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Abstract
As climate conditions deteriorate, human health faces a broader range of threats. This study aimed to determine 
the risk of death from metabolic syndrome (MetS) due to meteorological factors. We collected daily data from 
2014 to 2020 in Wuhu City, including meteorological factors, environmental pollutants and death data of common 
MetS (hypertension, hyperlipidemia and diabetes), as well as a total number of 15,272 MetS deaths. To examine 
the relationship between meteorological factors, air pollutants, and MetS mortality, we used a generalized additive 
model (GAM) combined with a distributed delay nonlinear model (DLNM) for time series analysis. The relationship 
between the above factors and death outcomes was preliminarily evaluated using Spearman analysis and structural 
equation modeling (SEM). As per out discovery, diurnal temperature range (DTR) and daily mean temperature 
(T mean) increased the MetS mortality risk notably. The ultra low DTR raised the MetS mortality risk upon the 
general people, with the highest RR value of 1.033 (95% CI: 1.002, 1.065) at lag day 14. In addition, T mean was 
also significantly associated with MetS death. The highest risk of ultra low and ultra high T mean occured on the 
same day (lag 14), RR values were 1.043 (95% CI: 1.010, 1.077) and 1.032 (95% CI: 1.003, 1.061) respectively. Stratified 
analysis’s result showed lower DTR had a more pronounced effect on women and the elderly, and ultra low and 
high T mean was a risk factor for MetS mortality in women and men. The elderly need to take extra note of 
temperature changes, and different levels of T mean will increase the risk of death. In warm seasons, ultra high RH 
and T mean can increase the mortality rate of MetS patients.

Keywords  Metabolic syndrome, Climate variation, Short-term exposure effect

Research on the relationship between 
common metabolic syndrome 
and meteorological factors in Wuhu, 
a subtropical humid city of China
Tao Zhang1,2†, Man Ni1,2†, Juan Jia1,2†, Yujie Deng1,3, Xiaoya Sun1,3, Xinqi Wang1,3, Yuting Chen1,2, Lanlan Fang1,2, 
Hui Zhao1,3, Shanshan Xu1,2, Yubo Ma1,2, Jiansheng Zhu4 and Faming Pan1,2,5*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-023-17299-8&domain=pdf&date_stamp=2023-11-28


Page 2 of 15Zhang et al. BMC Public Health         (2023) 23:2363 

Introduction
Metabolic syndrome (MetS) is a cluster of common 
metabolic disorders, including high blood sugar, abnor-
mal lipid levels, high blood pressure, and central obesity. 
These conditions are closely linked to increased risk of 
overall mortality and cardiovascular events. [1–3]. MetS 
affects more than 30% of adults worldwide [4]. However, 
discussing the key protection groups, the health burden 
of metabolic syndrome in the general population is also 
important. A review pointed out that the global preva-
lence of metabolic syndrome is estimated to be about one 
fourth of the world population. To put it differently,, over 
a billion people in the world are now affected by meta-
bolic syndrome [5]. However, the risk of METS in specific 
populations cannot be ignored. Recent research indicates 
that MetS is emerging at an earlier age, affecting 3% of 
children and 5% of adolescents worldwide [6]. As a global 
health concern, MetS poses a substantial threat to pub-
lic health and imposes a substantial economic burden 
[7]. Hence, it is imperative to investigate the risk factors 
contributing to the development of MetS and implement 
strategies for its prevention and control.

Meteorological factors are prevailing among recent 
researches. In the past few decades, carbon emissions 
have increased dramatically and continuously magni-
fying the greenhouse effect over the planet. As a result, 
global average temperatures continue to climb up which 
incurs a series of climate changes [8, 9]. This has also 
been accompanied by an increase in the rate and strength 
of extreme weather events (heat waves, droughts, floods 
and cold spells), which have seriously threatened the 
public health and, increased morbidity and mortality of 
various diseases [10]. Numerous studies have provided 
epidemiological evidence that the diurnal temperature 
range of single day exposure and continuous multi day 
cumulative exposure to extreme levels (extremely high 
or low) is positively correlated with the risk of all cause 
mortality, cardiovascular disease, and respiratory disease 
[11–14]. It is now generally accepted that environmental 
factors are important modulators of MetS. Studies have 
also discovered an increased risk of elevated fasting glu-
cose and hypertriglyceridemia with prolonged exposure 
to higher ambient temperatures, potentially leading to 
the activation of metabolic mechanisms such as inflam-
mation [15]. Another study in China also showed that 
ambient temperature can affect the relationship between 
air pollutants and MetS [16].

Same with China,as one of the countries with largest 
carbon emissons, the resulting climate and environmen-
tal issues have received much more attention now [17]. 
Diurnal temperature range (DTR), Mean temperature (T 
mean) and relative Humidity (RH) are important indi-
cators to assess the state of meteorological change [18]. 
A review on the relationship between temperature and 

metabolic syndrome suggests that low ambient tem-
perature may be an important risk factor for metabolic 
syndrome [19]. Another review from Mississippi shows 
an association between heat exposure and the preva-
lence of metabolic syndrome. Exposure to high tem-
peratures reduces energy expenditure and may increase 
the prevalence of obesity and metabolic syndrome [20]. 
By reviewing published studies, most researches used 
meteorological factors as covariates, or only studied the 
relationship between a single meteorological factor and 
MetS prevalence or mortality. In order to fill the gap in 
this field, this study used the mortality data of Wuhu City 
from 2014 to 2020, included three meteorological factors 
(T mean, RH and DTR) for the first time, and used pol-
lutant concentration as a covariate to explore the influ-
ence of meteorological elements on the mortality of three 
representative MetS (hypertension, hyperlipidemia and 
diabetes). The purpose of this study is to explore the asso-
ciation between meteorological factors and MetS mortal-
ity risk, and to provide a theoretical basis for formulating 
health and environmental governance policies, which 
could probably serve as a reference for related researches 
in this field.

