029; 1.2487]

Level of education Ref*: No education

  Primary 0.9356 0.0351 [0.8708; 1.0093]

  Secondary/Higher 0.9071 0.0372 [0.8366; 0.9824]

Currently breastfeeding Ref*: No-breastfeeding

  Breastfeeding women 1.0918 0.0305 [1.0332; 1.1525]

Current marital status Ref*: Never in a union

  Married/Living with a partner 1.0367 0.0381 [0.9677; 1.1128]

  Widowed/ Divorced/Separated 1.0883 0.0641 [0.9623; 1.2293]

Contraceptive use Ref*: Not user

  User 0.7526 0.0317 [0.6991; 0.8209]

ITN* user Ref*: Doesn’t sleeps on ITN

  Sleeps on ITN 1.0715 0.0052 [1.0217; 1.1345]

Household Well-Being Index Ref*: Poor Household

  Average household 1.0704 0.0320 [1.0052; 1.1260]

  Rich household 0.9672 0.0440 [0.8822; 1.0597]

Source of drinking water Ref*: Unimproved source

  Improved source 1.1512 0.0436 [1.0680; 1.2400]

Types of toilets/latrines Ref*: Unimproved toilets

  Improved toilets 0.9364 0.0298 [0.8769; 0.9946]

Natural environment Ref*: Urban environment

  Rural environment 1.0217 0.0434 [0.9416; 1.1065]

  Province 0.1365 0.0447 [0.0719; 0.2443]

Table 4  Moran’s I statistics and Getis-Ord G*i(d) Statistics

Variable Moran’s I E(I) SE(I) Z(I) p-value

Anemia -0,00279 -0,00532 0,01111 0,22,762 0,81,994

z < = -2.58 -2.58 < z < = -1.96 -1.96 < z < 1.96 1.96 < = z < 2.58 2.58 < = z
0 16 173 0 0



Page 8 of 11Soda et al. BMC Public Health          (2024) 24:202 

In our study, anemia in women of reproductive age 
evolves in an approximate inverse "U" shape with respect 
to age. Women aged 20–29 years and those aged 40 years 
and over have a higher risk of developing anemia than 
their counterparts under 20 years. These results corrobo-
rate those of Teshale A.B., et al. [4], Sunuwar D.R., et al. 
[32] and Messina JP et al. [33]. On the other hand, Kibret 
K.T. et  al. found that women aged 40–49  years are less 
likely to be anemic than those aged 15–19 years [34].

Wouters H. et al. found that anemia is associated with 
decreased survival and health-related quality of life 
(HRQoL), particularly that related to physical health, in 
people over the age of 60 [35]. As a result, people with 
anemia are more likely to be frail, fatigued, cognitively 
impaired and have higher overall mortality than their 
non-anemic counterparts [36]. For their part, Steinmeyer 
Z. et al. found that low hemoglobin levels put elderly peo-
ple at risk for poor oxygen delivery, exhaustion, fatigue 
and loss of muscle strength [37].

Pregnancy status determines a woman’s risk of devel-
oping anemia during her reproductive years. Pregnant 
women have a lower risk of developing anemia than 
their non-pregnant counterparts. These results corrobo-
rate those of Teshale A.B., et al. [4], Gautam S., et al. [5], 
Sosa-Moreno A., et al. [33], Sunuwar D.R., et al. [32] and 
Messina JP et al. [38].

Maternal anemia is an important prenatal problem and 
should be investigated in pregnant women and candi-
dates for pregnancy [39]. In 14 of 24 countries, including 
DRC, 40% or more of non-pregnant women were anemic 
[40]. The WHO estimates that 56% of all pregnant women 
in developing countries are anemic. In South Asia, the 
prevalence of anemia in pregnancy is about 75%, while in 
North America and Europe it is about 17%. In addition, 

5% of pregnant women suffer from severe anemia in the 
most affected regions of the world [41]. Tirore L.L., et al. 
[42] believe that the higher risk of anemia in pregnant 
women may be due to the increased risk of infections and 
obstetric complications during pregnancy, which lead to 
blood loss and undernutrition.

