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Abstract 

Background  COVID-19, caused by SARS-CoV-2, presents distinct diagnostic challenges due to its wide range 
of clinical manifestations and the overlapping symptoms with other common respiratory diseases. This study focuses 
on addressing these difficulties by employing machine learning (ML) methodologies, particularly the XGBoost algo-
rithm, to utilize Complete Blood Count (CBC) parameters for predictive analysis.

Methods  We performed a retrospective study involving 2114 COVID-19 patients treated between December 2022 
and January 2023 at our healthcare facility. These patients were classified into fever (1057 patients) and pneumonia 
groups (1057 patients), based on their clinical symptoms. The CBC data were utilized to create predictive models, 
with model performance evaluated through metrics like Area Under the Receiver Operating Characteristics Curve 
(AUC), accuracy, sensitivity, specificity, and precision. We selected the top 10 predictive variables based on their sig-
nificance in disease prediction. The data were then split into a training set (70% of patients) and a validation set (30% 
of patients) for model validation.

Results  We identified 31 indicators with significant disparities. The XGBoost model outperformed others, 
with an AUC of 0.920 and high precision, sensitivity, specificity, and accuracy. The top 10 features (Age, Monocyte%, 
Mean Platelet Volume, Lymphocyte%, SIRI, Eosinophil count, Platelet count, Hemoglobin, Platelet Distribution Width, 
and Neutrophil count.) were crucial in constructing a more precise predictive model. The model demonstrated strong 
performance on both training (AUC = 0.977) and validation (AUC = 0.912) datasets, validated by decision curve analysis 
and calibration curve.

Conclusion  ML models that incorporate CBC parameters offer an innovative and effective tool for data analysis 
in COVID-19. They potentially enhance diagnostic accuracy and the efficacy of therapeutic interventions, ultimately 
contributing to a reduction in the mortality rate of this infectious disease.
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Background
 The novel coronavirus (SARS-CoV-2), first identified in 
Wuhan, Hubei Province, China, in 2019, subsequently 
triggered a global pandemic. The virus primarily spreads 
through respiratory droplets and aerosols, while con-
tact with contaminated objects can also potentially lead 
to infection. Post-infection, patients may exhibit diverse 
symptoms like fever due to the immune response to the 
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virus. The severity and duration of these symptoms vary 
widely among individuals, potentially progressing into a 
lung infection known as COVID-19. The progression of 
COVID-19 involves multiple factors, such as individual 
immunity, underlying diseases, epidemiological history, 
exposure dose, and more [1]. Delayed or inadequate 
treatment of COVID-19 may escalate into critical com-
plications, including acute respiratory distress syndrome 
(ARDS), multiple organ failure, thrombosis, and other 
potentially fatal conditions.

COVID-19 diagnosis largely depends on chest imaging; 
however, its utility is often limited in healthcare centers 
and community hospitals due to constraints such as lack 
of professional equipment, disparities in technical exper-
tise, and radiation risks. Furthermore, the clinical mani-
festations and radiographic features of COVID-19 have 
many similarities with other respiratory infections. Fur-
ther, the clinical manifestations and radiographic features 
of COVID-19 share many similarities with other respira-
tory infections, which do not fully reflect the severity 
and prognosis of the disease, nor rule out other poten-
tial diagnoses [2]. As such, there is an urgent need for a 
novel, portable, and rapid predictive tool for broader 
application in clinical settings.

Complete Blood Count (CBC), a routine and cost-
effective blood test, provides vital information about 
various blood parameters. Recent years have seen the 
introduction of new indicators, such as the Neutrophil to 
Lymphocyte Ratio (NLR), derived NLR (dNLR), Platelet 
to Lymphocyte Ratio (PLR), Monocyte to Lymphocyte 
Ratio (MLR), and Systemic Inflammatory Response Index 
(SII), proposed as biomarkers for assisting diagnosis, 
assessing disease progression, and evaluating risk [3, 4]. 
However, studies leveraging these indicators for COVID-
19 prediction remain limited. Artificial intelligence (AI) 
and machine learning are increasingly employed across 
various fields, with significant innovations in disease pre-
diction, including cardiovascular diseases, neurodegen-
erative disease [5], cancer [6], neurodegenerative diseases 
[7], and infectious diseases [8]. AI can provide relatively 
accurate and reliable predictions based on diverse data 
sources and models.

In this study, we seek to integrate CBC parameters with 
machine learning to construct an online predictive model 
for COVID-19, aiming to enhance the efficiency of diag-
nosis and treatment for this global health concern.

