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Abstract 

Background With the rapid development of China’s chemical industry, although researchers have developed many 
methods in the field of chemical safety, the situation of chemical safety in China is still not optimistic. How to prevent 
accidents has always been the focus of scholars’ attention.

Methods Based on the characteristics of chemical enterprises and the Heinrich accident triangle, this paper devel-
oped the organizational-level accident triangle, which divides accidents into group-level, unit-level, and workshop-
level accidents. Based on 484 accident records of a large chemical enterprise in China, the Spearman correlation 
coefficient was used to analyze the rationality of accident classification and the occurrence rules of accidents at differ-
ent levels. In addition, this paper used TF-IDF and K-means algorithms to extract keywords and perform text clustering 
analysis for accidents at different levels based on accident classification. The risk factors of each accident cluster were 
further analyzed, and improvement measures were proposed for the sample enterprises.

Results The results show that reducing unit-level accidents can prevent group-level accidents. The accidents 
of the sample enterprises are mainly personal injury accidents, production accidents, environmental pollution acci-
dents, and quality accidents. The leading causes of personal injury accidents are employees’ unsafe behaviors, such 
as poor safety awareness, non-standard operation, illegal operation, untimely communication, etc. The leading causes 
of production accidents, environmental pollution accidents, and quality accidents include the unsafe state of materi-
als, such as equipment damage, pipeline leakage, short-circuiting, excessive fluctuation of process parameters, etc.

Conclusion Compared with the traditional accident classification method, the accident triangle proposed in this 
paper based on the organizational level dramatically reduces the differences between accidents, helps enterprises 
quickly identify risk factors, and prevents accidents. This method can effectively prevent accidents and provide helpful 
guidance for the safety management of chemical enterprises.

Keywords Accident triangle, Accident classification, Risk factors, Text mining, K-means algorithms

Background
China’s five most dangerous industries are coal min-
ing, metal and non-metal mining, construction, and 
chemical and fireworks manufacturing [1, 2]. Especially 
in the chemical industry, major accidents occur more 
frequently. According to statistics, from 2016 to 2021, 
there were 1050 chemical accidents in China, result-
ing in 1330 deaths. These major accidents lead to severe 
casualties, economic losses, environmental pollution, 
and other consequences and substantially affect society’s 
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harmonious and stable development. Scholars have been 
studying how to avoid accidents for a long time [3, 4].

Heinrich[5] collected many industrial accident records 
from insurance companies through statistical analysis of 
many casualties. He proposed the accident triangle: the 
ratio of death, serious injury, minor injury, and non-inju-
rious accidents in enterprises is 1:29:300. The accident 
triangle represents there are similar risk factors behind 
serious accidents and minor accidents, which have been 
used to guide the safety management of enterprises for 
a long time [6, 7]. Many sectors, such as the railway sec-
tor in the UK [8], the industrial sector in Germany [9], 
and the mining sector in Australia [10], conduct analyses 
of near misses and accidents without significant conse-
quences to reveal operator errors and system deficiencies. 
It is generally believed that when the number of minor 
accidents increases, the accident triangle predicts that 
the number of serious accidents also increases, which can 
encourage enterprises to enhance safety management to 
prevent major accidents effectively[11].

Based on Heinrich’s research findings, researchers from 
different engineering fields have also developed similar 
accident triangles [12]. The Bird accident triangle indi-
cates that the ratio of serious or disabling injury, minor 
injuries, property damage accidents, and incidents with 
no visible injury or damage is 1:10:30:600 [13]. Tye-
Pearson’s principle states that the ratio of fatal or serious 
injury, minor injuries, first-aid treatment injuries, prop-
erty damage accidents, and narrowly avoided accidents 
is 1:3:50:80:400 [14]. The International Association of Oil 
and Gas Producers (OGP) has collected the safety acci-
dent data since 1985. About 50 members of the oil and 
gas organization participated in the annual benchmark 
testing process, continuously updating their accident tri-
angles [15].

However, with the deepening of research, some schol-
ars questioned the effectiveness of the Heinrich accident 
triangle [16]. It mainly includes the following two points: 
(1) the ratio of lower to higher severity accidents exists in 
the form of a “safety-triangle”; (2) similar causes underlie 
both high and low severity events [17].

Regarding the first criticism, Rebbit suggested that, 
given that Heinrich’s original data are not available, 
it is not possible to “verify or categorically refute” the 
specific ratio within the triangle. He further argued 
that the general way in which Heinrich categorized 
the safety accidents demarcated by severity (i.e., major, 
minor, and incident) makes it challenging to conduct 
replicable studies [18]. Marshall et  al. stated that an 
analysis of occupational accidents across all the indus-
tries in Chile over 28-months shows that the ratio of 
fatal, serious and minor workplace accidents do not 
follow the ratio of accidents described in Heinrich 

accident triangle [19]. Yorio et al. studied the accident 
data from mines in the United States to confirm the 
predictive validity of the Heinrich accident triangle by 
checking if a certain number of accidents at a mine will 
produce a corresponding number of fatalities at the 
same mine. The results of their study did not match the 
figures described by Heinrich in his pyramid of acci-
dents [17].