Materials and methods
Basic information of the study cite
Wuhu City, located at the lower reaches of the Yangtze 
River, is engaged in China’s Yangtze River Delta urban 
agglomeration development planning for large cities. The 
landform is mainly dominated by terraces and plains, 
with abundant rainfall and four distinct seasons, belong-
ing to a subtropical monsoon humid climate (Fig.  1). 
Data from the Wuhu Department of Statistics indicated 
that the city had a population of 3.644 million by 2020.

Data collection and collation
The daily non-accidental mortality data from January 
1, 2014, to December 31, 2020, were collected from the 
Wuhu Center for Disease Control and Prevention. The 
data were classified according to the International Sta-
tistical Classification of Diseases and Related Health 
Problems, tenth edition (ICD-10). Daily deaths due to 
hypertension (I10-I15), hyperlipidemia (E78), and dia-
betes (E10-E14) accounted for a total of 15,272 MetS-
related deaths. Additionally, meteorological data and air 
pollutant data were collected from the Wuhu Meteoro-
logical Bureau and the environmental monitoring station, 
respectively (http://www.wuhu.gov.cn/public). Meteoro-
logical data is comprised of daily maximum temperature, 
minimum temperature, average temperature (T mean) 
and relative humidity (RH). DTR represents the tempera-
ture difference between the highest and lowest readings 
on the same day. The air pollutant data were selected 
from the average values of four local monitoring stations 

http://www.wuhu.gov.cn/public
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over the same time period, including particulate matter 
(PM2.5), inhalable particles (PM10), sulfur dioxide (SO2), 
nitrogen dioxide (NO2), ozone (O3) and carbon monox-
ide (CO).

Statistical analysis method
We collated the number of deaths incurred by major 
MetS (hypertension, hyperlipidemia, and diabetes), 
air pollutants (PM2.5, PM10, SO2, NO2, O3, and CO), 
and meteorological factors (DTR, T mean, and RH) for 
descriptive analysis. We used statistical measures includ-
ing mean, standard deviation, maximum, minimum, 
median, and various percentiles (e.g., fifth percentile, 
twenty-fifth percentile, seventy-fifth percentile, ninety-
fifth percentile) to describe the basic characteristics of 
each factor. It is essential to be cautious about collinear-
ity when dealing with a large number of variables. Thus, 
We applied Spearman analysis to assess the correlations 
among these elements. When the coefficient of relation 
among the variables is more than 0.7, the correlation is 
perceived as a high level and the corresponding factors 
need to be excluded from building the model [21]. As it is 
shown on Fig. 2, PM2.5 and PM10 have a strong collinear-
ity, which means only PM2.5 is included in the model for 
analysis. Structural equation model (SEM), though it is a 
linear model, is applied as a reference for the time series 
model to explore the relationship between death and 
other various factors [22]. The SEM model is formulated 
as follows:

	 η = α + ΓX + δ

In this formula, the number of MetS deaths is repre-
sented by η , while α  is a constant term representing 
the intercept; Γ  demonstrates for the linear effect coeffi-
cient, and the latent predictive factor (DTR, T mean, RH, 
PM2.5, SO2, NO2, O3 and CO) is expressed by X . And the 
residual is represented by δ .

Different climates may interact with each other, and the 
influence of climatic factors on human health is mostly 
nonlinear and complicated. The generalized additive 
model is flexible, and the daily death data often complies 
with the Poisson distribution, so we use DLNM to gen-
erate GAM to find the correlation between meteorologi-
cal factors and common MetS deaths in China. The basic 
model is as below:

	 Yt ∼ Poisson (µt)

	
Log (µt) = α + βTmeant,l + γRHt,l + δDTRt,l + ns(Pollutantt, df )
+ns(T ime, df ) + factor (Holiday) + factor (DOW )

Upon the above expression, µt  represents the quantity 
of MetS death toll, α is the nodal increment of the for-
mula, and T meant,l, RHt,l and DTRt,l are used to repre-
sent the matrices generated in the DLNM model. While t 
and l are used to stand for the observation period and the 
lag days respectively. The β, γ and δ represent the vector 
coefficients of each matrix respectively, and the d-cubic 
spline function (CSF) is represented by ns(). The air pol-
lutant concentration parameters are put together and 
represented by Pollutantt  including particulate matter 
(PM2.5) and harmful gases (NO2, SO2, O3 and CO). The 

Fig. 1  The geographical location and jurisdiction of Wuhu city
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df stands for the degree of freedom, and the CSF controls 
the confounding effect of time and long-term trends, 
expressed by ns(T ime, df ) [23]. At the same time, Hol-
idays factor (Holiday) and different days in a week 
factor (DOW ) are also controlled. We use Akaike’s 
information criterion (AIC) [24] to select the degree of 
freedom, and finally determine the annual degree of free-
dom is 7. According to previous studies on meteorologi-
cal factors and MetS [25], a 14-day lag was selected based 
on the minimum AIC. Cumulative and one-day lag risk of 
death from MetS was expressed as RR and 95% CI. The 
meteorological factors were divided into four levels: ultra 
low (5th), low (25th), ultra high (95th), and high (75th).

The Wuhu City map was created using ArcMap 10.2 
software. Data statistical analysis was performed using 
RGui (V4.1.2), and descriptive analysis was conducted 
using SPSS 23.0. The “DLNM” and “spline” packages 
were selected to match contaminant and meteorologi-
cal factors models with time series. While the SEM is 
applied with the “lavaan” package of R software. The 

“Performance Analytics” package was applied to analyze 
the correlation between variables. Bilateral p-value < 0.05 
was considered statistically significant.