Methods
Study population
In this retrospective study, we analyzed a cohort of 
2561 patients with confirmed COVID-19, who vis-
ited our clinic between December 2022 and January 
2023. All cases were confirmed by reverse transcription 

polymerase chain reaction (RT-PCR) for SARS-CoV-2. 
Based on the inclusion and exclusion criteria, a total of 
2114 COVID-19 patients were included for analysis. The 
patients were stratified into two groups according to 
clinical manifestations: the fever group (1057 cases) and 
the pneumonia group (1057 cases). This study received 
approval from the Ethics Committee of the First Peo-
ple’s Hospital of Hangzhou (Ethics Approval Number 
ZN2023018).

We also collected an external validation cohort of 
513 patients with a confirmed diagnosis of COVID-
19 who presented to the same institution for the first 
time between December 2022 and January 2023. These 
patients were included for external validation purposes, 
undergoing the same treatment protocols as those 
applied in the initial cohort for comparative analysis and 
assessment.

Inclusion Criteria: Patients aged ≥ 18 years, exhibiting 
clinical symptoms such as fever, cough, sputum produc-
tion, difficulty breathing, chest pain, fatigue, muscle or 
body aches, headache, new loss of taste or smell, sore 
throat, congestion or runny nose, nausea or vomiting, 
and diarrhea. Evidence of new or progressive pulmo-
nary consolidation or infiltration on chest X-ray or CT 
scan was required, along with RT-PCR confirmed SARS-
CoV-2 positivity. Evidence of new or progressive pulmo-
nary consolidation or infiltration on chest X-ray or CT 
scan was required, along with RT-PCR confirmed SARS-
CoV-2 positivity.

Exclusion Criteria: Presence of other severe or unsta-
ble functional organ abnormalities or systemic diseases 
(e.g., heart failure, liver cirrhosis, renal failure, malignant 
tumors, etc.); known allergy or contraindication to cer-
tain medications (such as allergies to penicillin or mac-
rolides, or the use of CYP3A4 inducers or inhibitors); 
receipt of other therapeutic anti-infective drugs within 
24  h before enrollment, such as antibacterial drugs, or 
the use of antifungal or antiparasitic drugs within 72  h 
before enrollment.

Data collection
All patient data was obtained from the Hospital Infor-
mation System (HIS). This included demographic 
information such as age and gender, as well as clinical 
diagnoses. Additionally, laboratory tests were conducted 
on all patients, with data extracted from the Laboratory 
Information System (LIS). These tests comprised White 
Blood Cells (WBC), Neutrophil percentage (Neu.%), 
Lymphocyte percentage (Lym.%), Monocyte percent-
age (Mon.%), Eosinophil percentage (Eos.%), Basophil 
percentage (Bas.%), Neutrophil count (Neu.#), Lympho-
cyte count (Lym.#), Monocyte count (Mon.#), Eosino-
phil count (Eos.#), Basophil count (Bas.#), Hemoglobin 
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(HGB), Red Blood Cells (RBC), Hematocrit (HCT), Mean 
Corpuscular Volume (MCV), Mean Corpuscular Hemo-
globin (MCH), Mean Corpuscular Hemoglobin Concen-
tration (MCHC), Red Cell Distribution Width (RDW-cv), 
Platelet count (PLT), Plateletcrit (PCT), Mean Platelet 
Volume (MPV), Platelet Distribution Width (PDW), and 
high-sensitivity C-Reactive Protein (hs-CRP). All blood 
samples were processed using the BC-7500 Automatic 
Hematology Analyzer (Mindray) using the manufac-
turer’s reagent kits. Our laboratory ensured the quality 
of results through regular internal quality control and 
required external quality assessments.

Derived inflammatory indices
We derived several inflammation indices based on the 
collected cell counts, as follows:

(1)	 Systemic Inflammation Index (SII): Neutrophil ╳ 
Platelet / Lymphocyte

(2)	 Systemic Inflammation Response Index (SIRI): 
Neutrophil ╳ Monocyte / Lymphocyte

(3)	 Aggregated Inflammation Index (AISI): Neutrophil 
╳ Platelet ╳ Monocyte / Lymphocyte

(4)	 Neutrophil to Lymphocyte Ratio (NLR): Neutrophil 
/ Lymphocyte

(5)	 Platelet to Lymphocyte Ratio (PLR): Platelet / Lym-
phocyte

(6)	 Lymphocyte to Monocyte Ratio (LMR): Lympho-
cyte / Monocyte

(7)	 NLPR: Neutrophil ╳ Lymphocyte ╳ Platelet
(8)	 Derived Neutrophil to Lymphocyte Ratio (dNLR): 

(WBC - Lymphocyte) / Lymphocyte

These derived indices were used in our machine learn-
ing model to enhance the predictive ability for COVID-
19 diagnosis.

