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Abstract
Objective Previous studies proved the effect of long-term exposure to air pollution or physical activity (PA) on the 
risk of systemic inflammation-induced multimorbidity (SIIM), while the evidence regarding their joint effects was rare, 
especially in low- and middle-income countries. Therefore, we aimed to examine the extent of interaction or joint 
relations of PA and air pollution with SIIM.

Methods This study included 72,172 participants from China Multi-Ethnic Cohort.The average concentrations of 
ambient particulate matter pollutants (PM1, PM2.5, and PM10) were estimated using satellite-based random forest 
models. Self-reported information on a range of physical activities related to occupation, housework, commuting, 
and leisure activities was collected by an interviewer-administered questionnaire. A total of 11 chronic inflammatory 
systemic diseases were assessed based on self-reported lifetime diagnosis or medical examinations. SIIM was defined 
as having ≥ 2 chronic diseases related to systemic inflammation. Logistic regression models were used to assess the 
complex associations of air pollution particulate matter and PA with SIIM.
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Introduction
Chronic inflammatory systemic diseases (CIDs), includ-
ing cardiovascular disease, diabetes, rheumatoid arthritis 
[1], are the most significant cause of death in the world 
[2, 3]. Systemic inflammation-induced multimorbid-
ity (SIIM) was defined as having at least two of the CIDs 
[1, 4]. For several decades the incidence and prevalence 
of SIIM have been increasing [5], and it is undoubtedly 
one of the most significant challenges faced by global 
health care providers [6]. Furthermore, evidence suggests 
that SIIM related to adverse health outcomes may be 
enhanced by environmental pollutant exposure [7].

Ambient air pollutants have become top risk factors for 
global disease burden, causing about 3 million premature 
deaths every year [8]. Long-term exposure to air pollu-
tion may increase the total / differential WBC counts and 
C-reactive protein level, two markers of systemic inflam-
mation [9]. The particulate matter (PM) induced inflam-
mation has been hypothesized as one of the biological 
mechanisms linking air pollution and various chronic 
diseases [10]. Ambient air pollution has adverse effects 
on various health outcomes, including kidney disease 
[11], hypertension [12], non-alcoholic fatty liver disease 
[13], and diabetes [14].

Physical activity (PA) has immediate beneficial effects 
in reducing the risk of developing and dying from CIDs 
[15]. However, air pollution may dismiss people from 
engaging in regular PA. For example, the media alerts of 
air quality to inform the public about harmful air pollu-
tion [16] or the presence of smog [17] may discourage 
PA behavior. Both air pollution and physical inactiv-
ity are positively associated with CIDs [18]. Recently, an 
increasing number of studies have been conducted to 
study the joint effects or interaction of PA and air pollu-
tion on health outcomes [19, 20]. However, the evidence 
is mixed. Several studies conducted in low-exposure or 
medium-exposure settings have shown that there is no 
interaction between air pollution and PA on long-term 
health outcomes [9, 21]. A few studies suggest that PA 

could attenuate the air pollutants-related adverse health 
effects [22]. The joint effects or interaction of PA and air 
pollution could have important implications for public 
health, especially in highly polluted locations.

Although multiple studies have examined the joint 
effects of PA and long-term air pollution exposure on 
chronic diseases [19, 20], evidence of SIIM with long-
term exposure to ambient air pollution is scarce. To the 
best of our knowledge, only study conducted in Augsburg 
found that long-term exposure to NO2 and PM10 was 
associated with SIIM among the elderly [23]. Besides, 
most studies have been conducted in high-income coun-
tries, and evidence in low and middle-income countries 
(LMICs) where air pollution is often more severe is lim-
ited [24].

This study aimed to investigate the complex relation-
ships of air pollutants (PM1, PM2.5, and PM10) and PA on 
SIIM among Chinese adults using baseline data from the 
China Multi-Ethnic Cohort (CMEC).