Results
Baseline characteristics of data
Table 1 shows the number of deaths due to common met-
abolic syndrome (hypertension, hyperlipidemia and dia-
betes) among Wuhu City since 2014 to 2020 (2557 days 
totally), and the data features of climatic elements and 
major environmental contaminant. In the past few years, 
we have collected 15,272 death records on metabolic syn-
drome, with an average of 5.97 deaths per day. The sex 
ratio of death records was about 4:5 (male 6,975, 45.67%; 
female 8,297, 54.33%). With a boundary of 65 years old, 
the age ratio of the death toll was about 1:10 (0–65 years 
old 1,405, 9.20%; ≥ 65 years old 13,867, 90.8%). As a city 
located in the region of typical subtropical humid mon-
soon climate, the average absolute temperature differ-
ence of Wuhu is 8.66 ℃ (1 ℃ − 24 ℃), while the average 

Fig. 2  Spearman’s correlation coefficients meteorological factors and atmospheric pollutants: Spearman’s correlation coefficients at the top, distribution 
plot at the middle and scatter plot at the bottom
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temperature is 16.95 ℃ (-7 ℃ − 35 ℃), and the relative 
humidity is 76.68% (35.58 − 100%). The daily average 
concentrations of air pollutants were PM2.5: 50.35 µg/m3 
(6.22–302 µg/m3); PM10: 74.98 µg/m3 (0–367.00 µg/m3); 
SO2: 15.48 µg/m3 (3.63–104.00 µg/m3); NO2: 37.93 µg/m3 
(8–128.75 µg/m3); O3: 98.58 µg/m3 (6.94–324.47 µg/m3); 
CO: 957.60 µg/m3 (240.00–2670.00 µg/m3).

In order to explore the daily main pollutants in the 
region and their proportion in the whole year, the air 
quality index (AQI) for every contaminant was deter-
mined. PM2.5 is the most prominent air pollutant, 
accounting for 41.26% of the main pollutant days. The 
proportions of O3, PM10 and NO2 were 35.55%, 11.97% 
and 10.95% respectively. SO2 and CO had the lowest 
occurrence among all the main pollutants, 6 days and 
1 day respectively.

Correlation analysis and structural equation model
Figure  2 expresses the results of Spearman analysis 
among air contaminants and meteorological elements. 
DTR had a positive correlation with NO2, O3 and CO 
(P < 0.001). And T mean was positively correlated with 
O3, and negatively correlated with PM2.5, PM10, and NO2 
(P < 0.001). However, there was no significant correlation 
between RH and CO, and it was negatively correlated 
with O3 (P < 0.001). Among the air pollutants included in 
the study, PM2.5 was positively correlated with PM10 (rs 
> 0.7, P < 0.001), and had a negative correlation with O3 
and T mean. In addition, there exists a significant nega-
tive relation between DTR and RH. The results of SEM 

to explore the relationship between MetS mortality risk 
and meteorological factors and air pollutants are shown 
in Fig. 3. Among all the factors, NO2, O3 and PM2.5 had 
positive effects, while PM10, T mean, SO2, RH, CO and 
DTR had negative effects. And the absolute value of the 
standardized loading factor (SLC) was larger in PM10 
(0.27), T mean (0.26), PM2.5 (0.20), O3 (0.19), NO2 (0.18) 
and SO2 (0.17).

There is a strong correlation between the above factors 
and the risk of MetS death. However, SEM has insuffi-
cient ability to capture nonlinear relationships, of which 
the results should be taken cautiously.

Effects of meteorological factors on mortality risk of 
common metabolic syndrome
Figure 4 shows the association between the risk of death 
of common MetS and DTR, T mean and RH. In this 
study, DTR and T mean had a positive relationship with 
the metabolic syndrome death risk, while no pronounced 
relation was found between RH and the death risk of 
metabolic syndrome. The results are shown in Table  2. 
Taking the 50th percentile (9 ℃) of DTR as the reference 
value among the single-day lag effect model, the impact 
of the ultra low value (5th percentile) of DTR exists 
throughout the day 1 to day 14 with an increasing trend. 
The highest RR value of DTR occured at the lag day 14 
(RR: 1.033, 95% CI: 1.002, 1.065). As for cumulative lag 
effect modeling, ultra low value (5th percentile) of DTR 
was found to be significantly correlated with the death 
risk of MetS (P < 0.05), and the value of RR gradually 

Table 1  Summary statistics of daily numbers of death, meteorological conditions and air pollutants in Wuhu.(2014 to 2020, 2557days)
Variables Counts (%) Mean ± SD Centiles

Minimum P5 P25 Median P75 P95 Maximum
Metabolic syndrome
Total 15,272 

(100.00)
5.97 ± 3.29 0 1 4 6 8 12 27

Male 6975 (45.67) 2.73 ± 1.92 0 0 1 2 4 6 12
Female 8297 (54.33) 3.24 ± 2.20 0 0 2 3 5 7 16
0–65 years 1405 (9.20) 0.55 ± 0.78 0 0 0 0 1 2 8
≥ 65 years 13,867 (90.8) 5.42 ± 3.08 0 1 3 5 7 11 22
Meteorological conditions
DTR (℃) - 8.66 ± 4.23 1.00 2.00 5.00 9.00 12.00 16.00 24.00
T mean (℃) - 16.95 ± 9.09 -7.00 2.50 8.96 17.50 24.50 31.00 35.00
RH (%) - 76.68 ± 12.32 35.38 55.96 67.96 76.88 86.00 96.00 100.00
Air pollutants
PM2.5 (µg/m3) 1055 (41.26) 50.35 ± 32.46 6.22 16.12 28.10 42.11 63.58 114.29 302.00
PM10 (µg/m3) 306 (11.97) 74.98 ± 41.88 0.00 28.00 45.67 65.35 94.24 153.58 367.00
SO2 (µg/m3) 6 (0.23) 15.48 ± 10.30 3.63 5.37 8.33 13.00 18.88 37.19 104.00
NO2 (µg/m3) 280 (10.95) 37.93 ± 17.14 8.00 16.03 25.15 34.99 47.38 70.70 128.75
O3 (µg/m3) 909 (35.55) 98.58 ± 50.35 6.94 33.00 59.38 88.57 129.90 196.68 324.47
CO (µg/m3) 1 (0.04) 957.60 ± 311.89 240.00 570.00 740.00 900.00 1120.00 1550.00 2670.00
Abbreviations: SD: standard deviation; DTR: diurnal temperature range; RH: relative humidity; T mean: temperature mean; PM2.5: particulate matter ≤ 2.5  μm in 
aerodynamic diameter; PM10: particulate matter ≤ 10  μm in aerodynamic diameter; SO2: sulfur dioxide; NO2: nitrogen dioxide; CO: carbon monoxide; O3: ozone; 
Counts of Air pollutants: number and proportion of days with each air pollutant as a daily major air pollutant
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increased to reach the highest value 1.585 (lag 0–14, 95% 
CI: 1.226, 2.049) during the short-term time. Except for 
ultra low DTR, no significant association between other 
levels of DTR and MetS death risk was found.