Model development using statistical analysis and machine 
learning
All statistical data were analyzed using R software on 
Windows and the Deepwise and Beckman Coulter DxAI 
platform (https://​dxonl​ine.​deepw​ise.​com). Categori-
cal variables are represented as frequencies and per-
centages, and continuous variables are represented as 
mean ± standard deviation (SD) or median with inter-
quartile range (IQR). Clinical features and complete 
blood count results were compared using Student’s t-test, 
Mann–Whitney test, or chi-square test. Variables asso-
ciated with pneumonia were identified using Spearman 
correlation analysis, with p < 0.05 considered statistically 
significant.

The predictive model was constructed using the Deep-
wise and Beckman Coulter DxAI platform. Features were 

filtered using significance tests and correlation analysis. 
Firstly, significance tests were carried out to select the 
variables that are significantly different between the fever 
group and the pneumonia group. The statistical differ-
ence was calculated by Student’s t-test, Mann-Whitney 
test, or chi-square test with P < 0.05 was considered sta-
tistically significant. Then, we employed feature cor-
relation analysis discarded feathers with a correlation 
coefficient below 0.9.

The initial step in feature selection involved comput-
ing the Pearson correlation coefficient (PCC) among all 
features to identify highly correlated pairs. Any pair with 
a PCC value exceeding 0.9 had one feature randomly 
removed to reduce redundancy and potential multicol-
linearity [9]. Using the selected features, four types of 
predictive models were constructed: Adaboost, XGBoost, 
Random Forest, and LogisticRegression. To further 
enhance the performance of these models, a refinement 
step was implemented by ranking the features accord-
ing to their importance and selecting the top ten features 
from the best performing model. This ensures that the 
models are built on the most influential features, poten-
tially improving their predictive accuracy.

Our dataset was split into a 70% training set and a 30% 
validation set for the evaluation of model performance. 
Model performance was assessed using Receiver Oper-
ating Characteristic (ROC) curves, with the Area Under 
the Curve (AUC) calculated for each model. An AUC 
value closer to 1.0 indicates stronger predictive power. 
Calibration curves were generated to evaluate the prox-
imity of the model’s predicted risk to the actual risk, with 
Decision Curve Analysis (DCA) applied to assess the 
decision utility of each model.

Results
Comparison of clinical features
This study retrospectively reviewed 2561 COVID-19 
patients who visited the Fever Clinic of Hangzhou First 
People’s Hospital from December 2022 to January 2023. 
Following the screening based on inclusion and exclu-
sion criteria, a total of 2114 COVID-19 patients were 
finally included. According to clinical characteristics, the 
patients were divided into a fever group (n = 1057) and 
a pneumonia group (n = 1057). The study workflow is 
depicted in Fig. 1.

There were no statistically significant differences 
between the two groups in terms of Hs-CRP and Bas.% 
(p > 0.05). The proportion of female patients was sig-
nificantly higher than male patients in both groups 
(p < 0.001). Patients in the pneumonia group were signifi-
cantly older than those in the fever group (Z = 628478.5, 
p < 0.001). In the fever group, the levels of AISI, SII, SIRI, 
NLR, PLR, dNLR, Neu.%, Mon.%, Neu.#, Mon.#, HGB, 

https://dxonline.deepwise.com
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RBC, HCT, MCV, MCH, MCHC, MPV, and PDW were 
all significantly elevated compared to the pneumonia 
group, with each parameter showing a P value < 0.001, 
indicating strong statistical significance. Contrastingly, 
the Fever group displayed significantly lower levels of 
NLPR, LMR, Lym.%, Eos.%, Lym.#, Eos.#, PLT, and PCT 
compared to the Pneumonia group (all P < 0.001), except 
for WBC, where the difference was also significant but 
with a P value of 0.002, as shown in Table 1.

Correlation analysis with COVID‑19
Spearman’s correlation analysis method was employed 
to assess the relationship between various indicators 
and COVID-19. As illustrated in Fig. 2, significant posi-
tive correlations were identified between AISI and SII, 
SIRI, NLR, dNLR, Neu.# (with correlation coefficients 
of r = 0.92, r = 0.95, r = 0.81, r = 0.8, r = 0.85, respec-
tively). Significant positive relationships were also found 
between SII and SIRI, NLR, PLR, Neu.%, Neu.# (with 

correlation coefficients of r = 0.89, r = 0.92, r = 0.84, 
r = 0.91, r = 0.82, respectively). Furthermore, SIRI showed 
significant positive correlations with NLR, dNLR, Neu.%, 
Neu.# (with correlation coefficients of r = 0.91, r = 0.88, 
r = 0.85, r = 0.82, respectively). NLR was significantly pos-
itively correlated with PLR, dNLR, Neu.% (with correla-
tion coefficients of r = 0.81, r = 0.8, r = 0.98, respectively). 
Additionally, there was a significant positive relationship 
between LMR and Lym.% (r = 0.86), WBC and Neu.# 
(r = 0.84), Lym.% and Lym.# (r = 0.83), Eos.% and Eos.# 
(r = 0.96). Besides, HGB showed a significant positive 
correlation with HCT (r = 0.98), as did RBC with HCT 
(r = 0.82), MCV with MCH (r = 0.93), PLT with PCT 
(r = 0.95), and MPV with PDW (r = 0.91).