Methods
Study population
The study populations were derived from the China 
Multi-Ethnic Cohort study (CMEC). A total of 99,556 
participants aged 30–79 years old in Southwestern China 
were recruited from May 2018 to September 2019 by 
multistage, stratified cluster sampling method. Data were 
collected by questionnaires, medical examinations, and 
clinical laboratory tests. Through face-to-face interviews 
via electronic questionnaires, the CMEC study elicited 
information on demographic, socioeconomic, health 
behaviors, family disease history, physician-diagnosed 
diseases, indoor air pollution, and other health-related 
factors. A range of medical examinations, including phys-
ical examination, chest radiography, osteopathic exami-
nation, and abdominal ultrasonography, were performed 
to diagnose some physical diseases (e.g., hypertension). 
In addition, venous blood samples were collected after 
overnight fasting (at least 8  h) for clinical laboratory 

Results We found positive associations between long-term air pollution particulates exposure and SIIM, with odds 
ratios (95%CI) of 1.07 (1.03 to 1.11), 1.18 (1.13 to 1.24), and 1.08 (1.05 to 1.12) per 10 µg/m3 increase in PM1, PM2.5, 
and PM10. No significant multiplicative interaction was found between ambient air pollutant exposure and PA on 
SIIM, whereas negative additive interaction was observed between long-term exposure to PM2.5 and PA on SIIM. The 
positive associations between low volume PA and SIIM were stronger among those exposed to high-level air pollution 
particulates. Compared with individuals engaged in high volume PA and exposed to low-level ambient air pollutants, 
those engaged in low volume PA and exposed to high-level ambient air pollutants had a higher risk of SIIM (OR = 1.49 
in PM1 exposure, OR = 1.84 in PM2.5 exposure, OR = 1.19 in PM10 exposure).

Conclusions Long-term (3 years average) exposure to PM1, PM2.5, and PM10 was associated with an increased risk of 
SIIM. The associations were modified by PA, highlighting PA’s importance in reducing SIIM for all people, especially 
those living in high-level air pollution regions.
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tests, that is, blood routine, fasting blood glucose, blood 
lipid levels, and liver function. More details on the CMEC 
study have been reported previously [25]. This study was 
approved by Sichuan University Medical Ethical Review 
Board (K2016038, K2020022). Written consents from all 
participants were obtained.

For the current analyses, we excluded [1] those who 
did not have available residential address information; [2] 
residents in Aba because they lived nomadically and had 
no fixed residence; [3] residents in Lhasa because they 
lived at high altitudes and had a unique dietary habit and 
thus were less comparable to lowlanders; [4] those who 
lived at their present address for fewer than three years at 
the time of the investigation; [5] those with missing infor-
mation on any outcome, exposure, or adjusted covariates. 
Ultimately, a total of 72,172 participants were remained 
in the analyses (Figure S1).

Exposures assessment
A detailed description of the exposure assessment was 
described elsewhere [26]. In brief, daily concentrations of 
3 air pollutants (PM1, PM2.5, and PM10) were predicted by 
the space-time extremely randomized trees model using 
aerosol optical depth, land use information, topographi-
cal, and meteorological data [27, 28]. Three-year aver-
age concentrations of each air pollutant of participants 
before the baseline survey were calculated and devel-
oped as substitutes for long-term air pollution exposure 
according to geocoded residential addresses.

The questions on PA were adapted from validated 
questionnaires used in several other studies [29, 30]. Par-
ticipants were asked about their usual type and duration 
of activities related to occupational, chores, traffic, and 
leisure time exercise during the past year. PA was quanti-
fied by metabolic equivalent tasks per day according to 
the literature [29]. In brief, the number of hours involved 
in each activity per day was multiplied by the metabolic 
equivalent for task (MET) score for that activity, and the 
daily amount of PA was obtained by summing the MET-
hours for activities related to occupational, chores, traf-
fic, and leisure time activities. PA and PM are divided 
into three levels based on their tri-sectional quantiles (1st 
tertile = low, 2nd tertile = moderate, 3rd tertile = high).

Outcome assessment
Systemic inflammation-induced multimorbidity (SIIM) 
including 11 CIDs among the Chinese population [31], 
was treated as the outcome of our studies. Among these 
CIDs, definitions of hypertension, diabetes, and meta-
bolic associated fatty liver disease (MAFLD) were based 
on questionnaires or medical examinations. Seven 
diagnosed chronic diseases were self-reported (pulmo-
nary heart disease, rheumatic heart disease, coronary 
heart disease, rheumatic arthritis, stroke, cancer, and 

rheumatoid arthritis); chronic kidney disease (CKD) was 
measured by medical examinations. SIIM was defined as 
having at least two of the defined CIDs [1, 4].

