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Abstract 

Background  Leptospirosis, a zoonotic disease, stands as one of the prevailing health issues in some tropical areas 
of Iran. Over a decade, its incidence rate has been estimated at approximately 2.33 cases per 10,000 individuals. Our 
research focused on analyzing the spatiotemporal clustering of Leptospirosis and developing a disease prevalence 
model as an essential focal point for public health policymakers, urging targeted interventions and strategies.

Methods  The SaTScan and Maximum Entropy (MaxEnt) modeling methods were used to find the spatiotemporal 
clusters of the Leptospirosis and model the disease prevalence in Iran. We incorporated nine environmental covari-
ates by employing a spatial resolution of 1 km x 1 km, the finest resolution ever implemented for modeling Human 
Leptospirosis in Iran. These covariates encompassed the Digital Elevation Model (DEM), slope, displacement areas, 
water bodies, and land cover, monthly recorded Normalized Difference Vegetation Index (NDVI), monthly recorded 
precipitation, monthly recorded mean and maximum temperature, contributing significantly to our disease modeling 
approach. The analysis using MaxEnt yielded the Area Under the Receiver Operating Characteristic Curve (AUC) met-
rics for the training and test data, to evaluate the accuracy of the implemented model.

Results  The findings reveal a highly significant primary cluster (p-value < 0.05) located in the western regions 
of the Gilan province, spanning from July 2013 to July 2015 (p-value < 0.05). Moreover, there were four more clusters 
(p-value < 0.05) identified near Someh Sara, Neka, Gorgan and Rudbar. Furthermore, the risk mapping effectively 
illustrates the potential expansion of the disease into the western and northwestern regions. The AUC metrics of 0.956 
and 0.952 for the training and test data, respectively, underscoring the robust accuracy of the implemented model. 
Interestingly, among the variables considered, the influence of slope and distance from water bodies appears to be 
minimal. However, altitude and precipitation stand out as the primary determinants that significantly contribute 
to the prevalence of the disease.

Conclusions  The risk map generated through this study carries significant potential to enhance public awareness 
and inform the formulation of impactful policies to combat Leptospirosis. These maps also play a crucial role in track-
ing disease incidents and strategically directing interventions toward the regions most susceptible.
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Introduction
The worldwide impact of Leptospirosis on human 
health is substantial, with an estimated annual burden of 
1.03 million cases and 58,900 fatalities [1, 2]. This disease 
is transmitted by the spirochaete bacterium Leptospira 
and stands as a prevalent zoonotic disease, significantly 
contributing to global public health concerns [3]. While 
human-to-human transmission of Leptospirosis is 
infrequent, the bacteria can be transmitted to humans 
through sources such as contaminated water, soil, or 
direct contact with infected animals [4]. The symptoms 
of Leptospirosis disease encompass fever, headache, jaun-
dice, kidney failure, meningitis, and respiratory failure, 
potentially leading to fatal outcomes in some cases [1]. 
Given the likeness of its initial symptoms to the flu and 
common cold, Leptospirosis is commonly susceptible 
to misdiagnosis. Furthermore, the treatment of patients 
imposes substantial financial burdens on governments 
and healthcare systems within countries [1]. The World 
Health Organization (WHO) has characterized Lepto-
spirosis as a “neglected disease of global significance,“ 
underscoring the need for increased focus and research 
on its worldwide prevalence [5].

Leptospirosis disease is endemic in various tropical, 
subtropical, and temperate regions. Its prevalence can 
surge considerably in vulnerable areas, especially in the 
aftermath of heavy rains and flooding [6]. The prevalence 
of the disease in a particular region is shaped by intri-
cate interplays among environmental factors and socio-
economic conditions of the residents. These encompass 
climate, topography, land cover, surface water levels, 
occupation, as well as the presence of domestic and wild 
animal populations, notably rodents, which wield a sig-
nificant influence [7].