Prediction model and performance
To predict the risk of COVID-19, we utilized the Deep-
wise & Beckman Coulter DxAI research platform 
(https://​dxonl​ine.​deepw​ise.​com/) for data analysis. 

Fig. 1  Study flow showing patients excluded from the study and the final cohort included in the study

https://dxonline.deepwise.com/
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Initially, 31 variables were significantly different between 
fever group and pneumonia group. Subsequently, a fea-
ture correlation analysis was performed on 31 indica-
tors, eliminating features with a correlation coefficient 
lower than 0.9; these screened features were used for 

subsequent model training. To ensure the validity of the 
data, we conducted cross-validation with the dataset 
divided into 70% for training and 30% for validation.

In this study, we attempted four common machine 
learning models: Adaboost, XGBoost, RandomForest, 

Table 1  Baseline clinical and biochemical characteristics of all patients

AISI aggregate index of systemic inflammation (neutrophil ╳ platelet ╳ monocyte to lymphocyte ratio), dNLR derived neutrophil to lymphocyte ratio, MLR monocyte 
to lymphocyte ratio, MPR mean platelet volume to platelet ratio, NLR neutrophil to lymphocyte ratio, NLPR neutrophil to lymphocyte ╳ platelet ratio, PLR platelet to 
lymphocyte ratio, SII systemic immune-inflammation index (neutrophil ╳ platelet to lymphocyte ratio), SIRI systemic inflammation response index (neutrophil ╳ 
monocyte to lymphocyte ratio), WBC White blood cells, HGB Haemoglobin, HCT Hematocrit, MCV mean corpuscular volume, MCH mean corpuscular hemoglobin, 
MCHC mean corpuscular hemoglobin concentration, RDW Red blood cell distribution width, PLT Platelet, PCT Thrombocytocrit, MPV mean platelet volume, 
PDW platelet distribution width, hs-CRP hypersensitive C-reactive protein
* p < 0.05;
** p < 0.001

Variable Group Z/x² p-value

fever(n = 1057) pneumonia(n = 1057)

Age 31.00(23.00–56.000) 33.00(24.00–65.00) 628478.5 0.000**

Gender 0.000**

Female 673 (63.7%) 534 (50.5%)

Male 384 (36.3%) 523 (49.5%)