Regarding the second criticism, several studies have 
raised doubts about the assumption of similar causes, 
which determines whether enterprises focusing on minor 
accidents can effectively reduce the occurrence of major 
accidents [20–22]. Manuele argued that fatality and 
severe injury events often occur without any prior evi-
dence or forewarning obtained through the analysis of 
less severe and near miss accidents [16]. Hale argued that 
the accident triangle has been abused and that prevent-
ing minor accidents will not automatically reduce seri-
ous accidents [23]. More and more evidence shows that 
companies with a very low incidence of minor accidents 
will also encounter serious accidents [24]. In the United 
States, although the incidence of non-fatal accidents in 
the entire workforce has decreased by 51% over the past 
decade, fatal accidents have only decreased by 25.5% [25]. 
Although studies have supported the notion that safety 
accidents delineated by degree have distinct causes [26] 
others found consistent causes between low and high 
severity events [8].

The traditional accident triangle usually analyzes per-
sonal injury accidents [27], dividing the accidents into 
death, serious injury, minor injury, and non-injury acci-
dents for risk factor analysis. It rarely analyses property 
loss and environmental protection accidents, failing to 
identify some hidden risk factors [28]. The accident clas-
sification is based mainly on the consequences and types 
of accidents. The accident gradation is based on the acci-
dent severity. Its purpose is to provide a basis for prepar-
ing accident investigation reports, handling the person 
responsible for the accident, legal compensation, and 
other matters [29]. According to the “Byelaw Govern-
ing Reporting, Investigation and Handling of Produc-
tion Safety Accidents” in China, accidents are divided 
into particularly serious accident, major accident, seri-
ous accident, and accident of minor seriousness in terms 
of bodily injuries and deaths or direct economic losses 
resulted in by the production safety accidents [30]. Based 
on the accident triangle, Sinopec proposes a three-level 
accident classification model from the perspective of 
organizational structure: group company-level accidents, 
recorded accidents, and accidents that require upgraded 
management. The accident gradation is more in-depth 
and detailed, and the requirements for casualties and 
direct economic losses are more strict [29].
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The accident triangle is an adequate rule-of-thumb for 
safety planning; like any theory, it must be tested and 
updated. Industries need a set taxonomy for hazards/
accidents and data to calibrate it [31]. Chemical enter-
prises are characterized by large scale, multiple organiza-
tional departments and levels, harsh production process 
conditions, complex equipment, and numerous risk fac-
tors [32, 33]. It is necessary to conduct a comprehensive 
risk factor analysis for chemical enterprises. Given the 
highly influential and debate of the accident triangle, 
additional research on the topic is important. This paper 
will test and update the accident triangle by developing a 
new accident classification method.

Although the industries differ, the accidents have simi-
lar trajectories [34]. Learning from the accident is con-
sidered the critical link to preventing future injuries [35], 
focusing on determining the root cause of the accident 
[36]. Currently, this work mainly depends on the judg-
ment of domain experts, which is subjective and time-
consuming. Enterprises have accumulated many safety 
accident reports. These unstructured text forms increase 
the difficulty of tacit mining knowledge. In recent years, 
data analysis in accident reports has provided a new way 
to research the causes of accidents [37]. As a branch of 
data analysis, text mining can extract unknown but valu-
able information and knowledge from unstructured text 
sets, involving knowledge in multiple fields such as artifi-
cial intelligence, machine learning, and natural language 
processing (NLP) [38]. It is currently a research hotspot 
in text information processing [39]. Since Feldman et al. 
[40] first proposed the concept of text mining in 1995, 
the development of text mining technology has become 
mature. It has been widely applied in fields such as bio-
medical [41], consumer behavior [42], emotional analysis 
[43], coal mining production [44, 45], transportation [46], 
and construction [47].

In the field of engineering safety management, the dis-
persion, diversity, and massive nature of safety data have 
led to difficulties in collecting and processing safety texts, 
thereby promoting the application of text mining tech-
nology [48]. In recent years, a few scholars have utilized 
text mining technology to extract key accident features 
and risk factors from accident investigation reports, 
fully leveraging the role of accident investigation reports 
in summarizing experiences and lessons learned and 
curbing accident risks [49, 50]. For example, Gao et  al. 
[51] developed a verb-based text mining method that 
extracted the causes and results of 945 car traffic acci-
dent reports, which helps to understand the true causes 
of traffic accidents. Qiu et  al. [52] combined text min-
ing technology with complex networks to explore the 
causal mechanisms of coal mine accidents. Through text 
mining of 307 accident reports, 52 main accident causal 

factors were identified, and a coal mine accident causal 
network was constructed based on strong association 
rules between factors, providing a new perspective for 
identifying accident causes and their complex interac-
tion mechanisms from accident report data. Esmaeili 
et al. [53] used text mining technology to obtain accident 
attribute feature values from over 1000 construction acci-
dent reports and conducted statistical analysis, ultimately 
identifying the risk factors of construction accidents. 
Raviv et  al. [54] analyzed 212 near-miss and accident 
reports on tower cranes using text mining and k-means 
algorithms and found that technical failures are the most 
dangerous risk factor in tower cranes.