While the use of spatial analysis techniques to iden-
tify infectious disease risk areas has increased expo-
nentially over the last two decades [6, 8–11], there 
remains a lack of substantial research into the spatial 
distribution of Leptospirosis. Chadsuti et  al. (2022) 
used spatial autocorrelation analysis in conjunction 
with local indicators of spatial association (LISA) to 
identify disease clusters in Thailand. They also used a 
generalized linear mixed model (GLMM) to determine 
the most important environmental factor for Leptospi-
rosis disease. Their findings highlighted a strong cor-
relation between occurrences of Leptospirosis disease 
and flooded areas [12]. Mayfield et al. (2018) employed 
geographically weighted logistic regression (GWL) to 
create a Leptospirosis risk map for Fiji in the Oceania 
region. Their model incorporated Leptospirosis cases 
within Fiji, considering variables such as cattle density, 
distance from the river, poverty rate, urban or rural liv-
ing conditions, and maximum rainfall during the wet 

month. Notably, their findings indicated that the geo-
graphically weighted logistic regression method dem-
onstrated greater efficacy compared to the standard 
logistic regression approach [13]. In Mexico, Sokani 
Sanchez-Montes et al. (2015) utilized the Genetic Algo-
rithm for Rule-set Prediction (GARP) technique, which 
is an ecological niche modeling method, to predict 
the distribution of Leptospirosis. They used tempera-
ture and precipitation-derived data as inputs for their 
model [14]. White et  al. (2017) investigated the cor-
relation between environmental and socioeconomic 
factors and Leptospirosis cases in animals within the 
United States. They employed machine learning tech-
niques to spatially forecast the occurrence of the dis-
ease [15]. Another study [16] predicted that biological 
control would have the greatest impact on lowering 
Leptospirosis morbidity. Zhao et al. (2016) established 
a statistical connection between the occurrence of Lep-
tospirosis and nine environmental and socio-economic 
determinants in China, employing MaxEnt and Logistic 
regression models. Both models displayed robust pre-
dictive performance, achieving AUC values of 0.95 and 
0.96, respectively. Notably, the geographic distribution 
of Leptospirosis in China is primarily influenced by 
annual mean temperature and annual total precipita-
tion [3].

Unlike earlier research [17–21], which predominantly 
concentrated on Leptospirosis cases in northern regions 
owing to the disease’s endemic nature, this study broad-
ens its scope to cover the entire country. It incorporates 
socio-environmental factors to cultivate a more compre-
hensive understanding of Leptospirosis distribution. Spe-
cifically, the integration of factors such as land cover and 
displacement areas are undertaken to enhance the accu-
racy of the geographical distribution likelihood map for 
Leptospirosis in Iran. These considerations, often over-
looked in prior research [18, 19], are crucial for assisting 
public health professionals in identifying areas of height-
ened risk.

In terms of methodology, prior research [13, 17, 19] 
primarily employed Geographically Linear Weighted 
Regression. However, our study utilizes MaxEnt as 
a presence-only method, enabling the incorporation 
of numerous environmental variables. This approach 
accommodates both linear and nonlinear relationships, 
proving effective even in cases of limited sample sizes.

Over a decade-long timeframe, our primary aim is to 
conduct a robust statistical investigation into the patterns 
and trends of a disease within Iran. Using the MaxEnt 
modeling technique, this research seeks to explore the 
spatial and temporal dynamics of Leptospirosis across 
the nation. Beyond conventional observations, this study 
considers diverse demographic and occupational groups, 
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along with environmental variables, with the goal of pro-
viding a comprehensive understanding of the disease’s 
change over time.

Materials and methods
Study area
Covering the entire expanse of Iran, the study area 
extends between latitudes 24° and 40° N, and longitudes 
44° and 64° E. Iran’s geographic layout is demarcated into 
31 provinces, accommodating a population exceeding 
81  million people across its vast 1.65  million km2 terri-
tory. The nation showcases notable climatic and topo-
graphical diversity, spanning from areas situated a few 
tens of meters below sea level to altitudes surpassing 
5,600  m. This diversity is further emphasized by annual 
precipitation variations ranging from less than 100 mil-
limeters (mm) to around 2,000  mm, coupled with tem-
perature fluctuations ranging from − 10 to + 50 degrees 
Celsius. Iran’s climate spectrum ranges from arid to sub-
tropical zones [22].

Leptospirosis cases as the outcome variable
During the period from 2009 to 2018, the Ministry of 
Health and Medical Education of Iran documented a 
cumulative count of 3,433 cases across 17 out of the 31 
provinces as referral centers for Leptospirosis. The inci-
dence rate is the ratio of newly infected people to the 
population at risk at the beginning of the observation 
period that for Leptospirosis is about 4.8 per 100,000 
people in the study period in Iran. In an effort to elimi-
nate redundancy, a comprehensive investigation was 
conducted for all Leptospirosis cases. For geocoding con-
firmed instances, the latitude and longitude of patients’ 
residential addresses were utilized, facilitated by Google 
Earth Pro 9.0 (Google Inc.). Cases lacking patients’ resi-
dential addresses were excluded from the analysis as 
potential errors.