AISI 581.00(222.00-1238.57) 229.83(111.96-496.87) 763968.5 0.000**

SII 1033.46(476.00-2052.00) 486.53(261.04-928.33) 766510.0 0.000**

SIRI 3.04(1.28–6.08) 0.98(0.50–2.10) 819337.0 0.000**

NLPR 0.021(0.013–0.032) 0.029(0.019–0.046) 408272.0 0.000**

NLR 5.33(2.71–10.14) 2.04(1.15–4.11) 826663.5 0.000**

PLR 207.50(134.62–346.00) 126.36(89.38-181.43) 802169.5 0.000**

LMR 1.63(1.00-2.75) 3.75(2.33–5.75) 237065.0 0.000**

dNLR 1.67(1.40-2.00) 1.33(1.21–1.50) 854776.0 0.000**

WBC(╳109 L) 6.40(4.90–8.40) 6.70(5.10-9.00) 515015.0 0.002**

Neu. % 75.30(64.60–83.00) 60.20(47.50–72.80) 801109.0 0.000**

Lym.% 14.00(8.00-23.70) 29.60(17.80–41.40) 285206.5 0.000**

Mon.% 8.50(6.50–10.90) 7.20(5.80–9.30) 684413.0 0.000**

Eos.% 0.30(0.10–0.90) 0.90(0.20–2.20) 399141.0 0.000**

Bas.% 0.20(0.10–0.30) 0.20(0.10–0.30) 536631.5 0.108

Neu.#(╳109 L) 4.70(3.30–6.70) 3.80(2.50–5.60) 669622.5 0.000**

Lym.#(╳109 L) 0.90(0.60–1.30) 1.80(1.10–2.90) 254022.0 0.000**

Mon.#(╳109 L) 0.60(0.40–0.70) 0.50(0.40–0.70) 624082.0 0.000**

Eos.#(╳109 L) 0.02(0.01–0.06) 0.06(0.01–0.15) 388349.0 0.000**

Bas.#(╳109 L) 0.01(0.01–0.02) 0.01(0.01–0.02) 510839.0 0.000**

HGB (g/L) 140.00(129.00-152.00) 131.00(122.00-140.00) 735503.5 0.000**

RBC (╳109 L) 4.64(4.31–5.04) 4.56(4.21–4.88) 628034.5 0.000**

HCT 0.42(0.39–0.45) 0.39(0.37–0.42) 722600.5 0.000**

MCV (fl.) 90.00(87.30–92.40) 87.20(83.20–91.10) 719023.5 0.000**

MCH (pg) 30.30(29.30–31.20) 29.10(27.50–30.50) 738029.0 0.000**

MCHC (g/L) 336.00(332.00-341.00) 334.00(328.00-339.00) 667044.5 0.000**

RDW-cv (%) 13.00(12.00–13.00) 13.00(13.00–14.00) 503687.5 0.000**

PLT (╳109 L) 193.00(160.00-236.00) 233.00(173.00-302.00) 400241.0 0.000**

PCT 0.20(0.16–0.23) 0.22(0.17–0.28) 425123.0 0.000**

MPV (fl.) 10.10(9.40–10.80) 9.60(8.90–10.40) 683973.0 0.000**

PDW (fl.) 11.50(10.40–13.00) 10.85(9.70–12.60) 651739.0 0.000**

Hs-CRP 10.00(4.30-21.45) 11.40(2.60–33.60) 501992.5 0.253
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and LogisticRegression. Model performance was evalu-
ated by the area under the receiver operating character-
istic curve (AUC). The results indicated that the XGBoost 
model displayed optimal performance with an AUC 
of 0.920. Comparative models such as RandomForest, 

Adaboost, and Logistic Regression yielded AUCs of 
0.895, 0.894, and 0.867, respectively, as detailed in Fig. 3.

Based on the order of feature weights from high to 
low, the top ten feature weights were selected to con-
struct the XGBoost model, including Age, Mon.%, MPV, 

Fig. 2  Study flow showing patients excluded from the study and the final cohort included in the study

Fig. 3  Receiver operating characteristic curves (ROC) showing the predictions of the four models: XGBoost, Random Forest, Logistic Regression 
and the AdaBoost
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Lym.%, SIRI, Eos.#, PLT, HGB, PDW, and Neu.#. Among 
these, Age had the highest weight, as shown in Fig. 4. The 
model achieved an AUC of 0.977 on the training set, with 
a performance decrease on the validation set, yielding 
an AUC of 0.912. The performance of this model on the 
two subsets can be found in Table 2; Fig. 5a and b. In our 
external validation cohort, which included 513 COVID-
19 patients (171 fever and 342 pneumonia), the predictive 
model showed notable efficacy. The ROC curve analysis 
yielded an AUC of 0.848, sensitivity of 0.719, specificity 
of 0.795, confirming the model’s effectiveness in predict-
ing patient outcomes (Additional Files 1, Supplementary 
Table 1, Supplementary Fig. 1).

 We rigorously evaluated the clinical applicability and 
potential benefits of the predictive model using Decision 
Curve Analysis (DCA). As shown in Fig.  6, this model 
exhibits significant advantages whether on the training 
set or the validation set. Further, as revealed by the cali-
bration curve in Fig. 7a and b, the higher the consistency 
between the predicted and observed probabilities, the 
closer the calibration curve is to the 45-degree line, sug-
gesting our model possesses a strong calibration effect. 
A webpage tool is displayed online through the Deep-
wise and Beckman Coulter DxAI platform, which gener-
ates predictive models based on the current algorithm, 
and can predict the risk of a positive result by setting 
parameters, as shown in Fig. 8. After inputting the CBC 
parameters, the patient could be discriminated as fever 
or pneumonia group with calculated probability. (https://​
dxonl​ine.​deepw​ise.​com/​predi​ction/​index.​html?​baseU​

rl=%​2Fapi%​2  F&​id=​30759​&​topic​Name=​undef​ined&​
from=​share​&​platf​ormTy​pe=​wisdom).