In the field of chemical safety management, work on 
anomaly detection [55], ontology-based knowledge 
acquisition [56], and process alarm prediction [57] have 
been undertaken based on accident texts. Despite such 
work, no existing method meets the demands of both 
universality and accuracy, and there still needs to be an 
efficient, convenient universal tool for extracting risk fac-
tors from chemical accident cases.

To solve the problem that serious accidents are difficult 
to eradicate, we select chemical enterprises with many 
risk factors for empirical research to explore the factors 
causing severe accidents. Firstly, based on the accident 
triangle, combined with the characteristics of large-scale, 
multiple organizational departments and levels of the 
chemical industry, the organizational-level accident tri-
angle has been proposed. Try to determine the distribu-
tion law of risk factors in chemical enterprises through a 
new classification method. Secondly, this paper uses text 
mining technology to conduct text clustering analysis on 
unstructured accident reports, quickly find the risk fac-
tors behind different accidents, and solve the disadvan-
tages of time-consuming and labor-consuming finding 
accident causes in the past.

Methods
This study comprehensively considers personal injury 
accidents, property loss accidents, and environmental 
accidents in enterprises. It proposes an accident triangle 
based on the organizational level, which classifies acci-
dents into group-level accidents, unit-level accidents, and 
workshop-level accidents. The collected accident reports 
are model input, and each accident is classified into lev-
els using the organizational level accident triangle. Then, 
text mining technology is used to cluster and analyze 
the causes of accidents at different organizational levels 
by identifying the various risk factors contained in acci-
dents at different organizational levels, namely the model 
output, to help enterprises formulate targeted risk con-
trol measures. The overall flow of this model is shown in 
Fig. 1.
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Improved accident triangle
The traditional accident triangle usually analyzes per-
sonal injury accidents and classifies the accident sever-
ity into four categories: death, serious injury, minor 
injury, and non-injury. However, enterprises will also 
have accidents of different natures in daily production, 
such as production, quality, environmental, and prop-
erty loss accidents [58]. This study will propose a more 
comprehensive accident classification method that 
divides accidents into personal injury accidents, prop-
erty loss accidents, and environmental protection acci-
dents, addressing the drawbacks of traditional accident 
triangles that cannot analyze all risk factors. For exam-
ple, traditional accident triangles focus on analyzing per-
sonal injury accidents, often categorizing property loss 
accidents and environmental accidents roughly as non-
injury accidents or near misses, which is not conducive to 
further accurately identifying the risk factors that cause 
accidents.

This study focuses on identifying accident risk factors 
in China’s chemical industry, improving the accident tri-
angle, and reclassifying accidents from the organizational 
level. The organization-level accident triangle divides 
enterprise accidents into group-level, unit-level, and 
workshop-level. In risk factor mining for different acci-
dent levels, analyze the ratio and causes of different acci-
dent levels. Accidents at all levels are classified according 
to severity; the definitions and classification standards for 
group-level, unit-level, and workshop-level accidents are 
shown in Additional file 1. The bottom of the organiza-
tion-level accident triangle is the number of workshop-
level accidents; the middle refers to unit-level accidents; 
the top is the number of group-level accidents (Fig. 2).

Applying the organizational-level accident triangle 
includes the following processes: In Step 1, the relevant 
information of three levels of accidents is counted, and 
the accident management account is updated in time. 
Step 2, whether the accident triangle based on the organ-
ization level is in the state of a “positive triangle” or 
“inverted triangle” is checked by counting the frequency 
of occurrence of three levels of accidents. Accidents at 
different levels are divided according to severity. Based on 
practical experience, there are far more minor accidents 
than serious ones. Then, the number of workshop-level 
accidents should be the largest, the number of unit-level 
accidents should rank second, and the number of group-
level accidents should be the least. If the proportion of 
accidents at different levels meets this requirement, it 
is considered in the positive triangle state. Otherwise, 
it is in the inverted triangle state. Step 3, if in the “posi-
tive triangle” state, indicates that the design of enterprise 

Fig. 1 Overall Flowchart of the proposed model

Fig. 2 The organization-level accident triangle
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safety rules and regulations is reasonable. Further, it ana-
lyzes various accidents, determines safety management 
loopholes, and eliminates relevant risk factors. Other-
wise, it indicates that the design and implementation of 
enterprise safety management rules and regulations are 
unreasonable. The enterprise needs to solve this problem 
and use text mining technology to ascertain the causes of 
accidents, reveal management loopholes, and eliminate 
risk factors. Step 4 is accident statistics for the enterprise 
again, followed by the second step to start a new round of 
analysis. The process is shown in Fig. 3.

This paper uses the Pearson correlation coefficient 
method to analyze the correlation among organizational-
level, unit-level, and workshop-level accidents. The cor-
relation coefficient is expressed in R, with a value range 
of 0 to 1.

Where, n refers to the total number of accidents, 
while X and Y refer to the number and average value of 

(1)

R =
n XY − X Y

n X2 − X
2

n Y 2 − Y
2

accidents at different levels. The closer the absolute value 
of R is to 1, the better the correlation.

Text mining analysis of accidents at different 
organizational levels
Text mining technology has been widely used to study 
accident causes. Through extensive research of accident 
reports, text mining can better understand the causes of 
accidents and significantly improve the accuracy of acci-
dent prediction [59].