Specific definitions for some CIDs were as follows: [1] 
hypertension. Participants’ blood pressure was measured 
three times by using the OMROM HEM-8771 monitor. 
Hypertension was defined as mean systolic blood pres-
sure ≥ 140 mmHg and/or mean diastolic blood pressure 
≥ 90 mmHg and/or has been diagnosed with hyperten-
sion by doctors [32] [2]. Diabetes. Fasting plasma glu-
cose (FPG) and glycosylated hemoglobin (HbA1c) were 
measured enzymatically using the AU5800 Automated 
Chemistry Analyzer. Diabetes was defined as FPG 
≥ 126  mg/dL and/or HbA1c ≥ 6.5% and/or has been 
diagnosed with diabetes by doctors [33] [3]. MAFLD. 
According to the definition of MAFLD [34], the MAFLD 
was diagnosed based on a ultrasonographically con-
firmed hepatic steatosis plus the presence of any one of 
the following three metabolic conditions: diabetes mel-
litus, overweight/obesity, or metabolic dysregulation [4]. 
CKD. The serum creatinine (SCr) was analyzed using 
an AU5800 Automated Chemistry Analyzer with the 
uncompensated Jaffe method involving an alkaline pic-
rate kinetic test. The eGFR level was calculated based on 
the following MDRD-4 equation: eGFR (mL/min per 1.73 
m2) = 175 × (SCr)−1.154 ×(age)−0.203 × 0.742 (for women), 
where SCr is the serum creatinine level (mg/dL) [35]. 
Participants with eGFR < 60 mL/min per 1.73 m2 were 
assessed as having CKD according to the KDIGO clinical 
practice guidelines [36].

Covariates
Based on the previous literature on air pollution and 
chronic diseases [37], fully adjusted models included the 
following other covariates through questionnaires and 
medical examinations: age (continuous), sex (male or 
female), marital (cohabited and did not cohabit), ethnic 
group (Han and minority), region (Yunnan, Guizhou, 
Chongqing, and Sichuan), annual family income (< 
20,000 yuan, 20,000–59,999 yuan, or ≥60,000 yuan), 
educational level (illiteracy, primary school, junior high 
school, and high school or above), smoking (never, for-
mer, and current), secondary smoking (yes and no), 
alcohol drinking (never, occasionally, and often), sleep 
duration (< 6 h per night, 6–8 h per night, and > 8 h per 
night), indoor air pollution (low, moderate, and high 
level), body mass index (BMI) (continuous), and dietary 
pattern (continuous). Indoor air pollution was divided 
into low, moderate, or high levels according to a sum-
mary of cooking behavior, fuel types, and ventilation 
equipment [26]. BMI was calculated as the body weight 
(kg) divided by the height squared (m2). The dietary pat-
tern was evaluated by the Dietary Approaches to Stop 
Hypertension (DASH) diet score, which emphasized the 
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consumption of fruits, vegetables, nuts, sodium, low-fat 
dairy, red and processed meats, and whole-grain intake 
[38–40].

Statistical analysis
Differences in essential characteristics between partici-
pants with and without SIIM were presented as mean ± 
standard deviation (SD) and numbers (percentages), and 
were tested using Student’s t-test, the Wilcoxon rank-
sum test, and the chi-square test. Pearson correlation 
test was used to assess the correlation between air pol-
lutants. Logistic regression models were performed to 
investigate associations of air pollutants (per 10  µg/m3 
increase) with the risk of SIIM after adjusting potential 
confounders. Model 1 was adjusted for age, sex, region, 
ethnic group, marital, annual family income, educational 
level, smoking, secondary smoking, alcohol drinking, 
sleep duration, BMI, dietary pattern, and indoor air pol-
lution. Model 2 additionally adjusted for PA and was the 
main model because it accounted for the most compre-
hensive covariates. These results are presented as odds 
ratios (ORs) with 95% confidence intervals (CIs). Given 
the high correlations among air pollutants, only single-
pollutant models were applied.