Discussion
In this study, following specific inclusion and exclusion 
criteria, a comprehensive retrospective analysis was 
conducted on 2114 COVID-19 patients. Based on their 
clinical features, patients were categorized into two 
groups: the fever group (n = 1057) and the pneumonia 
group (n = 1057). It was observed that the patients in 

Fig. 4  The top ten feature importance weights

Table 2  Results of the confusion matrix for the training and 
validation sets

AUC Area Under the Curve PPV Positive Predictive Value, NPV Negative Predictive 
Value, AUC_CL Confidence Limits for AUC​

Variable TRANI VAL

Total Sample Size 1479 635

Positive Sample Size 739 318

AUC​ 0.977 0.912

Accuracy 0.914 0.819

Precision 0.915 0.835

Recall 0.912 0.796

F1 Score 0.913 0.815

Sensitivity 0.912 0.796

Specificity 0.915 0.842

PPV 0.915 0.835

NPV 0.912 0.804

AUC_CL 0.98[0.9716–0.9831] 0.91[0.8907–
0.9322]

https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=30759&topicName=undefined&from=share&platformType=wisdom
https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=30759&topicName=undefined&from=share&platformType=wisdom
https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=30759&topicName=undefined&from=share&platformType=wisdom
https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=30759&topicName=undefined&from=share&platformType=wisdom
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the pneumonia group were older compared to those in 
the fever group. This could be attributed to the natu-
ral immunosenescence that accompanies aging, lead-
ing to a decreased immune response and rendering the 
immune system less effective in identifying and elimi-
nating the virus, consequently increasing susceptibility 
to COVID-19. These findings align with the research 
conducted by Petter Brodin and colleagues, who iden-
tified various factors influencing the susceptibility and 
severity of COVID-19 infection and emphasized the 
crucial role of age [10]. This observation further vali-
dates the outcomes of our study.

In our laboratory analysis of hematological param-
eters, out of the 33 indicators evaluated, except for 

Hs-CRP and Bas.%, 31 indicators including WBC, 
Lym.%, Eos.%, Lym.#, Eos.#, PLT, PCT, Neu.%, Mon.%, 
Neu.#, Mon.#, HGB, RBC, HCT, MCV, MCH, MCHC, 
MPV, and PDW showed statistically significant differ-
ences between the two groups. Furthermore, these 31 
indicators were subjected to collinearity analysis, and 
those with correlation coefficients exceeding 0.9 were 
excluded, resulting in the creation of four models (Ada-
boost, XGBoost, RandomForest, LogisticRegression) 
based on the remaining indicators. Among these, the 
XGBoost model demonstrated the best performance 
in terms of AUC, and it automatically selected the key 
feature variables, assigning corresponding weights to 
them.

Fig. 5  a AUC for the Training Sets. b AUC for the Validation Sets
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The XGBoost algorithm has garnered substantial atten-
tion from researchers and has been extensively explored 
for application in predicting various diseases, includ-
ing, but not limited to, forecasting and classifying heart 
diseases [11], establishing diagnostic models for breast 
cancer [12], staging liver cancer [13], optimizing the dos-
age of immunosuppressive drugs in kidney transplant 
patients [14], and analyzing survival factors influencing 
early mortality in colorectal cancer patients [15]. The 
XGBoost algorithm, a machine learning method based 
on gradient boosting trees, is renowned for its efficiency, 
flexibility, and scalability. It leverages abundant data and 
features to construct intricate nonlinear models, captur-
ing risk factors and potential interactions contributing to 
the development of diseases. By integrating multifaceted 
data, including clinical data, radiographic data, and labo-
ratory data, the XGBoost algorithm can establish predic-
tive models that offer physicians accurate judgement and 
decision support, thereby enhancing therapeutic out-
comes and mitigating adverse reactions [16, 17].

Weights are numerical parameters that signify the 
importance of different features or inputs within a model. 
They are learned and adjusted through the training data 
to enhance the model’s ability to fit and predict the data 
accurately. In the realm of clinical diseases, research-
ing weights in relation to disease relevancy has become 
a topical issue. Gopi Battineni et  al. diagnosed chronic 
diseases by analyzing weights within machine learning 
models, demonstrating high utility [18]. Guided by the 
importance of feature variables, we selected the top ten 

weights (Age, Mon.%, MPV, Lym.%, SIRI, Eos.#, PLT, 
HGB, PDW, and Neu.#) and rebuilt the XGBoost model, 
undergoing training and validation processes. Compared 
with the model constructed using 31 indicators, the 
model based on these ten indicators performed superi-
orly, exhibiting an AUC of 0.977 in the training set and an 
AUC of 0.912 in the validation subset. This presents high 
accuracy and stability in predicting COVID-19.

In the predictive model for COVID-19, the weight of 
the age factor prominently stands out, surpassing other 
variables in terms of its influence. Numerous stud-
ies corroborate that age undeniably serves as one of the 
crucial factors impacting susceptibility and severity of 
COVID-19 [19]. As age advances, the risk of infection 
correspondingly escalates, potentially attributable to the 
decline in immune function and the presence of other 
latent health issues. Research conducted by Liu and oth-
ers compared the age distribution of SARS-CoV-2 infec-
tion and mortality rates in China, Italy, and South Korea, 
revealing a substantial number of fatalities among indi-
viduals over the age of 60 in these regions [20]. Hence, in 
predicting and managing COVID-19, an accurate assess-
ment and substantial consideration of the age factor play 
a pivotal role in formulating effective prevention and 
treatment strategies.