In recent years, the analysis of incident/accident 
data using data mining techniques and algorithms has 
attracted much attention among researchers [60, 61], 
which promotes the birth and development of data-
mining technology [62]. Many data mining technolo-
gies, such as Support Vector Machine [63], classification 
analysis [64], cluster analysis [65], association analysis 
[66], chi-square automatic interaction detection [67], and 
Bayesian networks [68], are used to identify the hidden 
patterns and structures in the safety database. This article 
uses the text clustering method to identify risk factors in 
accident text, and the analysis process is shown in Fig. 4.

Fig. 3 Analysis flowchart for the use of the organizational-level accident triangle

Fig. 4 Text mining analysis process



Page 6 of 18Li et al. BMC Public Health           (2024) 24:39 

Extract keywords
Text keyword extraction requires pre-processing tech-
nology to convert the text into a form the computer can 
recognize. This paper uses the Jieba Chinese word seg-
mentation tool to segment and label accident records. 
To identify professional terms and idioms and ensure 
that these words are not segmented, compiled a profes-
sional dictionary according to the vocabulary of the coal 
chemical industry and the expression characteristics of 
enterprise safety officers on potential safety hazards and 
accident records. Stop words are words and tonal sym-
bols that frequently appear in the text but have no func-
tional meaning and do not help analyze the main idea 
of the text. These meaningless words can be deleted by 
importing the stop word list. After getting keywords and 
assigning weight to each keyword, the Term Frequency 
Inverse Document Frequency (TF-IDF) is usually used as 
a feature evaluation function for feature extraction [69]. 
TF-IDF is expressed as:

Where, ni,j denotes the number of occurrences of the 
keyword ti that appears in the accident record document 
dj , and 

∑

K nk ,j is the number of all keywords in the acci-
dent record document dj |D | represents the total number 
of accident record documents, and 

∣

∣

{

j : ti ∈ dj
}∣

∣ is the 
number of documents containing keyword ti , to avoid 
this item being zero and the divisor being zero, it is gen-
erally expressed as 1+

∣

∣

{

j : ti ∈ dj
}∣

∣.
TF denotes the number or frequency of a word in the 

article. The word is essential if a keyword appears mul-
tiple times in an accident record document. IDF repre-
sents the recognition degree of a keyword in the accident 
record document. The larger IDF value means the key-
word is essential in this document and vice versa. TF-IDF 
integrates the advantages of TF and IDF [70].

Text clustering analysis
Clustering is widely applied in machine learning and data 
mining as a standard data research method. The common 
clustering methods are the minimum distance within the 
group and the maximum distance between groups [71]. 
The basic idea of the K-means algorithm proposed by 
MacQueen [72] is to divide all objects into K clustering 
centers according to the nearest principle. The similarity 
between texts is measured by Euclidean distance. Before 

(2)TF − IDFi,j = tf i,j × idf i

(3)tf i,j =
ni,j

∑

Knk ,j

(4)idf i = log
|D|

1+ |
{

j : ti ∈ dj
}

|

K-means clustering, we need to determine the K value 
and the number of clusters. Randomly obtain K initial 
cluster centers and iterate the average similarity between 
documents until the optimal solution is derived.
K-means clustering algorithm takes the sum of squares 

errors (SSEs) as the objective function to minimize the 
SSEs between texts in K clusters. The cluster center ei of 
cluster Ei can be expressed as:

The SSE between texts is calculated as follows:

Where, x represents the text object, Ei is the ith cluster, 
ni denotes the number of samples therein, and ei is the 
center of cluster Ei.

Peter [73] first proposed the contour coefficient to cal-
culate the K value in K-means text clustering, which can 
judge the text clustering effect. Averaging the contour 
coefficients of all vectors is the contour coefficient of the 
cluster. The contour coefficient’s absolute value is not 
greater than 1. The larger the average value of the con-
tour coefficient, the better the text clustering effect.

Results
Database
The data in this paper comes from a large coal chemi-
cal enterprise in China. The group has more than a 
dozen secondary units, such as a coking plant, methanol 
plant, olefin plant, and power company. The company 
has formulated safety management regulations by rel-
evant national laws, such as “Classification Standard for 
Casualty Accidents of Enterprise Employees” (GB6441), 
“Identification of Labor Ability and Disability Grade of 
Employees Caused by Industrial Injury and Occupational 
Disease” (GB/T16180), “Byelaw Governing Reporting, 
Investigation and Handling of Production Safety Acci-
dents” (An order by PRC State Council No. 493), and 
conducted daily safety management and accident investi-
gation under regulations.

The workflow for accident investigation is shown in 
Fig. 5. During the accident investigation, the safety tech-
nician and safety supervisor are the backbone of promot-
ing the smooth progress of the accident investigation. To 
ensure the objectivity and authenticity of the accident 
report, the responsible person related to the accident 
cannot be a member of the accident investigation team. 
After the accident investigation, the safety department 

(5)ei =
1

ni

∑

n∈EI

x

(6)SSE =

K
∑

i=1

∑

n∈Ei

cos(ei, x)
2
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will prepare the accident report as required according to 
the collected data.