We conducted a stratified analysis to investigate asso-
ciations of PA with SIIM in different levels of air pollu-
tion subgroups. In this analysis, the reference group was 
set as the participants engaged in a high volume of PA 
based on their tri-sectional quantile range of metabolic 
equivalent tasks per day, and we examined whether low 
PA was associated with SIIM across different air pollu-
tion subgroups.

To quantify the additive and multiplicative interac-
tions, we additionally included a product term of air pol-
lution and PA in the model. The odds ratios (ORs) with 
95% confidence intervals (CIs) of the product term were 
the measure of interaction on the multiplicative scale. We 
used the relative excess risk due to interaction (RERI) and 
corresponding 95% confidence intervals (CIs) as the mea-
sure of interaction on the additive scale, calculated using 
the coefficients and corresponding standard errors of the 
product term, air pollution, and PA, as well as covariance 
matrix [41]. The basic model was as follows:

 
logit (p) = ln ( P

1−P ) = ln (odds) = β0 + β1A + β2B + β3AB
 

RERI = RRA+B+ - RRA+B− - RRA−B+ +1 = exp (β1 + β2 + β3)
 

 – exp (β1) – exp (β2) + 1.
Where p denoted the probability of SIIM occurrence, 

A denoted the air pollution, B denoted the PA, and AB 
denoted the interaction term between air pollution and 
PA. The intercept is denoted by β0, the effect value of air 
pollution factors is represented by β1, the effect value of 

PA is represented by β2, and the effect value of the inter-
action term between air pollution and PA is represented 
by β3.

According to previous studies, physical inactivity and 
high levels of air pollution are both associated with a 
higher risk of chronic diseases [8, 29]. To assess the joint 
associations, we further classified participants into nine 
groups according to air pollution (low, moderate, and 
high) and PA (low, moderate, and high) based on their 
tri-sectional quantiles and estimated odds ratios of SIIM 
in different groups compared with those exposures to 
low-level of air pollution and engaged in a high volume 
of PA.

We conducted a series of sensitivity analyses. First, we 
controlled for family disease history (e.g., hypertension, 
diabetes, cancer, stroke, and acute myocardial infarc-
tion) separately in the adjusted models to minimize the 
influence of hereditary factors. Second, to explore the 
dose-response relationship between air pollution con-
centrations and SIIM, restricted splines with three or 
four degrees of freedom were performed [42]. Third, we 
used average concentrations of air pollutants for 1, 2, and 
4 years before the baseline survey to evaluate the long-
term effects of air pollutants exposure.

All of the analyses were performed using R 4.0.2 (R 
Foundation for Statistical Computing), with a P-value < 
0.05 considered statistically significant for a two-tailed 
test.

Results
General characteristics
The average age of the study population was 52.2 years 
old, and 43,518 participants were women (60.3%). More-
over, 36.3% of the participants were minorities. Approx-
imately half of them had a junior high school or higher 
education level (51.3%). Participants with SIIM were 
more likely to be older men, engaged in low PA, with low 
DASH score, low annual family income, low educational 
levels, high BMI, current smoking, no cohabitation, often 
drinking, and short sleep duration. The overall prevalence 
of SIIM was 21.3% (Table 1 ). The three-year average con-
centrations of PM1, PM2.5, and PM10 for the overall study 
were 29.2  µg/m3, 40.2  µg/m3, and 65.3  µg/m3, respec-
tively (Table 2 ).

Associations of ambient air pollutant exposure with SIIM
Table  3 demonstrates a statistically significant associa-
tion between heightened levels of air pollutants and an 
increased susceptibility to SIIM, even after accounting 
for potential confounding factors. For example, for every 
10  µg/m3 increase in PM1, PM2.5, and PM10, the odds 
ratios of SIIM were 1.07 (95%CI, 1.03–1.11), 1.18 (95%CI, 
1.13–1.24), and 1.08 (95%CI, 1.05–1.12), respectively. The 
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Characteristics* Total
(n = 72,172)

Low PA
(n = 24,037)

Moderate PA
(n = 24,102)

High PA
(n = 24,033)