The risk of anemia in women increases with increas-
ing body mass index. Overweight and obese women have 
a higher risk of developing anemia than their normal 
weight counterparts, respectively. This is contrary to the 
results of the Quin Y., et al. [43] study which found that 
both overweight/obesity and central obesity are inversely 
associated with anemia.

Serum iron concentrations are lower with higher body 
mass index, particularly in women. The iron deficiency 
(DI) may result from the increased demand for iron in 
obese individuals due to their larger blood volume and 
consumption of energy-rich, nutrient-poor foods [9, 44].

Women’s risk of anemia increases with increasing edu-
cation level. Women with high school/university educa-
tion have a lower risk of developing anemia than their 
counterparts without education. This contradicts the 
findings of Owais A., et al. [2] and Teshale A.B., et al. [4] 
who found that education level decreases with increasing 
risk of anemia.

Kumar P., et  al. [45] believe that if both mother and 
father are educated, the probability of anemia in a fam-
ily is low. But, if either the mother or the father is edu-
cated, this probability becomes low. UNESCO states that 
education alone is a health intervention. Educated peo-
ple are better informed about specific diseases and act to 
prevent them at the first sign of illness. They use health 
services more effectively, feel more capable of achiev-
ing goals, and are more confident in their ability to make 
necessary lifestyle changes [46].

Education enables individuals, especially women, 
to live and aspire to healthy, meaningful, creative, and 
resilient lives. It strengthens their voice in community, 
national and global affairs. It opens up new work oppor-
tunities and sources of social mobility for them [47].

Ongoing breastfeeding determines the risk of anemia in 
women of reproductive age. Breastfeeding women have a 
higher risk of developing anemia compared to their non-
breastfeeding counterparts. The results of this study cor-
roborate those of Ali SA et al. [48], Gautam S [5], Min H, 
Kim H, Jeong H–S Sunuwar D.R. et al. [49], Nankinga O., 
and Aguta D. [50], and Habyarimana F., Zewotir T. and 
Ramroop S [51].

Anemia in the breastfeeding woman is due to inad-
equate vitamin intake. The "priority" nutrients for breast-
feeding women are thiamine, riboflavin, vitamins B-6 and 
B-12, vitamin A and iodine [52, 53]. Kaliwile C., et al. [54] 
thought that vitamin intakes of rural Zambian women 

3.730731

3.099492

Fig. 1  Clusters of anemia in women of reproductive age in DRC. 
Legend: From severe anemia (dark blue) to no anemia (white)
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were inadequate. Calcium intake was higher in lactating 
women than in non-lactating women.

The use of contraceptive methods determines a wom-
an’s risk of developing anemia during her reproductive 
years. Women who use contraceptive methods to space 
births have a lower risk of developing anemia than their 
counterparts who do not use them. The results of this 
study corroborate those of Owais A., et  al. [2], Teshale 
A.B., et al. [4], Gautam S., et al. [5], Sosa-Moreno A., et al. 
[33], Sunuwar D.R., et al. [32] and Messina JP et al. [38].

Hormonal contraceptive use is associated with a lower 
risk of anemia [2]. Teshale A.B., et al. [4] state that the use 
of modern contraceptive methods was associated with a 
29% lower risk of anemia than women who did not use 
modern contraceptive methods. Being currently preg-
nant was associated with an 11% higher prevalence of 
anemia than non-pregnant women.

The use of insecticide-treated nets determines the risk 
of anemia in women of reproductive age. Women who 
sleep under insecticide-treated nets are more likely to 
develop anemia than their counterparts who do not use 
them. This is more relevant to the prevention of malaria 
in pregnant women [55].