The database used in this paper consists of 484 accident 
records generated by SMS from 2015 to 2020; Additional 
file 2 lists information from two of the accident reports. 
The accident records contain all accident information of 
the enterprise, including accident position, accident time, 
accident level, accident nature, consequence degree, and 
accident process.

The database used in the work presented here records 
the accident information of the sample enterprises in a 
certain period of actual production. Because all second-
ary units conducted daily safety management under the 
safety management rules and regulations formulated by 
the group safety department, all safety managers and on-
site operators unified the rules and regulations. The acci-
dent data can reflect various risk factors in enterprises, 
and it is feasible to use the method proposed in this paper 
to identify enterprise risk factors.

Correlation analysis of accidents at different organizational 
levels
A statistical analysis of the company’s accidents from 
2015 to 2020 is conducted from the organizational level 
perspective (Table 1). The ratio of group-level, unit-level, 
and workshop-level accidents is 1:3:12; this division dra-
matically reduces the difference between accidents and 
helps find common causes at different organizational 
levels.

To more intuitively display the annual change trend of 
accidents at different organizational levels, a trend chart 
of accident rate change has been prepared, as shown in 
Fig. 6. The trend of change in unit-level and group-level 
accident rates is highly similar. In contrast, the changing 
trend in both is opposite to that in the workshop-level 
accident rate. Spearman correlation analysis is performed 
among the group, unit, and workshop accident rates, and 
the results are shown in Table 2. The correlation coeffi-
cient between the group-level accident rate and the unit-
level accident rate is 0.657, which passes the significance 
test at 0.05,, showing a significant positive correlation 
between the unit-level accident rate and group-level acci-
dent rate. In enterprise safety management, rectification 
measures should be implemented for unit-level acci-
dents. Reducing the unit accident rate can also reduce 
group-level accidents and overcome the difficulty of 

Fig. 5 Proposed workflow through the accident investigation module 

Table 1 Annual accident statistics of sample enterprises at 
different organizational levels

Year Group-level Unit-level Workshop-
level

2015 5 23 60

2016 4 11 79

2017 4 11 70

2018 5 11 67

2019 6 12 51

2020 7 12 46
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finding causal factors because the number of group-level 
accidents is too small. The group-level and unit-level 
accident rates negatively correlate with the workshop-
level accident rates; the correlation coefficients are -0.594 
and -0.857, respectively, and pass the significance test at 
the level of 0.05. The enterprise accident data are divided 

into different levels of accidents; when the proportion of 
group-level and unit-level accidents is relatively small, the 
proportion of workshop-level accidents is relatively large. 
On the other hand, it can also be explained that when 
workshop-level accidents occur frequently, staff and 
managers will spend more time paying attention to safety 
problems and constantly solve the neglected risks arising 
from minor accidents to avoid more severe accidents.

Text mining analysis
The work divides enterprise accidents into group, unit, 
and workshop levels based on the organizational-level 
accident triangle. The characteristics and risk factors of 
the three levels of accidents will be found by text min-
ing. This paper will conduct text mining on 484 accident 
records, including 373 accident records at the workshop 
level, 80 at the unit level, and 31 at the group level.

Extract keywords
The TF-IDF method assigns weight to accident keywords 
at all levels. The TF-IDF values of each keyword are 
arranged in descending order, as illustrated in Table  3, 
4 and 5. The top 30 accident keywords at all levels are 
displayed. The keywords with a high weight of work-
shop-level accidents include gasifier, boiler, inspection, 

Fig. 6 Trends of accident rate at different organizational levels

Table 2 Correlation analysis of accident rates at different organizational levels

Group-level accident rate Unit-level accident rate Workshop 
accident 
rate

Group-level accident rate Correlation coefficient 1

Significance 0

Unit-level accident rate Correlation coefficient 0.657 1

Significance 0.038 0

Workshop accident rate Correlation coefficient -0.594 -0.857 1

Significance 0.016 0.008 0

Table 3 Weighted values of keywords in workshop-level accident keywords (top 30)

No Keywords TF-IDF No Keywords TF-IDF No Keywords TF-IDF

1 Gasifier 0.1041 11 Flow 0.0472 21 Furnace shutdown 0.0308

2 Boiler 0.0715 12 Overhaul 0.0458 22 Surge 0.0307

3 Central Control Room 0.0698 13 Discover 0.0423 23 Gasification 0.0302

4 Load 0.0601 14 Interlock 0.0404 24 Scheduling 0.0293

5 Check 0.0590 15 Pressure 0.0386 25 Pulverized coal 0.0287

6 Induced draft fan 0.0589 16 Valve 0.0331 26 Meter 0.0283

7 Fan 0.0550 17 Start-up 0.0322 27 Compressor 0.0280

8 Running 0.0531 18 Trip 0.0322 28 Conversion 0.0280

9 Workshop 0.0518 19 Switch 0.0319 29 Shut down 0.0277

10 Liquid level 0.0518 20 Stop 0.0319 30 Economizer 0.0257



Page 9 of 18Li et al. BMC Public Health           (2024) 24:39  

induced draft fan, compressor, economizer, liquid level, 
and tripping. It indicates that workshop-level acci-
dents are mostly related to this equipment. The accident 
records demonstrate that the keywords with high weight 
ranking can accurately reflect the frequent workshop-
level accidents.