Taking the median of T mean (17.5 ℃) for a reference, 
Table  3 shows the results that the single-day lag influ-
ences of ultra low and high values of T mean continued 
to exist and increase for 7 days and 6 days respectively 

Fig. 4  The 3D graph, and overall exposure-response association curve between DTR, RH, T mean and metabolic syndrome mortality

 

Fig. 3  SEM analysis of the direct and indirect climate effects on metabolic syndrome mortality
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(P < 0.05). The highest risk occured on the lag day 14, RR 
values were 1.043 (95% CI: 1.010, 1.077) and 1.032 (95% 
CI: 1.003, 1.061) respectively. The ultra high T mean 
was positively correlated with MetS, which lasted for 
9 days and decreased day by day. The highest impact of 
T mean occured at the beginning with the RR value of 
1.070 (lag 0, 95% CI: 1.027, 1.115). Low T mean (25th 
percentile) was not found to significantly affect the risk of 
MetS death in the one-day lag model. The cumulative lag 
model showed that ultra low T mean had a positive asso-
ciation with the MetS death risk, with a maximum RR of 
1.291 (lag 0–14, 95% CI: 1.004, 1.659). The ultra high T 
mean significantly raised the danger of MetS death, start-
ing since lag 0–0 to lag 0–14, and the maximum RR value 
was 1.531 (lag 0–11, 95% CI: 1.248, 1.878).

As shown in Table  4, we failed to observe a statisti-
cally significant association between RH and MetS in 
the study. However, as shown in Fig.  4, there exists an 
uptrend on the left side among the risk curved line of RH. 
Thus, from the overall population, the likelihood of Mets 

mortality incurred by exposure to lower RH cannot be 
ruled out.

Gender, age and season subgroup analysis
The hierarchical analysis’ results of DTR using gender 
and age are shown in Fig.  5. We found that DTR had a 
significant relationship with the MetS death risk in 
women and the elderly, but not in men and young peo-
ple. As for women exposed to ultra low DTR, the MetS 
death risk increased gradually reaching a peak at a lag of 
14 days (RR: 1.047, 95% CI: 1.004, 1.091). However, when 
exposed in low DTR environment, the danger of MetS 
death in female increased and expressed a down trend, 
and the maximum RR value appeared at the lag day 5 
(RR: 1.025, 95% CI: 1.001, 1.049). Compared with young 
people, ultra low DTR was more likely to increase the 
risk of MetS death regarding with the elderly people, with 
the greatest risk occurring at the beginning of this short-
term (lag 0, RR: 1.035, 95% CI: 1.003, 1.069). The results 
of stratified analysis based on the hot and cold seasons 
are shown in the supplementary materials. During the 

Table 2  Relative risk (RR) of Common metabolic syndrome daily death for specific DTR on different lag days
single-day lag cumulative-day lag

lag 5th percentile 25th percentile 75th percentile 95th 
percentile

lag 5th percentile 25th 
percentile

75th 
percentile

95th 
percentile

0 1.029 (0.998, 1.061) 1.009 (0.980, 
1.038)

1.003 (0.991, 
1.016)

1.000 (0.973, 
1.028)

0–0 1.029 (0.998, 
1.061)

1.009 (0.980, 
1.038)

1.003 (0.991, 
1.016)

1.000 (0.973, 
1.028)

1 1.030 (1.001, 1.058)* 1.009 (0.984, 
1.035)

1.004 (0.993, 
1.015)

1.001 (0.977, 
1.027)

0–1 1.060 (1.000, 
1.123)

1.018 (0.964, 
1.074)

1.007 (0.984, 
1.030)

1.001 (0.950, 
1.055)

2 1.030 (1.005, 1.056)* 1.010 (0.987, 
1.033)

1.004 (0.994, 
1.014)

1.003 (0.980, 
1.026)

0–2 1.091 (1.005, 
1.185)*

1.028 (0.951, 
1.110)

1.011 (0.978, 
1.045)

1.004 (0.932, 
1.082)

3 1.030 (1.007, 1.053)* 1.010 (0.990, 
1.032)

1.005 (0.995, 
1.013)

1.004 (0.984, 
1.025)

0–3 1.124 (1.012, 
1.248)*

1.038 (0.942, 
1.145)

1.015 (0.974, 
1.058)

1.008 (0.917, 
1.108)

4 1.030 (1.010, 1.051)* 1.011 (0.992, 
1.030)

1.005 (0.996, 
1.013)

1.006 (0.987, 
1.024)

0–4 1.158 (1.023, 
1.311)*

1.050 (0.935, 
1.179)

1.020 (0.971, 
1.071)

1.014 (0.906, 
1.134)

5 1.031 (1.012, 1.050)* 1.011 (0.994, 
1.029)

1.005 (0.997, 
1.012)

1.007 (0.990, 
1.024)

0–5 1.194 (1.037, 
1.375)*

1.062 (0.931, 
1.212)

1.025 (0.969, 
1.084)

1.021 (0.898, 
1.160)

6 1.031 (1.013, 1.049)* 1.012 (0.996, 
1.029)

1.005 (0.998, 
1.012)

1.008 (0.993, 
1.024)

0–6 1.231 (1.053, 
1.439)*

1.075 (0.929, 
1.244)

1.030 (0.968, 
1.096)

1.030 (0.894, 
1.186)

7 1.031 (1.014, 1.049)* 1.013 (0.997, 
1.029)