P-value

Age, years (SD) 52.2(11.4) 56.4(12.1) 50.1(11.0) 50.2(9.8) < 0.001

DASH score (SD) 20.4(4.5) 20.8(4.5) 20.8(4.5) 19.8(4.4) < 0.001

Physical activity, METs/d (SD) 26.8(18.3) 8.9(4.2) 23.3(4.9) 48.1(13.5) < 0.001

BMI (SD) 24.0(3.4) 24.3(3.4) 24.0(3.3) 23.8(3.4) < 0.001

Three-year average PM1, µg/m3 (SD) 30.4(11.3) 33.2(11.5) 31.4(11.4) 26.6(9.9) < 0.001

Three-year average PM2.5, µg/m3 (SD) 38.7(12.4) 41.9(12.1) 39.9(12.3) 34.4(11.7) < 0.001

Three-year average PM10, µg/m3 (SD) 65.2(16.2) 69.4(16.1) 66.7(16.1) 59.4(14.7) < 0.001

Sex, n (%) < 0.001

Male 28,654(39.7) 9,851(41.0) 9,305(38.6) 9,498(39.5)

Female 43,518(60.3) 14,186(59.0) 14,797(61.4) 14,535(60.5)

Ethnic group (%) < 0.001

Han 46,000(63.7) 16,738(69.6) 15,854(65.8) 13,408(55.8)

Minority 26,172(36.3) 7,299(30.4) 8,248(34.2) 10,625(44.2)

Region (%) < 0.001

Yunnan 20,261(28.1) 4,650(19.3) 5,886(24.4) 9,725(40.5)

Chongqing 18,943(26.2) 7,095(29.5) 6,971(28.9) 4,877(20.3)

Guizhou 15,283(21.2) 4,584(19.1) 4,887(20.3) 5,812(24.2)

Sichuan 17,685(24.5) 7,708(32.1) 6,358(26.4) 3,619(15.1)

Marital, n (%) < 0.001

Married/Cohabitating 64,361(89.2) 20,565(85.6) 21,729(90.2) 22,067(91.8)

Unmarried/divorced/widowed 7,811(10.8) 3,472(14.4) 2,373(9.8) 1,966(8.2)

Annual family income, yuan/year (%) < 0.001

<20,000 25,094(34.8) 7,614(31.7) 7,265(30.1) 10,215(42.5)

20,000–59,999 26,044(36.1) 8,254(34.3) 8,243(34.2) 9,547(39.7)

≥ 60,000 21,034(29.1) 8,169(34.0) 8,594(35.7) 4,271(17.8)

Education level, n (%) < 0.001

Illiteracy 16,657(23.1) 5,271(21.9) 4,864(20.2) 6,522(27.1)

Primary school 18,447(25.6) 5,794(24.1) 5,112(21.2) 7,541(31.4)

Junior high school 19,713(27.3) 6,490(27.0) 6,284(26.1) 6,939(28.9)

High school or higher 17,355(24.0) 6,482(27.0) 7,842(32.5) 3,031(12.6)

Smoking status, n (%) < 0.001

Never 53,457(74.1) 17,390(72.3) 18,168(75.4) 17,899(74.5)

Former 3,685(5.1) 1,646(6.8) 1,079(4.5) 960(4.0)

Current 15,030(20.8) 5,001(20.8) 4,855(20.1) 5,174(21.5)

Secondary smoking, n (%) < 0.001

Yes 37,331(51.7) 11,873(49.4) 12,824(53.2) 12,634(52.6)

No 34,841(48.3) 12,164(50.6) 11,278(46.8) 11,399(47.4)

Alcohol drinking status, n (%) < 0.001

Never 40,155(55.6) 13,614(56.6) 12,733(52.8) 13,808(57.5)

Occasionally 22,047(30.5) 7,056(29.4) 8,213(34.1) 6,778(28.2)

Often 9,970(13.8) 3,367(14.0) 3,156(13.1) 3,447(14.3)

Sleep duration, hours/day (%) < 0.001

< 6 9,372(13.0) 3,803(15.8) 2,741(11.4) 2,828(11.8)

6–8 51,448(71.3) 16,578(69.0) 17,887(74.2) 16,983(70.7)

> 8 11,352(15.7) 3,656(15.2) 3,474(14.4) 4,222(17.6)

Indoor air pollution, n (%) < 0.001

Low 11,501(15.9) 4,109(17.1) 3,747(15.5) 3,645(15.2)

Moderate 57,046(79.0) 19,030(79.2) 19,304(80.1) 18,712(77.9)

High 3,625(5.0) 898(3.7) 1,051(4.4) 1,676(7.0)

SIIM < 0.001

Table 1 Basic characteristics of study participants
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results remained similar after adjusting for various family 
disease histories (Table S1).