The keywords with a high weight of unit-level acci-
dents include coke oven gas, interlock, gasifier, induced 
draft fan, reactor, and pipeline, suggesting that unit-level 
accidents are mostly related to the above keywords. The 
accident records show that the causes can be classified as 
coke oven gas leakage, pipeline rupture, induced draft fan 
component damage, and excessive fluctuation of process 
parameters.

The keywords with high weights among group-level 
accident reports include reactor, coke quenching vehicle, 
pressure, liquid level, coking plant, compressor, vibration, 
and pure benzene, implying that group-level accidents 
are mostly related to the above keywords. By comparing 
the accident records, group-level accidents are found to 
be mainly death and severe injury accidents caused by 
toxic substance leakage, mechanical injury and safety 

barrier damage, environmental accidents caused by 
ammonia and raw gas leakage, shutdown accidents aris-
ing from equipment damage, and excessive fluctuation of 
process parameters.

Text clustering analysis
The contour coefficient is calculated for the text data of 
accident records at different levels (Fig.  7). The corre-
sponding contour coefficient value is the largest when the 
K values of workshop-level, unit-level, and group-level 
accident clusters are 5, 5, and 4. The optimal number of 
clusters for K-means text clustering of workshop-level, 
unit-level, and group-level accidents are 5, 5, and 4, 
respectively.

Programming Python conducts K-means cluster analy-
sis on accident records at different levels. The clustering 
result of workshop-level accidents is shown in Fig. 8; see 
Additional file 3 for detailed results.

The accident records in the five clusters are 181, 84, 
41, 40, and 27, respectively. The accident type, high-fre-
quency keywords, and accident cause analyses of each 
cluster are displayed in Table  6. The accident types of 

Table 4 Weighted values of keywords in unit-level accidents (top 30)

No Keywords TF-IDF No Keywords TF-IDF No Keywords TF-IDF

1 Scene 0.1000 11 Pipeline 0.0437 21 Display 0.0306

2 Central control room 0.0954 12 Compressor 0.0427 22 Stop 0.0304

3 Coke oven gas 0.0795 13 Load 0.0393 23 Pressure relief 0.0304

4 Interlock 0.0729 14 Liquid level 0.0390 24 Supercharger 0.0304

5 Gasifier 0.0604 15 Slag lock bucket 0.0376 25 Synthesis 0.0300

6 Scheduling 0.0544 16 Running 0.0372 26 Close 0.0300

7 Workshop 0.0497 17 Work 0.0371 27 Methanol 0.0296

8 Notice 0.0490 18 Pressure 0.0365 28 Main operation 0.0289

9 Induced draft fan 0.0447 19 Overhaul 0.0320 29 Water seal 0.0286

10 Reactor 0.0441 20 Flow 0.0313 30 Check 0.0285

Table 5 Weighted values of keywords in group-level accidents (top 30)

No Keywords TF-IDF No Keywords TF-IDF No Keywords TF-IDF

1 Reactor 0.1028 11 Workshop 0.0470 21 Fan 0.0357

2 Scene 0.0777 12 Be on duty 0.0454 22 Conversion 0.0356

3 Coke quenching car 0.0648 13 Central control room 0.0449 23 Boiler 0.0356

4 Pressure 0.0640 14 Rotating speed 0.0426 24 Electric machinery 0.0355

5 Liquid level 0.0623 15 High-pressure cylinder 0.0424 25 Coke quenching 0.0349

6 Main operation 0.0598 16 Stop 0.0399 26 Lean liquid pump 0.0349

7 Scheduling 0.0548 17 Pure benzene 0.0399 27 Surge 0.0330

8 Coking plant 0.0542 18 Feedwater pump 0.0377 28 Propylene 0.0321

9 Compressor 0.0532 19 Check 0.0365 29 Lubricating oil 0.0318

10 Vibration 0.0504 20 Loading 0.0362 30 Pipeline 0.0317
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cluster 0 are mainly personal injury accidents; the main 
reason is unsafe personal behavior, and the unsafe state 
of things causes only a few accidents. Cluster 1 is mainly 
the production accident of shutdown and maintenance 
caused by the damage of induced draft fan, motor, and 
other equipment components. Cluster 2 primarily refers 
to shutdown and maintenance accidents caused by econ-
omizer leakage and pipeline rupture. Cluster 3 mainly 
represents shutdown accidents caused by excessive fluc-
tuation of process parameter values and environmental 
accidents caused by hazardous substance leakage. Cluster 
4 mainly refers to equipment-tripping accidents caused 
by untimely cleaning of sundries or malfunction, which 
also reflects the management vulnerability of the enter-
prise in terms of cleanliness and hygiene.

In the workshop-level accidents cluster, the propor-
tions of personal injury, property loss, and environ-
mental accidents are 29%, 69%, and 2%. The leading 
causes of personal injury accidents are weak safety 
awareness of employees, failure to take protective 
measures, illegal operation, or nonstandard operation. 
The leading causes of property loss accidents are fire 
caused by a short circuit, untimely cleaning of sun-
dries, and interlocking shutdown caused by equipment 
failure, leakage, and excessive fluctuation of process 
parameters. The leading cause of environmental acci-
dents is the excessive discharge of pollutants caused by 
equipment failure and leakage.