1.005 (0.999, 
1.012)

1.010 (0.994, 
1.025)

0–7 1.269 (1.071, 
1.504)*

1.089 (0.929, 
1.275)

1.035 (0.968, 
1.108)

1.040 (0.892, 
1.212)

8 1.031 (1.014, 1.050)* 1.013 (0.997, 
1.030)

1.006 (0.999, 
1.013)

1.011 (0.996, 
1.027)

0–8 1.309 (1.091, 
1.570)*

1.103 (0.931, 
1.307)

1.041 (0.969, 
1.119)

1.051 (0.892, 
1.239)

9 1.032 (1.013, 1.051)* 1.014 (0.997, 
1.031)

1.006 (0.999, 
1.013)

1.013 (0.996, 
1.030)

0–9 1.350 (1.113, 
1.638)*

1.119 (0.935, 
1.339)

1.047 (0.970, 
1.131)

1.065 (0.894, 
1.267)

10 1.032 (1.011, 1.053)* 1.015 (0.996, 
1.033)

1.006 (0.998, 
1.014)

1.014 (0.996, 
1.033)

0–
10

1.394 (1.137, 
1.709)*

1.135 (0.939, 
1.372)

1.054 (0.972, 
1.143)

1.080 (0.898, 
1.297)

11 1.032 (1.009, 1.056)* 1.015 (0.995, 
1.036)

1.006 (0.998, 
1.015)

1.016 (0.995, 
1.036)

0–
11

1.439 (1.160, 
1.784)*

1.152 (0.944, 
1.407)

1.060 (0.974, 
1.155)

1.096 (0.904, 
1.330)

12 1.033 (1.007, 1.059)* 1.016 (0.993, 
1.039)

1.007 (0.997, 
1.016)

1.017 (0.995, 
1.040)

0–
12

1.485 (1.184, 
1.864)*

1.171 (0.949, 
1.444)

1.068 (0.976, 
1.168)

1.115 (0.909, 
1.367)

13 1.033 (1.005, 1.062)* 1.016 (0.991, 
1.042)

1.007 (0.996, 
1.018)

1.018 (0.994, 
1.044)

0–
13

1.534 (1.206, 
1.952)*

1.190 (0.953, 
1.485)

1.075 (0.977, 
1.182)

1.135 (0.915, 
1.409)

14 1.033 (1.002, 1.065)* 1.017 (0.989, 
1.046)

1.007 (0.995, 
1.019)

1.020 (0.992, 
1.048)

0–
14

1.585 (1.226, 
2.049)*

1.210 (0.956, 
1.532)

1.083 (0.979, 
1.198)

1.158 (0.920, 
1.457)

The table records use the mean of RR values and 95% confidence intervals; *P < 0.05 
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cold season, ultra low DTR are risk factors for death in 
MetS patients. (Supplementary Fig. 1). During the warm 
season, no significant statistical correlation was found 
between different levels of DTR and the overall popula-
tion MetS mortality rate (Supplementary Fig. 2).

Figure  6 shows the existence of correlation between 
T mean and MetS mortality risk according to differ-
ent genders and ages. In addition to young people, we 
found that T mean could affect men, women and elderly 
significantly. For men, both ultra low and high T mean 
exposures increased the risk of MetS death, with the 
highest risk of death taking place at lag day 11 (RR: 1.033, 
95% CI: 1.000, 1.068) and lag day 4 (RR: 1.034, 95% CI: 
1.001, 1.069) respectively. A similar association was 
also observed in women. When exposed to ultra low T 
mean, women’s risk of death from MetS increased with 
lag days with a greatest RR value of 1.039 (95% CI: 1.000, 
1.080, lag 13). When influenced by ultra high T mean, the 
highest death risk in female MetS happened on the first 
day among the short period (RR: 1.089, 95% CI: 1.030, 
1.151). Regarding the elderly, different levels of T mean 

were significantly associated with the risk of MetS death. 
At ultra low, low and high T mean, the MetS death risk 
increased with the lag days, and the greatest RR values 
were 1.052 (95% CI: 1.017, 1.088, lag 14), 1.032 (95% CI: 
1.005, 1.059, lag 14) and 1.038 (95% CI: 1.008, 1.069,lag 
14) respectively. When exposed to ultra high T mean, 
the danger of MetS showed a decreasing trend, with a 
greatest RR value of 1.074 (lag 0, 95% CI: 1.029, 1.121). 
The results of Supplementary Fig. 1 show that there is no 
statistically significant correlation between ultra low T 
mean and the risk of death in MetS patients during the 
cold season, while lower T mean increase MetS mortal-
ity. In the warm season, lower daily average temperatures 
show a protective effect on MetS patients, while ultra 
high T mean increase the mortality rate of MetS patients 
(Supplementary Fig. 2).

The results of the stratified analysis regarding the asso-
ciation between relative humidity (RH) and MetS are 
displayed in Fig. 7. The figure does not reveal any signifi-
cant associations between different RH levels and various 
populations. However, it’s noteworthy that in comparison 

Table 3  Relative risk (RR) of Common metabolic syndrome daily death for specific T mean on different lag days
single-day lag cumulative-day lag

lag 5th percentile 25th percentile 75th percentile 95th 
percentile

lag 5th percentile 25th 
percentile

75th 
percentile

95th 
percentile

0 0.992 (0.956, 1.030) 0.986 (0.960, 
1.012)

0.983 (0.955, 
1.011)

1.070 (1.027, 
1.115)*

0–0 0.992 (0.956, 
1.030)

0.986 (0.960, 
1.012)

0.983 (0.955, 
1.011)

1.070 (1.027, 
1.115)*

1 0.996 (0.963, 1.029) 0.989 (0.966, 
1.012)

0.986 (0.961, 
1.011)

1.064 (1.026, 
1.103)*

0–1 0.988 (0.921, 
1.060)

0.975 (0.928, 
1.025)

0.969 (0.918, 
1.022)

1.139 (1.054, 
1.231)*

2 0.999 (0.970, 1.029) 0.992 (0.971, 
1.012)