Covariates
The Digital Elevation Model (DEM), Normalized Differ-
ence Vegetation Index (NDVI), precipitation, mean tem-
perature, maximum temperature, slope, displacement 
areas, water areas, and land cover are nine environmen-
tal covariates provided by various sources. The selection 
of these covariates is grounded in data availability and 
their established utility in disease spatial distribution 
modeling, as evidenced by their use in existing literature 
as influential factors. We used 1 km*1km resolution for 
environmental data as the best spatial resolution ever 
used in Iran for Leptospirosis modeling because locating 
the exact location of bacteria transmission to the patient 
is difficult.

To explore the impact of meteorological variables on 
Leptospirosis distribution, temperature and precipitation 
data spanning the years 2009 to 2018 were sourced from 
the Meteorological Organization’s website in Iran [23]. 
This dataset encompassed average, maximum, and mini-
mum temperatures in degrees Celsius, along with total 
monthly rainfall in millimeters. The information was 
extracted from more than 350 synoptic stations dispersed 
across the country.

The mean NDVI is calculated for the years 2009 to 
2018, and a 10-year mean NDVI map using the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) 
[24]. Monthly 1 km*1km images were employed to com-
pute the average NDVI map. NDVI values, which span 
from − 1 to + 1, signify greater green vegetation density 
with higher values. The NDVI calculation involved merg-
ing Near-Infrared (NIR) and Red spectral bands from 
the MODIS product, conducted through the ENVI 5.3 
software.

To explore the influence of land cover on disease 
occurrence, land cover maps from GlobeCover Land 
Cover version 2.3 were extracted. Utilizing the Medium 
Resolution Imaging Spectrometer (MERIS) with a resolu-
tion of 300 m, a comprehensive land cover map featuring 
18 classes (see Additional file 1: Appendix Table A.1) was 
generated for all landmasses. These maps were sourced 
from the European Space Agency [25].

Water area maps were generated by identifying water 
bodies like rivers and lakes. Through a buffer analysis uti-
lizing a 1 km radius, the shapefile underwent conversion 
to a raster format using the “polygon to raster” tool. The 
pixel values within the water areas map correspond to the 
Euclidean distance from water bodies within the study 
region, spanning from 0 to 190 km. Consequently, pixel 
values of “0” denote water bodies, while higher values 
indicate the distance in kilometers from the nearest water 
body within the study vicinity.

Additionally, the displacement areas variable has been 
developed to investigate whether bacteria transmission is 
associated with the movement of contaminants through 
vehicle droppings, or the transfer of soil and vegetation 
to different areas. The displacement map was created 
using data from roads, land and sea border crossings, and 
airports. Similar to the process for the water areas map, 
this map was generated. The pixel values within this map 
indicate the distance from roads, land and sea border 
crossings, and airports in kilometers, spanning from 0 to 
116 km within our study area.

The DEM map of Iran is extracted from the Advanced 
Spaceborne Thermal Emission and Reflection (ASTER) 
satellite images [26]. The Ministry of Economy, Trade, 
and Industry of Japan (METI) and NASA released this 
global dataset in 2009, covering approximately 99% of the 
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Earth’s land surface with a pixel size of 30 m and vertical 
accuracy of 20 m with 95% confidence. The slope map is 
then created from that.

Methods
The overall framework of this study included data prepa-
ration, cluster analysis, the model implementation and 
validation, and producing likelihood map of Leptospiro-
sis in Iran (Fig. 1). We introduce the details of each step 
in the following sections:

Data preparation
For the preparation of meteorological layers, a point pat-
tern map was created, utilizing station coordinates and 
their corresponding temperature and rainfall values. 
Subsequently, the reverse distance interpolation (IDW) 
technique was applied, yielding a continuous map with 
a resolution of 1 km*1km. All maps were generated uti-
lizing a primary raster mask map with a resolution of 
1 km*1km as a template, serving as input maps for Max-
Ent. The utilization of this mask map ensures uniform-
ity in terms of pixel number, size, and location across 
all maps, ensuring complete overlap of identical pixels 
in different maps. Furthermore, to assess collinearity, 
a Pearson correlation analysis was employed. Variables 
exhibiting collinearity exceeding 0.7 were excluded from 
the analysis to prevent multicollinearity issues [3].