Fig. 7 Clustering contour coefficients of accidents at different levels

Fig. 8 Visual clustering result of workshop-level accidents
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The cluster result analysis of unit-level accidents is 
shown in Fig. 9, and accident cause analyses of each clus-
ter are displayed in Table 7.

Cluster 0 mainly includes shutdown maintenance and 
environmental accidents caused by pipeline blockage 
and device damage. Cluster 1 mainly denotes personal 
injury accidents caused by employees’ non-stand-
ard operation or failure to take protective measures. 
Cluster 2 mainly refers to shutdown accidents caused 
by power system faults such as short-circuiting and 
substation tripping. Cluster 3 mainly denotes traffic 

accidents. Cluster 4 mainly refers to equipment trip-
ping accidents caused by excessive fluctuation of pro-
cess parameters.

Among unit-level accidents, personal injury, property 
loss, and environmental accidents accounted for 23%, 
61%, and 16%, respectively. The leading cause of per-
sonal injury accidents is the non-standard operation of 
employees. The leading causes of property loss accidents 
are equipment failure, excessive fluctuation of process 
parameters, pipeline blockage, and leakage. The lead-
ing causes of environmental accidents are the excessive 

Fig. 9 Visual clustering result of unit-level accidents

Table 7 Cluster analysis of unit-level accidents

Cluster No The accident types High-frequency keyword Main causes of accidents

0 Production accident, environmental pollu-
tion accident

Hydrocarbon, flare, black smoke, reactor, 
pipeline, purge, blocking, flow, liquid level, 
decrease, locking

Pipeline blockage, device damage

1 Fire accident, production accident, mechan-
ical injury accident, scald accident

Non-standard, leakage, fire, smoke, flame, 
interlocking, shutdown, damage, trip

The operations are not standardized, and pro-
tective measures are not taken

2 Production accident Circuit, substation, transformer, cable, 
switch, trip, current, high, electric motor

Short circuit, equipment power loss, voltage 
fluctuation, power trip

3 Traffic accident Collision, vehicle, carelessness, bus, knock-
down, fracture, injury

Lack of safety awareness and failure to com-
ply with traffic rules

4 Production accident Reaction gas, compressor, temperature, 
pressure, vibration, differential pressure, 
liquid level, overtop, too fast, interlock, trip

Excessive temperature / pressure / liquid level 
/ vibration fluctuation
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emission of harmful gases caused by substation failure, 
line short circuits, and control system failure.

The cluster result analysis of group-level accidents 
is shown in Fig. 10, and accident cause analyses of each 
cluster are displayed in Table 8.

Cluster 0 mainly refers to personal injury accidents 
caused by unsafe factors such as employees’ weak safety 
awareness and illegal operations. Cluster 1 mainly 
denotes equipment shutdown accidents caused by exces-
sive fluctuation of process parameters. Cluster 2 mainly 
indicates equipment tripping accidents caused by dam-
age and short-circuiting. Cluster 3 mainly involves pro-
duction accidents, but many causes include damage to 
equipment components, excessive fluctuation of process 
parameters, and untimely removal of sundries. The clus-
tering effect is poor due to the small number of accidents.

In the group-level accidents cluster, personal injury, 
property loss, and environmental accidents accounted 
for 22%, 64%, and 14%, respectively. Personal injury acci-
dents cause death and severe injury, and the main risk 
factors are illegal operations and failure to take protective 
measures. The main risk factor of property loss accidents 
is the failure of the compressor, separator, fan, and trans-
former. The main risk factor of environmental accidents 
is the leakage of pipes, flanges, and valves.

The clustering results show that the most significant 
proportion of accidents at the three levels is human 

factors, such as insufficient safety awareness of employ-
ees, illegal operations, and failure to inspect and repair 
equipment as required. It indicates that enterprises 
urgently need to train employees in safety knowledge and 
skills in future safety management. The leading causes 
of workshop-level accidents are equipment damage and 
pipeline leakage. It is necessary to conduct targeted main-
tenance and replacement of equipment components, 
such as induced draft fans, compressors, and economiz-
ers, and establish an assessment mechanism for regular 
maintenance. Power system faults account for a high 
proportion of unit-level and group-level accidents. Such 
accidents occur infrequently, but the degree of harm is 
enormous; it is necessary to strengthen the operation and 
maintenance of such power systems.

Practical application
Improvement measures
Based on the risk factors identified by cluster analysis 
results, the enterprise has rectified activities from the 
perspective of unsafe human behavior and the unsafe 
state of objects. Due to inadequate safety awareness, 
irregular operations, and failure to take proper protec-
tive measures among employees, the vast majority of 
accidents have occurred. The company has established 
a safety inspection team directly responsible for senior 
leaders, providing two months of safety knowledge and 

Fig. 10 Visual clustering result of group-level accidents
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technical training for all employees. The safety inspec-
tion team evaluates the training results of employees, 
and employees who fail the assessment are not allowed to 
take up their positions. In addition, an online knowledge 
learning and testing system has been designed based on 
different departments and job responsibilities. Employees 
can log in to the system through their mobile phones for 
problem-seeking and learning and must complete 8 h of 
learning tasks monthly. The department head randomly 
selects test questions from the system every month for 
testing, and the test results are included in the employee’s 
performance evaluation.