0.989 (0.968, 
1.011)

1.058 (1.025, 
1.091)*

0–2 0.988 (0.894, 
1.091)

0.967 (0.901, 
1.038)

0.958 (0.889, 
1.034)

1.205 (1.081, 
1.343)*

3 1.003 (0.977, 1.029) 0.994 (0.976, 
1.013)

0.993 (0.975, 
1.012)

1.052 (1.024, 
1.080)*

0–3 0.990 (0.874, 
1.122)

0.961 (0.880, 
1.050)

0.952 (0.866, 
1.045)

1.267 (1.107, 
1.450)*

4 1.006 (0.984, 1.030) 0.997 (0.981, 
1.013)

0.996 (0.981, 
1.012)

1.045 (1.022, 
1.069)*

0–4 0.997 (0.861, 
1.155)

0.958 (0.864, 
1.064)

0.948 (0.850, 
1.057)

1.324 (1.132, 
1.549)*

5 1.010 (0.990, 1.030) 0.997 (0.986, 
1.014)

1.000 (0.987, 
1.013)

1.039 (1.020, 
1.059)*

0–5 1.007 (0.853, 
1.188)

0.958 (0.852, 
1.077)

0.948 (0.840, 
1.070)

1.376 (1.157, 
1.637)*

6 1.014 (0.996, 1.032) 1.002 (0.990, 
1.015)

1.003 (0.992, 
1.015)

1.033 (1.017, 
1.050)*

0–6 1.020 (0.851, 
1.224)

0.960 (0.845, 
1.092)

0.951 (0.835, 
1.084)

1.422 (1.180, 
1.713)*

7 1.017 (1.000, 1.034) 1.005 (0.993, 
1.017)

1.007 (0.996, 
1.018)

1.027 (1.012, 
1.042)*

0–7 1.038 (0.854, 
1.261)

0.965 (0.842, 
1.107)

0.958 (0.835, 
1.099)

1.460 (1.201, 
1.775)*

8 1.021 (1.004, 1.038)* 1.008 (0.996, 
1.020)

1.010 (0.999, 
1.022)

1.021 (1.005, 
1.037)*

0–8 1.059 (0.863, 
1.300)

0.973 (0.843, 
1.124)

0.968 (0.840, 
1.115)

1.491 (1.220, 
1.822)*

9 1.024 (1.007, 1.043)* 1.011 (0.997, 
1.024)

1.014 (1.001, 
1.027)*

1.015 (0.997, 
1.033)

0–9 1.085 (0.877, 
1.343)

0.983 (0.847, 
1.142)

0.981 (0.850, 
1.133)

1.513 (1.235, 
1.854)*

10 1.028 (1.008, 1.048)* 1.013 (0.998, 
1.029)

1.018 (1.002, 
1.033)*

1.009 (0.987, 
1.031)

0–
10

1.116 (0.895, 
1.391)

0.997 (0.854, 
1.164)

0.999 (0.863, 
1.155)

1.526 (1.245, 
1.872)*

11 1.032 (1.009, 1.055)* 1.016 (0.999, 
1.034)

1.021 (1.003, 
1.040)*

1.003 (0.977, 
1.029)

0–
11

1.151 (0.917, 
1.444)

1.013 (0.863, 
1.188)

1.020 (0.881, 
1.181)

1.531 (1.248, 
1.878)*

12 1.035 (1.010, 1.062)* 1.019 (0.999, 
1.039)

1.025 (1.003, 
1.047)*

0.997 (0.967, 
1.028)

0–
12

1.191 (0.943, 
1.505)

1.032 (0.875, 
1.218)

1.045 (0.901, 
1.212)

1.526 (1.242, 
1.875)*

13 1.039 (1.010, 1.069)* 1.022 (0.999, 
1.045)

1.028 (1.003, 
1.054)*

0.991 (0.957, 
1.027)

0–
13

1.238 (0.973, 
1.575)

1.055 (0.888, 
1.253)

1.074 (0.922, 
1.252)

1.513 (1.226, 
1.868)*

14 1.043 (1.010, 1.077)* 1.025 (0.999, 
1.050)

1.032 (1.003, 
1.061)*

0.985 (0.946, 
1.026)

0–
14

1.291 (1.004, 
1.659)*

1.081 (0.901, 
1.295)

1.109 (0.944, 
1.302)

1.491 (1.196, 
1.859)*

The table records use the mean of RR values and 95% confidence intervals; *P < 0.05 
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to ultra high RH, the relative risk (RR) associated with 
MetS-related mortality significantly increases in women 
and the elderly exposed to ultra low RH. Thus, we can-
not rule out the possibility that extreme RH may elevate 
the risk of death. Supplementary Fig. 1 shows no signifi-
cant correlation between different RH levels and mortal-
ity in MetS patients during cold seasons. In contrast, in 
warm seasons, exposure to ultra high RH raises the risk 
of death in MetS patients, as indicated in Supplementary 
Fig. 2.

Discussion
In recent years, with the rapid development of the Yang-
tze River Delta Economic Belt, the population has con-
tinued to grow. This has led to the intensification of 
the urban heat island effect and an increase in extreme 
weather events Severe air pollution is the main health 
risk problem we are currently faced with. The influence 
of climatic variation on human health has also received 
much more attention now. After adjusting the effects of 
air pollutants in this research, we first studied whether 

there was a significant correlation between DTR, T 
mean, RH and MetS death risk in Wuhu City. The associ-
ation analysis results of air pollutants and meteorological 
factors are displayed in Fig. 2, DTR is negatively related 
to RH. Although the specific mechanism of the interac-
tion of meteorological factors still remains not clear [26], 
we speculate that it is associated with the geographical 
situation and climatic characteristics of Wuhu City. More 
importantly, the average daily temperature difference in 
summer of Wuhu is small, and the RH is higher when 
DTR is low according to records from monitoring sites. 
[27]. The overall results of Fig. 4 showed that short-term 
exposure to ultra low DTR raised the MetS death risk, 
while exposure to ultra low, high and ultra high T mean 
also had a association with the increased danger of MetS 
death significantly.