Cluster analysis
To analyze spatial pattern of disease distribution, the 
study utilized the Ripley’s K [27] method. This function 
can help researchers and analysts discern the underly-
ing spatial processes and patterns that might be present 
in a dataset. Additionally, the Monte Carlo simulation 
was incorporated to address edge effects in Ripley’s 
K [27]. This technique involves simulating random 
sample point distributions and comparing them with 
the actual distribution. In this study, this process was 
iterated 999 times to achieve a robust 99% confidence 
level in the results. Ripley’s K function is often used in 
combination with its spatial counterpart, the L func-
tion (L(r)), and the pair correlation function (PCF), to 
gain a deeper understanding of point patterns in vari-
ous fields like ecology, epidemiology, criminology, and 
more. Ripley’s K function and the L function are often 
used together to obtain a comprehensive understanding 
of the point pattern [27]. While the K function empha-
sizes interactions between points at various distances, 
the L function focuses on the distribution of near-
est neighbor distances. Subsequently, the spatial scan 
statistics (SaTScan) method was applied to identify 
spatio-temporal clusters. In SaTScan, the space-time 
permutation model was utilized. This model was cho-
sen due to its ability to identify disease clusters without 
the necessity of demographic or disease control station 

Fig. 1  Study flow diagram for producing likelihood map of Leptospirosis in Iran
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data [28]. Space-time scan statistics are a prevalent tool 
employed to detect geographical clusters in disease 
surveillance and the transmission of infectious agents 
[29]. This approach is particularly valuable for time-
periodic prospective surveillance, involving repetitive 
analysis over specific time intervals, such as monthly or 
yearly assessments.

The spatial scan statistic employs a varying-shaped 
window, often resembling a circle, to traverse a geo-
graphic area as it identifies potential clusters. The 
likelihood for each candidate cluster is computed by 
considering observed and expected case numbers 
within and outside the defined region. Within SaTS-
can, there exist different models for cluster identifica-
tion. In this study, the “space-time permutation” model 
was chosen due to its unique advantage in detecting 
spatiotemporal clusters solely using disease occurrence 
points and temporal data, unlike other SaTScan’s mod-
els that require data on disease control centers or pre-
cise demographic information about the population at 
risk [30], which is lacking in our study area, the selected 
model operates effectively without these prerequisites.

The alternative hypothesis for each window is that 
there is an elevated risk within the window as com-
pared to the outside. The likelihood function for a 
scanning window with specific location and size is pro-
portional to [31]:

where C is the total number of cases, c is the 
observed number of cases within the window and E[c] 
is the covariate adjusted expected number of cases 
within the window under the null-hypothesis, C-E[c] is 
the expected number of cases outside the window and 
I() is an indicator function. I() will equal to 1 if SaTScan 
is set to scan only for clusters with high rates. The win-
dow with the maximum likelihood considered as the 
most likely cluster that is least likely to have occurred 
by chance [31]. The p-value is calculated through 
Monte Carlo hypothesis testing [32], by comparing the 
rank of the maximum likelihood from the real data set 
with the maximum likelihoods from the random data 
sets I. For a comprehensive understanding of the math-
ematical framework, refer to Kulldorff ’s work [31].

Modeling
The Maximum Entropy algorithm (MaxEnt) stands as a 
prevalent machine learning modeling technique, rooted 
in the second law of thermodynamics [33]. It is designed 
to estimate the probability distribution of Leptospirosis 
disease by determining the probability distribution with 

(1)
(

C

E(c)

)c( C − c

C − E(c)

)C−c

I()

the highest entropy [33]. Here, as usual, the entropy of a 
distribution p on X is defined to be [34]:

X is a set of discrete grid cells, each representing a 
locality where the species has been observed. Also, a set 
of environmental variables are defined on X. In the con-
text of the Maximum Entropy Model, we want to find the 
distribution p(x) that maximizes entropy while satisfying 
a set of constraints which formulated as an optimization 
problem. These constraints can be defined in terms of 
expected values of certain functions f (x):

Where E[f (x)] is the expected value of the function 
f (x) under the distribution p(x) . To solve this optimiza-
tion problem, Lagrange multipliers λ for each constraint 
is introduced. Here is the Lagrangian function L(p, �):

The distribution p(x) that maximizes the entropy under 
the given constraints is found by taking the derivative of 
the Lagrangian function L(p, �) with respect to p(x) , set-
ting it to zero:

This leads to:

Finally, among all possible distributions consistent with 
the constraints, the MaxEnt distribution is the one that 
makes the fewest assumptions beyond the constraints 
[34]. This method finds widespread application in spatial 
distribution modeling, delivering not only high accuracy 
but also circumventing the need for absence data (in this 
instance, the lack of Leptospirosis locations in a region). 
In this method, instead of absence points, pseudo-
absence points are randomly generated by the model. 
For modeling purposes, 60% of the data was randomly 
selected, while the remaining portion was reserved for 
model testing.