According to the findings presented in Figure S2, the 
restricted spline regressions indicate that the relation-
ships between SIIM and PM exposure appear to follow 
a linear trend in the adjusted model. Table S2 indicated 
similar effect estimates for SIIM when average ambient 
air pollution concentrations from various years prior to 
the survey were utilized as the exposure variable. Spe-
cifically, increments of 10  µg/m3 in PM1 over the aver-
age concentration of four years were linked to increases 
in the odds ratio for SIIM. The minimal disparity in out-
comes across the four-year period demonstrated the reli-
ability of the findings.

Interaction and joint analysis between PM exposure and 
PA and SIIM
The relative excess risk due to interaction of PM expo-
sure and PA on SIIM was presented by RERI. No signifi-
cant multiplicative interaction was found between PM 
exposure and PA on SIIM, whereas a negative additive 

interaction was observed between PM2.5 exposure and 
PA on SIIM (P for interaction < 0.05) (Fig. 1).

Low volume PA was associated with higher risks of 
SIIM among individuals exposed to various subgroups 
of ambient air pollutants, whereas the associations were 
stronger among those exposed to a high ambient air pol-
lutant subgroup (Fig. 1). For example, the odds ratio for 
those engaged in low volume PA compared with high vol-
ume PA for SIIM were 1.26 (1.15–1.38) among individu-
als exposed to low-level of PM2.5, 1.32 (1.20–1.44) among 
those exposed to Moderate-level of PM2.5, and 1.37 
(1.24–1.52) among those exposed to high-level of PM2.5. 
Similar patterns were found for PM1 and PM10.

Figure 2 shows the joint association of ambient air pol-
lutant exposure and PA on SIIM and the odds ratio for 
individuals engaged in low volume PA and exposed to 
high-level ambient air pollutants compared with those 
engaged in high volume PA and exposed to low-level 
ambient air pollutants for SIIM were 1.49 (1.27–1.76) in 
PM1 exposure, 1.84 (1.56–2.18) in PM2.5 exposure, and 
1.19 (1.01–1.40) in PM10 exposure.

Discussion
Main findings
To our knowledge, this is the first study to examine the 
associations of SIIM with long-term air pollution par-
ticulates exposure and PA among adults aged 30 to 79 
years. Our study found that long-term (3 years average) 
air pollution particulates exposure was positively asso-
ciated with SIIM. A significant additive interaction was 
found between long-term ambient PM2.5 exposure and 
PA on SIIM, and the associations between PA and SIIM 
were stronger among those exposed to high-level air pol-
lution particulates. In addition, the highest risks of SIIM 
were seen in individuals engaged in low volume PA and 
exposed to high or moderate levels of air pollution par-
ticulates. The results showed that some measures need to 

Table 2 Three-year average concentrations of ambient air pollutants
Variables 3-year average concentrations Pearson correlation coefficients

Minimum Maximum P25 P50 P75 IQR PM1 PM2.5 PM10 NO2

PM1 13.0 54.5 19.3 29.2 37.1 17.8 1.00 0.96 0.96 0.90

PM2.5 16.2 61.6 25.1 40.2 48.2 23.1 0.96 1.00 0.98 0.85

PM10 33.7 100.6 49.7 65.3 75.7 26.0 0.96 0.98 1.00 0.89
PM1, the particle with an aerodynamic diameter of 1  μm or less; PM2.5, the particle with an aerodynamic diameter of 2.5  μm or less; PM10, the particle with an 
aerodynamic diameter of 10 μm or less

Table 3 ORs and 95% CI for systemic inflammation-induced 
multimorbidity associated with per 10-µg/m3 increase in 
ambient air pollutants
Pollutant Model 1 Model 2
PM1 1.08 