We examined the relationship between MetS death risk 
and DTR, presenting the outcomes in. Table 2. Notably, 
ultra low DTR increased MetS death risk, while no sig-
nificant correlation was observed at other DTR levels. 
In Table  2, it’s evident that under the influence of ultra 

Table 4  Relative risk (RR) of Common metabolic syndrome daily death for specific RH on different lag days
single-day lag cumulative-day lag

lag 5th percentile 25th percentile 75th percentile 95th 
percentile

lag 5th percentile 25th 
percentile

75th 
percentile

95th 
percentile

0 1.018 (0.994, 1.043) 1.005 (0.989, 
1.022)

1.002 (0.979, 
1.025)

0.987 (0.960, 
1.016)

0–0 1.018 (0.994, 
1.043)

1.005 (0.989, 
1.022)

1.002 (0.979, 
1.025)

0.987 (0.960, 
1.016)

1 1.016 (0.994, 1.039) 1.004 (0.990, 
1.019)

1.001 (0.980, 
1.022)

0.988 (0.964, 
1.014)

0–1 1.035 (0.988, 
1.083)

1.009 (0.979, 
1.041)

1.003 (0.959, 
1.048)

0.976 (0.925, 
1.030)

2 1.015 (0.995, 1.035) 1.003 (0.990, 
1.016)

1.001 (0.982, 
1.020)

0.989 (0.967, 
1.012)

0–2 1.050 (0.984, 
1.121)

1.013 (0.969, 
1.058)

1.003 (0.942, 
1.068)

0.966 (0.895, 
1.042)

3 1.013 (0.995, 1.031) 1.002 (0.991, 
1.014)

1.000 (0.983, 
1.017)

0.990 (0.971, 
1.011)

0–3 1.063 (0.979, 
1.155)

1.015 (0.960, 
1.073)

1.003 (0.926, 
1.087)

0.957 (0.869, 
1.053)

4 1.011 (0.995, 1.027) 1.001 (0.991, 
1.012)

0.999 (0.984, 
1.015)

0.991 (0.974, 
1.010)

0–4 1.075 (0.975, 
1.186)

1.016 (0.952, 
1.085)

1.003 (0.912, 
1.103)

0.948 (0.847, 
1.062)

5 1.009 (0.995, 1.024) 1.000 (0.991, 
1.010)

0.999 (0.985, 
1.014)

0.992 (0.976, 
1.009)

0–5 1.085 (0.972, 
1.213)

1.017 (0.944, 
1.095)

1.002 (0.899, 
1.116)

0.941 (0.828, 
1.071)

6 1.008 (0.995, 1.021) 0.999 (0.990, 
1.008)

0.998 (0.985, 
1.012)

0.993 (0.978, 
1.009)

0–6 1.094 (0.968, 
1.236)

1.016 (0.936, 
1.102)

1.000 (0.886, 
1.128)

0.935 (0.811, 
1.078)

7 1.006 (0.993, 1.019) 0.998 (0.990, 
1.007)

0.998 (0.985, 
1.011)

0.994 (0.980, 
1.009)

0–7 1.100 (0.964, 
1.256)

1.014 (0.928, 
1.108)

0.998 (0.875, 
1.138)

0.930 (0.798, 
1.084)

8 1.004 (0.991, 1.017) 0.997 (0.989, 
1.006)

0.997 (0.984, 
1.011)

0.995 (0.981, 
1.011)

0–8 1.105 (0.960, 
1.272)

1.012 (0.921, 
1.112)

0.995 (0.864, 
1.146)

0.926 (0.786, 
1.090)

9 1.003 (0.989, 1.017) 0.996 (0.987, 
1.006)

0.997 (0.983, 
1.011)

0.996 (0.981, 
1.013)

0–9 1.108 (0.955, 
1.285)

1.008 (0.912, 
1.113)

0.992 (0.854, 
1.154)

0.922 (0.776, 
1.096)

10 1.001 (0.986, 1.016) 0.995 (0.985, 
1.006)

0.996 (0.981, 
1.012)

0.997 (0.980, 
1.015)

0–
10

1.109 (0.949, 
1.296)

1.003 (0.904, 
1.114)

0.989 (0.843, 
1.160)

0.920 (0.768, 
1.102)

11 0.999 (0.982, 1.016) 0.994 (0.983, 
1.006)

0.996 (0.979, 
1.013)

0.998 (0.979, 
1.018)

0–
11

1.108 (0.941, 
1.304)

0.998 (0.894, 
1.113)

0.985 (0.832, 
1.166)

0.919 (0.760, 
1.110)

12 0.997 (0.979, 1.016) 0.993 (0.981, 
1.006)

0.995 (0.977, 
1.014)

0.999 (0.978, 
1.022)

0–
12

1.105 (0.931, 
1.312)

0.991 (0.883, 
1.112)

0.980 (0.820, 
1.171)

0.918 (0.753, 
1.120)

13 0.996 (0.975, 1.017) 0.993 (0.978, 
1.007)

0.995 (0.974, 
1.016)

1.000 (0.976, 
1.025)

0–
13

1.100 (0.918, 
1.318)

0.984 (0.871, 
1.111)

0.975 (0.807, 
1.178)

0.919 (0.745, 
1.133)

14 0.994 (0.971, 1.018) 0.992 (0.976, 
1.007)

0.994 (0.972, 
1.017)

1.001 (0.974, 
1.029)

0–
14

1.094 (0.903, 
1.325)

0.975 (0.857, 
1.110)

0.970 (0.793, 
1.186)

0.920 (0.737, 
1.149)