To assess the MaxEnt model’s performance, the Area 
Under the Receiver Operating Characteristic Curve 
(AUC) was utilized as a metric [35]. An ROC curve 
charts the true positive rate against the false positive 
rate across different classification thresholds in a clas-
sification problem. The AUC quantifies the area under 
this curve comparing disease occurrences to randomly 
generated background locations within the region [34]. 

(2)H(p) = −
x∈X

p(x) ∗ ln p(x)

(3)E[f (x)] =
∑

p(x) ∗ f (x)

(4)
L(p, �) = −

∑
p(x) ∗ ln p(x)+

∑
� ∗ (E[f (x)]−

∑
p(x) ∗ f (x))

(5)∂L/∂p(x) = 0

(6)p(x) = (1/
∑

e(
∑

�∗f (x))) ∗ e(
∑

�∗f (x))
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In cases involving presence-only models, an AUC greater 
than 0.75 indicates the model’s predictions based on 
presence-only cases are acceptably accurate [36].

Finally, two additional methods, namely the Jack 
Knife’s test [34] and covariates’ percent contribution 
produced by MaxEnt, were employed to ascertain the 
significance of variables in the modeling procedure. 
The Jack Knife’s test assesses variables by executing the 
algorithm twice: once with the specific determinant 
and once with all determinants except the variable of 
interest. This process helps gauge the effectiveness of 
the variable in comparison to the final model. On the 
other hand, the contribution percentage method pro-
vides insight into the relative impact of variables on the 
model’s output [34].

Results
Leptospirosis cases summary
Figure  2 shows the prevalence of leptospirosis in Iran 
from 2009 to 2018. As shown in this figure prevalence 

of leptospirosis is highest in northern region. Also, some 
cases are recorded near Tehran and adjacent cities.

Table 1 presents an overview of Leptospirosis cases in 
Iran spanning from 2009 to 2018, categorized by prov-
ince, gender, age, and occupation. Notably, over 50% of 
individuals within the “other” subcategory of the occu-
pational group reported exposure to contaminated water 
through activities like swimming in rivers or consuming 
non-tap water. In terms of gender, males face a higher 
risk, and individuals within the age range of 35–64 are 
particularly susceptible.

 Figure  3a depicts the incidence rate for each year 
Fig.  3b, the total number of cases for each month  
during the entire study period Fig.  3c time series  
number of cases. Leptospirosis was prevalent in certain 
months of the year, from May to June, during the agri-
cultural season. Also, it is clear from Table 1. that the  
number of paddy farmers is significantly higher than 
others during the months of May and July to August and 
October.

Fig. 2  Leptospirosis occurrence cases in Iran from 2009–2018
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Fig. 3   Illustrating Leptospirosis a yearly incidence rate, b total monthly number of cases and c time series number of cases in Iran from 2009 
to 2018
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Spatial and temporal analysis
 The Ripley’s K function analysis, encompassing distances 
up to 100  km from cases and all distances within the 
study area, highlights a significant finding. The observed 
K function (red line) surpasses the expected K function 
(blue line), indicating a notable statistical significance 
(P-value < 0.01) in the distribution of Leptospirosis cases 
in Iran Fig. 4. Evidently, the majority of occurrence points 
are clustered, rather than being randomly distributed.

Figure 5 illustrates the identification of six distinct spa-
tial clusters of Leptospirosis incidents spanning from 
2009 to 2018. Interesting, these clusters extend beyond 
the previously presumed focal areas of the three northern 
Iranian provinces. Furthermore, a notable cluster with 
a radius of 159  km encompasses significant portions of 
provinces including Mazandaran, Gilan, Tehran, Alborz, 
Qazvin, and Qom. Seeking medical attention in the capi-
tal or potentially contracting the infection during trips to 
high-risk areas may lead to some unexpected records in 

certain provinces like Tehran within the clusters. Table 2 
contains more details about location and time period 
of these six clusters. A cluster is statistically significant 
when its test statistic is greater than the critical value. In 
that way the first cluster near Rasht is the one which has 
the highest statistical significance with 64.34 test statis-
tics value.