(1.05–1.12)
1.07 
(1.03–1.11)

PM2.5 1.20 
(1.15–1.26)

1.18 
(1.13–1.24)

PM10 1.10 
(1.06–1.13)

1.08 
(1.05–1.12)

Model 1 was adjusted for age, sex, marital, ethnic group, region, annual family 
income, educational level, smoking, secondary smoking, alcohol drinking, 
sleep duration, dietary pattern, indoor air pollution, and BMI. Model 2 was 
further adjusted for physical activity

PM1, the particle with an aerodynamic diameter of 1  μm or less; PM2.5, the 
particle with an aerodynamic diameter of 2.5 μm or less; PM10, the particle with 
an aerodynamic diameter of 10 μm or less

Characteristics* Total
(n = 72,172)

Low PA
(n = 24,037)

Moderate PA
(n = 24,102)

High PA
(n = 24,033)

P-value

No 56,781(78.7) 17,154(71.4) 19,570(81.2) 20,057(83.5)

Yes 15,391(21.3) 6,883(28.6) 4,532(18.8) 3,976(16.5)
BMI indicates body mass index; DASH, dietary approaches to stop hypertension; METs, metabolic equivalent tasks; PM1, the particle with an aerodynamic diameter 
of 1 μm or less; PM2.5, the particle with an aerodynamic diameter of 2.5 μm or less; PM10, the particle with an aerodynamic diameter of 10 μm or less

*Data are the mean (SD) for continuous variables and number (percentage) for categorical variables

Table 1 (continued) 
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be taken to solve the problems of physical inactivity and 
ambient air pollution, which could contribute to reduce 
the burden of SIIM.

Potential mechanism
Although the underlining mechanisms of the associa-
tion between long-term air pollution particulates expo-
sure and SIIM remain largely unknown, several possible 
pathways have been suggested. First, air pollutants may 
lead to the generation of endogenous pro-inflammatory 
mediators, oxidative stress, autonomic nervous system 
imbalance, endothelial dysfunction, and plasma viscosity 
increases [43, 44], resulting in SIIM. Second, air pollu-
tion exposure may be associated with abnormal methyla-
tion levels of global DNA and specific genes involved in 
blood pressure regulation, glucose-homeostasis, and lipid 
metabolism pathways [45]. Third, severe particulate air 
pollution can restrict people from engaging in PA [46], 
which may lead to obesity. Obesity has been acknowl-
edged as a risk factor for the development of most CIDs 
[47].

The biological mechanism of the interaction and joint 
effects of PA and air pollution on SIIM might be related 
to low-grade systemic inflammation. Long-term air pol-
lution particulates exposure has adverse effects on mul-
timorbidity by inducing systemic inflammatory processes 
[48, 49]. However, one of the key mechanisms by which 
PA exerts beneficial health effects appears to be due to its 
capacity to reduce chronic low-grade inflammation [50]. 
Skeletal muscle is an endocrine organ that produces a 
variety of metabolic factors, which provides a mechanical 
link between muscle contraction and its beneficial effects 
on systemic inflammation and health [51]. In addition, 
PA may increase the inhalation of air pollutants due to 
higher ventilation, which could amplify the adverse 
health effects of air pollutants [9]. Furthermore, ambient 
air pollution could create a barrier for doing outdoor PA, 
and that the health risk from exposure to air pollution 
could weaken the benefits of PA.

Comparison with other studies
Our findings indicated long-term exposures to PM1, 
PM2.5, and PM10 were all positively associated with an 

Fig. 1 Associations of physical activity with systemic inflammation-induced multimorbidity by levels of air pollution. Odds ratio were adjusted for age, 
sex, marital, ethnic group, region, annual family income, educational level, smoking, secondary smoking, alcohol drinking, sleep duration, dietary pattern, 
indoor air pollution, and BMI. PM1, the particle with an aerodynamic diameter of 1 μm or less; PM2.5, the particle with an aerodynamic diameter of 2.5 μm 
or less; PM10, the particle with aerodynamic diameter of 10 μm or less
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increased risk of SIIM. This was consistent with a previ-
ous analysis in the KORA-Age study, which also found 
that long-term exposure to NO2 and PM10 were associ-
ated with SIIM among the elderly [23]. In addition, there 
is evidence that shows that extended exposure to air pol-
lution could elicit health risks during multimorbidity 
clinic visits [52]. Nevertheless, research on the relation-
ship between long-term air pollution particulates expo-
sure and multimorbidity is relatively scarce. There is an 
urgent need for further studies to be conducted in differ-
ent regions.