ITNs have advantages for primigravida when used 
alone [56]. The main benefit of ITNs in women protected 
by IPTp-SP occurs after birth, through the protection of 
infants from malaria, as they usually share the sleeping 
space with the mother during the first months or years 
[57]. Esienumoh E., Mboho M., and Ndiok A. [58], state 
that, properly used, ITNs are an essential component in 
the prevention of malaria and its complications during 
pregnancy. Apart from its discomfort due to heat, odor, 
and difficulty in hanging, a mosquito net offers protec-
tion against mosquitoes and other insects, and thus 
against diseases such as malaria. With about 40% effi-
ciency, the net protects the people sleeping under it and 
simultaneously kills the mosquitoes that come in contact 
with the net [40].

The consistent reduction observed in miscarriage 
and stillbirth rates suggests that the attributable effect 
of malaria on fetal loss may be underestimated in 
Africa, where malaria is endemic and most women 
remain asymptomatic when infected with P. falciparum. 
Despite the reduction in malaria infections, no overall 
effect on mean hemoglobin has been demonstrated, 
and data on maternal anemia are inconsistent [57]. For 
Inungu J.N., et  al., although mass distribution of ITNs 
contributed to a high level of knowledge about malaria 
and the rapid achievement of high coverage rates, 
ITN use among pregnant women and children under 
five remained low [59]. Gamble C., et al. [57] estimate 
that women with low gravidity for IBD gave birth 
to fewer low birth weight babies and were less likely 

to experience fetal loss, i.e. miscarriage or stillbirth. 
Therefore, factors associated with ITN use need to be 
considered when designing evidence-based behavior 
change interventions to improve ITN use [58].

Household wealth affects women’s anemia. Women 
from middle-income households are more likely to 
develop anemia than their counterparts from poor 
households. The results of this research contradict 
those of Teshale A.B., et  al. [4], Kinyoki D., et  al. [60] 
and Habyarimana F., Zewotir T., and Ramroop S. [51], 
who found that women in the lower category of the 
household wealth index are more anemic than those in 
the middle and upper categories of the wealth index. 
On the other hand, Kumar P., et  al. [45] estimate that 
families from wealthy households were less likely to 
suffer from anemia than families from poor households.

An individual in a poor household cannot afford to 
pay for goods that would improve his or her health—
better fuel, more nutritious food, and visits to the doc-
tor—and that would therefore improve his or her ability 
to work. Thus, a vicious cycle where, because house-
hold members are both financially disadvantaged and 
in poor health, the household remains both in poverty 
and in poor health. In the economics literature, this 
phenomenon is referred to as the "poverty trap." [61].

Drinking water sources do not significantly affect 
women’s anemia status. Women who get their drink-
ing water from improved sources have a higher risk of 
developing anemia compared to their counterparts who 
get it from unimproved sources. This contrasts with 
the results of Gautam S., et  al. [5] and Kothari M.T., 
et  al. [62] who find that a strong relationship between 
sanitation facilities and anemia is also observed in 
most countries. Lack of access to safe water at the site 
increases the risk of anemia prevalence in children and 
women.

Sanitation facilities have a negative impact on wom-
en’s anemia status. Women using improved latrines are 
less likely to develop anemia than their counterparts 
using unimproved latrines. The results of this study cor-
roborate those of Teshale A.B., et al. [4], who found that 
women from households with unimproved toilets and 
unimproved water sources had a higher prevalence of 
anemia than their counterparts.

Universal, affordable, and sustainable access to WASH 
practices (safe water, adequate sanitation, and hygiene 
education) can reduce disease and death and improve 
health outcomes at the population level [22].

Conclusion
The innovation of our study is the inclusion of the mul-
tilevel and spatial nature of multifactorial risk factors of 
anemia among women of reproductive health in DRC 
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using robust spatial Bayesian ordinal logistic regression 
statistical model that is able to disentangle individual 
level factors such as age, pregnancy status, body mass 
index, education level, current breastfeeding, current 
marital status, use of contraceptives and insecticide-
treated mosquito nets, source of drinking water, use of 
toilets or latrines from community and environmental 
factors such province of residence as risk factors for ane-
mia in women of reproductive age in DRC.
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