Spatial disease modeling
The covariates’ maps include, mean temperature (see 
Additional file  1:  Appendix Fig. A.1.a), maximum tem-
perature (see Additional file  1:  Appendix Fig. A.1.b), 
precipitation (see Additional file 1: Appendix Fig. A.1.c), 
NDVI (see Additional file  1:  Appendix Fig. A.2), land 
cover (see Additional file  1:  Appendix Fig. A.3), water 
areas (see Additional file  1:  Appendix Fig. A.4.a), dis-
placement areas (see Additional file  1:  Appendix Fig. 
A.4.b), DEM (see Additional file 1: Appendix Fig. A.5.a), 
and slope (see Additional file  1:  Appendix Fig. A.5.b) 

Fig. 4   Illustrating a Ripley ‘K function results for distances up to 100 km and b all distances in Iran
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were carefully prepared to ensure consistent pixel dimen-
sions and alignment across the study area. We have used 
a 4-fold cross-validation with RMSE as a metric of accu-
racy. The cross-validation results for the Inverse Distance 
Weighting (IDW) method applied to climate data are 
promising, underscoring IDW’s robust capability to gen-
erate continuous climatic data for the region using Iran’s 
synoptic centers. Specifically, the cross-validation values 

for maximum temperature, mean temperature, and pre-
cipitation are 2.94, 2.71, and 194.2 respectively.

Figure  6 illustrates the MaxEnt model’s output, pre-
senting the likelihood of Leptospirosis disease occur-
rence. This map integrates disease cases reported from 
2009 to 2018 with environmental factors. The proximity 
of pixel values to 1 signifies a higher likelihood of occur-
rence. The risk values within this map cover a range from 
0 to 0.82.

Fig. 5  Spatial clusters of Leptospirosis detected by spatial scan statistics (SaTScan) in Iran 2009–2018

Table 2  Illustrating temporal and spatial clusters in Leptospirosis cases in Iran from 2009 to 2018

Cluster ID Nearby populated 
area to center

Radius (Km) Start time End time Number of 
cases

Expected cases Test statistics P-value

1 Rasht 21 2013-07 2015-07 247 111.99 64.34 <0.0001

2 Someh Sara 13 2009-05 2011-05 190 80.01 56.93 <0.0001

3 Neka 53 2015-08 2018-08 273 137.61 55.67 <0.0001

4 Gorgan 60 2009-10 2010-04 24 2.23 35.31 <0.0001

5 Rudbar 6 2016-06 2016-07 10 0.67 17.67 <0.001

6 Karaj 159 2017-09 2018-04 11 1.44 12.9 <0.05
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The findings highlight that in addition to the three 
northern provinces that are established as the epicent-
ers of this disease in Iran, certain northern regions 
within Ardabil province and western provinces have 
also emerged as disease-prone areas. Notably, MaxEnt’s 
AUC metrics for training and test data yielded values of 
0.956 and 0.952, respectively, underscoring the robust 
accuracy of the implemented model. The model’s output 
(see Table 3) underscores that altitude and rainfall signifi-
cantly contribute to the existing distribution of Leptospi-
rosis in Iran. Moreover, the Jackknife’s method identifies 
precipitation as the most pivotal determinant influencing 
the AUC of the outcome (see Fig. 7).

Figure  8 depicts the contribution of determinants in 
annual models which examine the associations between 
environmental data in each year and disease statistics in 
the same year.

 Figure  9 depicts how changes in the values of nine 
input determinants in the model can affect the risk of 
Leptospirosis prevalence. Precipitation positively cor-
relates with the risk of prevalence Fig.  9a. In contrast, 

altitude, distance from displacement areas, distance from 
water areas, and slope Fig. 9b, e, f and i have a negative 
correlation with the likelihood of Leptospirosis preva-
lence. The NDVI, mean, and maximum temperature 
graphs in Fig. 9d, g and h exhibit a rising pattern towards 

Fig. 6  Likelihood map of Leptospirosis in Iran as a result of MaxEnt modeling

Table 3  Percentage of determinants’ contributions calculated by 
the MaxEnt model

Determinant Contributions 
(%)

DEM 41.2
NDVI 6.9
Precipitation 32.5
Mean Temperature 1.6
Max Temperature 0.3
Slope 0.3
Displacement Areas 1.2
Water Areas 0
Land Cover 16.1
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a peak value, followed by a subsequent decline. The lin-
ear progression from negative values on the x-axis to the 
zero point in the diagrams of Fig. 9a and d results from 
extrapolation beyond available data. This behavior arises 
as MaxEnt defaults to clamping predictions within the 
range of values predicted for the lowest and highest sam-
ple values of the predictor.