In our study, we confirmed that low PA was associated 
with higher risks of SIIM, regardless of air pollution par-
ticulates exposure. The results were consistent with some 
previous studies [53, 54]. In addition, negative additive 
interaction was found between long-term ambient PM2.5 
exposure and PA on SIIM. The evidence on the interac-
tion between long-term ambient air pollutant exposure 
and PA on health effects is mixed. Several studies sug-
gest that there is no interaction between air pollution 
and PA on health outcomes for systemic inflammation 

and chronic obstructive pulmonary disease [9, 20]. A 
few studies suggest that PA may have a beneficial effect 
in protecting against adverse effects of air pollution on 
blood pressure [55]. The exact reasons for the inconsis-
tent findings were unclear but might be partly due to dif-
ferent levels of air pollution settings [18]. Nevertheless, 
our finding indicates that participants can benefit from 
PA despite inhaling a large amount of PM2.5 during PA, 
which could reduce the public’s doubts about the hazards 
of exposure to air pollution during PA. More studies are 
still needed to understand the complex relations between 
air pollution particulates exposure and PA on SIIM in dif-
ferent regions with different air pollution levels.

The associations of PA with SIIM were stronger among 
those exposed to high-level of air pollution particulates 
exposure, which highlighted the necessity of PA modi-
fication, especially among those living in high-level air 
pollution particulates exposure regions. Also, there were 
strong indications that estimated effects of high-level 
ambient air pollutants with low PA on SIIM were larger 
compared with those of low-level ambient air pollutants 

Fig. 2 Joint associations of long-term exposure to air pollution and physical activity with systemic inflammation-induced multimorbidity. 
Odds ratio were adjusted for age, sex, marital, ethnic group, region, annual family income, educational level, smoking, secondary smoking, alcohol drink-
ing, sleep duration, dietary pattern, indoor air pollution, and BMI. PM1, the particle with an aerodynamic diameter of 1 μm or less; PM2.5, the particle with 
an aerodynamic diameter of 2.5 μm or less; PM10, the particle with an aerodynamic diameter of 10 μm or less
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with high PA. These findings had important public health 
implications in identifying subgroups (e.g., participants 
exposed to high-level of ambient air pollutants with low 
PA) that would benefit most from the intervention.

Strengths of this study
The main strength of this study was to examine associa-
tions of long-term air pollution particulates exposure and 
PA with SIIM using a large sample size in China. The 
large sample size allowed us to perform the joint and 
stratified analyses with sufficient statistical power. In 
addition, the wide concentration range of air pollutants 
in our study has implications for both high and low levels 
of pollution areas.

Limitations of this study
However, there were limitations to this current study. 
First, since the time period for PM exposure is assessed 
for a three-year average value, those who had any events 
of SIIM within or before the three-year exposure mea-
surement period should be excluded from the analysis. 
However, since our study design is cross-sectional, it may 
lead to an inversion of cause and effect. Second, the SIIM 
in our study included only 11 chronic diseases related to 
systemic inflammation, and most of the diseases were 
self-reported. Third, the definition of multimorbidity was 
simply to count the number of chronic diseases with-
out accounting for the different clusters and severity of 
chronic diseases. Fourth, the information about PA, his-
tory of disease, and sleep duration was self-reported by 
participants, which may lead to some recall bias. Finally, 
there may be other confounding variables that we did not 
control for due to limited data availability.

Perspectives
Long-term exposure to PM1, PM2.5, and PM10 were posi-
tively associated with an increased risk of SIIM. More-
over, there was a significant additive interaction between 
long-term ambient PM2.5 exposure and PA on SIIM. Indi-
viduals engaged in low PA and exposed to high or moder-
ate level of air pollution particulates had the highest risks 
of SIIM, which highlights the importance of PA modifica-
tion in reducing SIIM for all people, especially those liv-
ing in high-level air pollution regions.
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