The enterprise has updated and maintained the fre-
quently malfunctioning equipment and systems identi-
fied through cluster analysis of group-level, unit-level, 
and workshop-level accidents, such as induced draft 
fans, compressors, and power systems. In particular, 
the frequency of inspection and maintenance has been 
increased for critical equipment and components, and 
a comprehensive daily, weekly, monthly, and quarterly 
inspection and maintenance system has been developed. 
Finally, after addressing all local risks, the enterprise has 
developed standardized operation manuals and institu-
tional norms for personnel, equipment, materials, and 
environmental factors involved in the production pro-
cess, forming a standard model based on scientific and 
rigorous work processes and long-term accumulated 
experience and habits, forming a deeply rooted code of 
conduct in the minds of members, minimizing uncon-
trollable factors, and effectively helping the enterprise 
maintain a high level of safety.

Implementation effect
The safety situation of the enterprise has been dramati-
cally improved after rectification measures. We have 

statistics on the accidents in 2021, as shown in Fig.  11. 
The accidents in 2021 have decreased by 29% and 25% 
compared with 2019 and 2020. Compared with 2020, 
workshop-level, unit-level, and group-level accidents 
decreased by 13%, 58%, and 43%, respectively. From the 
perspective of accident types, personal injury and prop-
erty loss accidents decreased by 19% and 27%, respec-
tively, compared with 2020, and no environmental 
accident occurred in two years. The accidents have been 
effectively reduced by formulating measures to solve the 
two main risk factors of unsafe behaviors, such as weak 
safety awareness of employees, illegal operation, and fre-
quent equipment damage.

Discussion
The text cluster analyses of workshop-level, unit-level, 
and group-level accidents are conducted. The result indi-
cates that the accidents of the sample enterprises are 
mainly personal injury accidents, production accidents, 
environmental pollution accidents, and quality acci-
dents. The leading causes of personal injury accidents are 
employees’ unsafe behaviors, such as poor safety aware-
ness, non-standard operation, illegal operation, untimely 
communication, etc. The leading causes of production 
accidents, environmental pollution accidents, and qual-
ity accidents include the unsafe state of materials, such 
as equipment damage, pipeline leakage, short-circuiting, 
excessive fluctuation of process parameters, etc. How-
ever, some accidents occur under the combined actions 
of unsafe human behavior and an unsafe material state. 
For example, employees are suddenly injured by steam 
pipe network leakage during work, and the operation 
is not standardized during maintenance, which further 
leads to excessive fluctuation of process parameters and 
equipment shut-down.

Fig. 11 Comparative analysis of the number of accidents
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The risk factors of the enterprise can be effectively 
identified through accident cluster analysis. Enterprises 
should strengthen the training of employees’ safety 
knowledge and professional skills, improve the assess-
ment mechanism, and enhance employees’ safety aware-
ness and familiarity with the operation process to reduce 
employees’ unsafe behaviors. Given the unsafe state of 
objects, a more reasonable inspection and maintenance 
process system should be formulated, and defective 
equipment and accessories should be replaced in time. In 
particular, it is necessary to study the maintenance of the 
frequently faulty equipment identified above, such as the 
induced draft fan, motor, compressor, distribution room, 
and substation.

Although workshop-level accidents occur most fre-
quently, the adverse effects are minor, and the hid-
den risks can be easily eliminated by adopting a series 
of improvement measures. Due to the small number of 
group-level accidents, the poor effect of cluster analysis, 
and the unclear division of accident types and causes, the 
accident triangle at the organization level can make up 
for this defect. So, as the number of unit-level accidents 
is positively related to group-level accidents, the hidden 
dangers of unit-level accidents can be solved, thus reduc-
ing and avoiding group-level accidents.

Conclusion
This article improved the accident triangle and divided 
chemical accidents into group-level, unit-level, and 
workshop-level. Based on 484 accident reports of a large 
chemical enterprise in China, the Spearman correlation 
coefficient method was used to analyze the rationality 
of the accident classification. Based on accident clas-
sification, TF-IDF and K-means algorithms are used to 
extract keywords and text clustering analysis is carried 
out for accidents at all levels. The main conclusions are 
as follows:

(1) Compared with the traditional accident classifica-
tion method, the accident triangle proposed in this 
paper based on the organizational level dramatically 
reduces the differences between accidents, helps 
enterprises quickly identify risk factors, and pre-
vents accidents.

(2) There is a significant positive correlation between 
the unit-level and the group-level accident rate. 
Enterprises can prevent group-level accidents by 
reducing the number of unit-level accidents, which 
solves the problem that it is difficult to find the 
causes of group-level accidents due to the small 
number.

(3) This method has achieved significant results in 
the one-year application process in a large chemi-

cal enterprise. Compared with 2020, workshop 
level, unit level, and group level accounts have been 
increased by 13%, 58%, and 43%, respectively. In the 
future, more enterprise data should be selected to 
validate this method.
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