Discussion
Through years of investigation, we have established that 
three northern provinces in Iran hold the highest vul-
nerability to Leptospirosis risk, aligning with existing 
literature [17–19]. Moreover, specific cities in the west 
and northern regions of Ardabil province have been rec-
ognized as prone to Leptospirosis. Additionally, certain 
areas within Tehran province have been highlighted as 
experiencing a heightened risk of disease transmission.

The prevalence of Leptospirosis is shaped by intricate 
interplays among environmental factors, climate, alti-
tude, water bodies, residents’ socioeconomic statuses 
such as occupation, and the presence of domestic, wild, 
and rodent animals in the area [7]. The results obtained 
from MaxEnt modeling (Fig. 9) offer insights into altera-
tions in environmental determinants that could impact 
the likelihood of the disease’s prevalence.

Our findings indicate that an annual precipitation 
exceeding 600 mm escalates the risk of prevalence. Other 
research corroborates this, demonstrating that height-
ened rainfall leads to an elevated Leptospirosis preva-
lence due to increased water volumes, raising the chances 
of contact between animal hosts and humans with con-
taminated water [3, 8, 13, 15, 37–39].

Additionally, the findings demonstrate that the “alti-
tude” factor significantly influences disease prevalence 

Fig. 7  Jackknife of AUC for Leptospirosis cases and determinants

Fig. 8  Illustrating percentage of environmental determinants’ contribution in annual MaxEnt models
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when it hovers around zero and approximately 500  m. 
For instance, regions situated under 200  m above sea 
level exhibit a 50% likelihood of disease prevalence. These 
findings harmonize with existing studies that emphasize 
the substantial role of altitude in Leptospirosis preva-
lence [17, 18, 40], with a higher frequency of occur-
rence noted at lower altitudes [17, 40, 41]. Furthermore,  
“altitude” contributes around 40% to all annual models, 
signifying a pronounced reliance of the disease on this 
factor. The outcomes also indicate that flat terrains are 
conducive to disease prevalence, a correlation supported 
by a study conducted in northern Iran [18].

The third noteworthy determinant in our model 
is “land cover,“ contributing 16.1% to our model and 
acknowledged as a significant factor in Leptospirosis 
prevalence [3, 15, 37, 39]. More than 70% of the disease 
prevalence affecting paddy farmers can be attributed 
to rainfed croplands, mosaic cropland, and vegetation 
classes. Furthermore, evergreen or deciduous forests are 
two other impactful land covers influencing Leptospirosis 
prevalence, consistent with prior research findings [15].  

These areas conducive to animals can expose hosts 
to infected carrier animals and their habitats [13, 15]. 
While a study in China [3] indicated that “mean temper-
ature” holds more influence than “land cover,“ our study 
demonstrates that “land cover” holds greater influence 
than “mean temperature” in modeling Leptospirosis  
in Iran.

The model’s response to the “NDVI” factor indicates 
that, for the occurrence of Leptospirosis, the area should 
not be devoid of vegetation, even if it is sparse, and it 
should also not be dense. The “NDVI” contribution per-
centage varies across yearly models. A study conducted 
in the United States found that the relationship between 
vegetation and animal Leptospirosis is uncertain, pos-
sibly due to the effects of different vegetation types on 
disease prevalence [15]. As a result, areas with moder-
ate vegetation levels provide the best conditions for the 
spread of Leptospirosis.

The variable “displacement areas” was incorporated to 
explore the impact of proximity to roads and entry bor-
der points on the incidence of Leptospirosis. This variable 

Fig. 9  Response of the model to the nine input environmental determinants
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introduces a novel perspective, as it is the first time it’s 
been used in a Leptospirosis model to investigate the role 
of human and animal movement in bacteria spread and 
transmission. For instance, the movement of humans 
and the export of items like flowers and plants, notably 
bamboo, play crucial roles in the expansion of vectors for 
diseases like Chikungunya to new regions [42]. Our study 
findings unveil that while the displacement area variable 
contributes only around 1% to Leptospirosis prevalence, 
it holds greater significance than determinants like maxi-
mum temperature, slope, and surface water. This deter-
minant has been recognized as an influential factor in 
disease vector transmission [42, 43].