Coronavirus Disease 2019 (COVID-19), an acute 
respiratory infection instigated by the novel coronavi-
rus, implicates aberrations in the hematological system 
throughout its pathological process. This research unveils 
that through weight analysis, standard hematological 

Fig. 6  Decision Curve Analysis (DCA)
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parameters have gained substantial prominence in assess-
ing predictive models for COVID-19. These weights 
reflect the impact degree of each feature variable on the 
predictive outcome. For the predictive model of COVID-
19, the significance of these standard hematological 
parameters is indispensable.

The significance of monocytes in the predictive 
model for COVID-19 is underscored by their weight in 
the model, highlighting their crucial role in forecast-
ing outcomes. Monocytes play a pivotal role in immune 

responses, engaging in both antiviral and anti-inflamma-
tory processes. Following SARS-CoV-2 infection, sub-
stantial alterations occur in the phenotype and function 
of monocytes, which tightly correlate with the severity of 
the patient’s condition. Specifically, using a computational 
technique referred to as “virus tracking,” Pierre et al. con-
ducted single-cell RNA sequencing on bronchoalveolar 
lavage fluid samples from patients with severe and mild 
COVID-19. Their findings revealed a concomitant infec-
tion of human metapneumovirus within monocytes of 
severe patients, particularly pronounced in those mono-
cytes affected by interferon signaling [21]. These insights 
further substantiate the importance of monocytes in the 
COVID-19 predictive model, providing crucial clues 
to comprehend their mechanistic roles and disease 
progression.

Platelets, a type of blood cell, primarily contribute to 
blood coagulation and hemostasis, also demonstrating 
significant importance within the COVID-19 predic-
tive model. Existing research indicates that SARS-CoV-2 
may interact with platelets, thereby inciting an increase 
in platelet activation and aggregation [22]. This acti-
vation of platelets may correlate with the incidence of 
inflammatory responses and thrombus formation. Con-
currently, anomalies in platelet counts may emerge in 
COVID-19 patients, with some presenting thrombocy-
topenia [23]. As crucial actors in immune response and 
inflammation, platelets can influence the body’s antiviral 
and anti-inflammatory responses. Hui Liu and colleagues 
have constructed a risk scoring model based on routine 
blood examination parameters, named the PAWNN 
score. Incorporating platelets and related data, this score 
accurately predicts the mortality risk of hospitalized 
COVID-19 patients and allows for dynamic monitoring 
throughout the hospital stay. Therefore, the inclusion of 
platelets in COVID-19 predictive models to assess their 
contribution and importance in prediction outcomes 
bears significant implications [24].

The role of lymphocytes in COVID-19 predictive mod-
els is significant. As a crucial category of immune cells, 
lymphocytes play an essential role in combating patho-
gen infection and maintaining immune homeostasis. In 
the process of SARS-CoV-2 infection, research has dem-
onstrated that a reduction in lymphocyte counts corre-
lates closely with disease severity, potentially associated 
with vascular homeostasis imbalance and immune cell 
dysfunction triggered by a cytokine storm [25].

The SARS-CoV-2 virus primarily gains entry into host 
cells and instigates infection by binding to the ACE2 
receptor on host cells via its spike protein. Although ini-
tially thought to predominantly affect the respiratory sys-
tem, increasing research suggests that it not only impacts 
the lungs but also potentially has ramifications on the 

Fig. 7  a Calibration Curveor the Training Sets. b Calibration Curveor 
the Training Sets
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heart and hematologic system. The virus achieves this by 
disrupting the binding of the spike protein with the heme 
in hemoglobin, thereby depriving it of its iron atoms, ren-
dering it incapable of carrying oxygen, and damaging the 
hemoglobin [26]. Consequently, a state of hypoxia ensues 
within the human body, leading to symptoms such as 
dyspnea, cyanosis, and organ damage [27]. We discerned 
a notable weightage of neutrophils in the COVID-19 pre-
diction model; these cells are critical elements of innate 
immunity and participate in the process of combating 
pathogen infections. Their presence is related to inflam-
mation, cytokine storms, and the prognosis of critically 
ill patients [28, 29]. By conducting weight analysis, we 
find these features in routine blood tests to be of signifi-
cant relevance in the COVID-19 prediction model. This 
discovery provides useful references for our in-depth 
research and further clinical applications.

However, XGBoost has limitations that need to be 
considered. Firstly, it performs better with larger train-
ing samples and abundant computational resources, but 
COVID-19 research often involves incomplete, imbal-
anced, and inconsistent data. Secondly, as COVID-19 
is a rapidly evolving disease, relying solely on existing 
data may not capture real-time changes. XGBoost’s reli-
ance on stable data distributions may affect its accu-
racy and stability in dynamic situations like COVID-19. 
Additionally, the dynamic nature of COVID-19 data 
limits XGBoost’s applicability for prediction. Therefore, 

combining other methods and techniques with XGBoost 
is essential to enhance its specificity and sensitivity in 
analyzing and predicting COVID-19-related issues.

In summary, our investigation reveals that the fusion of 
complete blood count (CBC) parameters with advanced 
machine learning techniques offers a powerful approach 
for the prediction of COVID-19. Our model, which pri-
oritizes CBC as the cornerstone feature, stands out with 
an AUC of 0.920, underscoring a substantial leap in sen-
sitivity and specificity for the detection of COVID-19 
compared to existing models. For instance, our findings 
suggest that our model outperforms an integrated model 
using variance analysis coupled with LASSO and Boruta 
feature selection methods, which reported an AUC of 
0.910 [30].

Furthermore, our results advocate for the incorpo-
ration of the XGBoost algorithm within the tapestry 
of current clinical workflows. Utilizing the model’s 
output as a supplementary aid in diagnostic protocols 
has the potential to streamline the prioritization pro-
cess for PCR testing, fostering a more efficient clini-
cal decision-making process. Such a model can serve 
as a cogent decision-support tool, interfacing seam-
lessly with hospital information systems to provide 
timely and accurate assessments for COVID-19 diag-
nosis and prognosis. To further improve the model’s 
real-world applicability and more portable for clinical 
use, the online application of the model utilized CBC 

Fig. 8  The visualization of the prediction model through Deepwise and Beckman Coulter DxAI platform. The Supplementary table 1 and figure 1 
are located in file 1
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biomarkers and could greatly improve the efficiency 
and coverage of COVID-19 diagnosis.

Nevertheless, while CBC biomarkers serve as potent 
predictors within our model, we emphasize the neces-
sity of their contextual interpretation in conjunction 
with other clinical and imaging data. This holistic 
approach enriches the model’s precision and reliability. 
The implementation of such a comprehensive predic-
tive model holds the promise of bolstering clinicians’ 
capabilities in navigating the pandemic’s challenges, 
optimizing screening processes, and tailoring patient-
specific therapeutic strategies, ultimately aspiring to 
refine the overall management of COVID-19.

Limitations
Our study, while offering substantial insights into 
predicting COVID-19, also bears some limitations. 
Although CBC indicators have shown significant 
advantages in predicting COVID-19, the incorpora-
tion of these indicators with other clinical informa-
tion, including medical history, symptoms, and imaging 
findings, is essential to ensure the enhanced accuracy 
and reliability of the models. In the external validation 
cohort, the model also demonstrated favorable prog-
nostic performance with an AUC of 0.848. Recognizing 
that our research is derived from a single hospital, we 
plan to expand our data collection to multiple hospitals 
in the future, which we believe will strengthen our find-
ings and increase the robustness of our model. Addi-
tionally, we aim to enrich our model by incorporating 
more varied types of medical information, enhancing 
its predictive capacity.

Moreover, our study primarily used a retrospective 
analysis, which can introduce bias. Therefore, additional 
prospective studies with larger sample sizes are needed 
to validate our findings. Our study’s cohort was rela-
tively homogenous, so future studies should aim to vali-
date these models across diverse populations to account 
for potential confounding factors such as ethnicity, pre-
existing conditions, and socio-economic status. Further 
research could also focus on the development of compre-
hensive and interpretable models that integrate data from 
multiple sources, including genomics and proteomics, 
thereby enhancing the predictive power and clinical util-
ity of these models in the diagnosis and management of 
COVID-19. Although the developed model established 
good predictive power in both cohorts, our research pop-
ulation was from a single center. Further studies should 
include data from more hospitals and other populations 
to make our findings even stronger and our model more 
reliable. We also want to include more types of medical 
information to make our predictions better.

Conclusion
The combination of complete blood count (CBC) and 
machine learning models shows promising potential 
in predicting COVID-19. By analyzing CBC indicators 
such as white blood cell count and lymphocyte ratio 
and utilizing the predictive capabilities of machine 
learning models, early diagnosis and risk assessment 
for COVID-19 can be provided. This approach has 
the ability to assist clinicians in epidemic monitoring, 
screening, and making personalized treatment deci-
sions, ultimately improving diagnostic efficiency and 
prognosis assessment of COVID-19.
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