Furthermore, the Jackknife analysis underscores the 
significance of the “displacement areas” factor, given that 
its removal results in the most pronounced decrease in 
model accuracy. The findings from “distance from dis-
placement areas” and “distance from water” variables 
suggest that the disease exhibits higher prevalence in 
areas below 100 m. Given that contact with contaminated 
water is a primary route of Leptospirosis transmission [3, 
13, 37], the impact of “water areas” on disease prevalence 
seems to be restricted. However, considering that Lepto-
spirosis is more prevalent in areas with inadequate urban 
sanitation and rural environments [13], it is indicated 
that disease prevalence is not closely tied to high-volume 
water bodies like rivers and lakes [3]. Instead, the source 
of Leptospirosis transmission is likely polluted water in 
cavities or fields [3].

The findings reveal that an average temperature rang-
ing from approximately 15 to 20 degrees Celsius, along 
with a monthly maximum temperature of about 15 to 25 
degrees Celsius per year, creates the most favorable con-
ditions for prevalence. While certain studies have cited 
temperature as a pivotal factor in Leptospirosis preva-
lence [3, 41], our analysis indicates that both mean and 
maximum temperatures do not significantly influence the 
modeling of Leptospirosis in Iran.

Additionally, the prevalence of leptospirosis in middle-
aged adults in Iran is more than twice that of all other age 
groups, which is consistent with reported cases in Mexico 
[14]. Furthermore, among males, the epidemy was twice 
as associated with occupation, particularly in the rice 
industry. Farmers in Iran come into direct contact with 
surface water while barefoot and barehanded, increasing 
the likelihood of direct contact with the disease pathogen 
and, as a result, the disease’s prevalence [19, 44]. Further-
more, more than half of people in the occupational cat-
egory’s “other” subcategory (Table  1) report having had 
contact with contaminated water, swimming in a river, 
or drinking non-tap water. As a result, water recreation 
in hot weather could create the conditions for this bacte-
rium to be transmitted to the host.

Strengths and limitations
There are a few limitations to this study. Socioeconomic 
and demographic data (e.g., poverty rate, grided popu-
lation maps, educational level) may contribute to pro-
duce more accurate results [3, 13, 40]. However, due to 
data unavailability and accessibility constraints, we were 
unable to incorporate them. Additionally, the absence 
of systematic recording for Leptospirosis absence data 
in Iran posed a challenge. Consequently, we utilized 
randomly generated pseudo-absence data. Employing 
absence locations serves to mitigate the impact of ran-
dom pseudo-absences, enhancing result accuracy and 
preventing model overfitting. Furthermore, Iran’s sur-
veillance system operates as a passive entity, potentially 
leading to an underestimation of recorded cases. Con-
sequently, there exists a propensity for official disease 
statistics to be underestimated. It is worth noting that 
discrepancies could exist between recorded residential 
addresses, used as disease case locations, and the actual 
infection sites.

Conclusion
The spatio-temporal modeling approach serves as a 
valuable tool for comprehending the distribution of 
Leptospirosis and its influential determinants. Through 
this method, significant clusters of Leptospirosis have 
been identified in Iran over the years, particularly in 
areas such as Gilan province and the eastern Caspian 
Sea region, as well as Tehran and Alborz provinces. 
Furthermore, regions with a susceptibility to Leptospi-
rosis prevalence are notable in the northwest and west 
of the country. Among the determinants considered, 
precipitation and altitude have emerged as two critical 
factors with substantial impact in delineating the dis-
ease’s risk areas across Iran. Given the escalating global 
burden of Leptospirosis, future research endeavors 
should encompass a broader spectrum of determinants, 
including demographic and socioeconomic variables, 
to better identify vulnerable populations. Understand-
ing the spatial and temporal dynamics of emerging 
infectious and zoonotic diseases holds immense signifi-
cance for predicting outbreaks and devising effective 
interventions. Hence, the exploration of space-time 
interactions is highly recommended for advancing our 
knowledge in this field.
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Fig.A.3. Map of Landcover in Iran based on GlobeCover map. Appendix 
Table A.1. Description of different classes of Landcover map. Appendix 
Fig.A.4. (a) Maps of distance from water areas and (b) displacement areas. 
Appendix Fig.A.5. (a) DEM and (b) Slope maps of the study area.
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