The table records use the mean of RR values and 95% confidence intervals; *P < 0.05 
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low DTR, the risk RR value for cumulative lag effect sig-
nificantly surpasses that of single-day lag effect. A study 
on MetS in southwest China found a mortality increase 
in hypertensive patients associated with high DTR lev-
els [28], another study suggests that an increase in DTR 
increases the risk of hospitalization for hypertensive 
patients, and the cumulative lag effect is more pro-
nounced than a single-day lag [29]. Luo et al. quantified 
the impact of extreme DTR, identifying it as an indepen-
dent risk factor for daily mortality. Ultra low DTR had a 
more direct impact on increasing the population mortal-
ity rate compared to ultra high DTR, aligning with some 
of our findings [30]. A research from East Asia showed 
that DTR levels were lower in summer and winter [31]. 
Chen et al. established a significant relationship between 
seasonal factors and metabolic syndrome, where win-
ter correlated positively with blood pressure and fasting 
blood glucose, while summer correlated positively with 
metabolic syndrome, including hyperlipidemia [32]. The 
risk of diabetes and hyperlipidemia was higher in sum-
mer, which may be related to higher lipoprotein lipase 

activity [33]. As mentioned earlier, the relatively low 
summer DTR levels in Wuhu City indirectly explain the 
increased risk of death for metabolic syndrome patients 
with ultra low DTR. In cold winters, low physical activ-
ity and high food intake levels could contribute to weight 
gain, indirectly raising the risk of MetS death. [34].

The results of seasonal stratification analysis are similar 
to the overall trend, with ultra low DTR during the cold 
season increasing the mortality rate of MetS patients. 
Some studies have pointed out that the minimal dif-
ference between the highest and lowest daily tempera-
tures may lead to failure in body temperature regulation, 
including sweating, vasodilation, and increased heart rate 
[35], which can affect the circulatory system and lead 
to significant blood pressure fluctuations, especially for 
hypertensive patients. This fluctuation may increase the 
cardiovascular burden and increase the risk of death. Sec-
ondly, the immune system may become less active under 
cold conditions, increasing people’s risk of infection [36], 
especially leading to complications in patients with high 
blood sugar [37]. Finally, in winter, the activation of BAT 

Fig. 5  The lagged effects of DTR on metabolic syndrome mortality at various lag days
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improves cold resistance at the cost of heat resistance. 
This may trigger anxiety and psychomotor excitement, 
negatively affecting emotions [38]. This is particularly 
important for hypertensive patients, as psychological 
stress can lead to short-term or long-term increases in 
blood pressure [39]. At the same time, ultra low and low 
DTR exposure raised the MetS death risk in women, and 
ultra low DTR was also significantly associated with the 
danger of MetS death among the elderly. A study from 
South Korea showed that the elderly’s and women’s death 
risk was significantly higher than that in other population 
groups [40]. We tentatively assume that this difference is 
due to the different adaptability of different populations 
to temperature changes. Keatinge found that the increase 
of platelets, red blood cells and viscosity is related to the 
body’s temperature regulation to adapt to temperature 
changes [41], while Lim ‘s study pointed out that the abil-
ity of the human to effectively control and regulate body 
temperature decreased as the ages grew [42], which may 
be the reason why the elderly are more sensitive to DTR.

The association between T mean and MetS mortal-
ity risk is shown in Table  3. We found that exposure to 
extreme T mean (ultra low and ultra high) increases the 
risk of death from MetS. An all-cause study found that 
as T mean increases or decreases, the risk of diabetes 
- related death increases [43]. Secondly, a study from 
Northeast China showed that increased temperature 
caused by human activities was significantly associated 
with the risk of MetS death. The region has a temperate 
monsoon climate and the subtropical zone is part of the 
temperate zone, which is consistent with our findings 
[44]. At the same time, another study showed that long-
term exposure to higher levels of temperature would 
increase the risk of MetS. When the annual tempera-
ture increased by 1 ℃, the risk of fasting blood glucose 
increased by 33% [15]. However, a study from Guang-
dong, China, reported no statistical correlation between 
T mean and MetS, but did find significant correlations 
with blood pressure and fasting blood glucose, with a 
lag effect [25]. Currently, there is limited research on the 
connection between temperature and MetS. Reviewing 

Fig. 6  The lagged effects of T mean on metabolic syndrome mortality at various lag days

 



Page 12 of 15Zhang et al. BMC Public Health         (2023) 23:2363 

the available data, it becomes evident that insulin resis-
tance is widely regarded as the foundation of MetS 
pathogenesis. An editorial pointed out that metabolic 
markers such as triglycerides, high-density lipoprotein 
cholesterol levels and blood glucose could increase the 
risk of suffering from MetS [45]. Sergio Valdés found a 
significant association between ambient temperature and 
the prevalence of abnormal blood glucose and insulin 
resistance in Spanish adults [46]. This indirectly suggests 
that temperature may influence the risk of MetS-related 
mortality. Additionally, studies have confirmed that 
changes in temperature can affect sympathetic nervous 
system activity and plasma renin activity. Low tempera-
tures can also influence oxidative stress and antioxidant 
defense systems [47]. Li et al. thought that high temper-
ature may result in a highly stressful state of circulatory 
system, which will lead to increased blood viscosity and-
total peripheral vascular resistance, as well as decreased 
vascular elasticity. Thus, it finally would increase the risk 
of MetS death [48].

In the hot season, we discovered an interesting phe-
nomenon. A lower T mean shows a protective effect on 
MetS patients, while ultra high T mean increases the risk 
of MetS death. A review has highlighted the role of active 
physical activity in preventing and treating metabolic 
syndrome [49]. We noticed that the protective effect of 
lower T mean is particularly pronounced at around 20 
degrees Celsius, which is a comfortable temperature for 
the human body. At this temperature, people are more 
inclined to engage in physical activity, indirectly reduc-
ing the MetS mortality rate. Our stratification results are 
shown in Fig. 6. The effects of T mean values on different 
gender groups are roughly similar, but it is worth noting 
that women seem to be more sensitive to high tempera-
ture than men, and ultra high T mean values have an 
immediate impact. Research has shown that women typi-
cally have a higher body fat percentage than men, making 
them more adaptable to low temperatures and less prone 
to sweating in hot environments. This may explain their 
reduced tolerance to high temperatures [50, 51]. The age-
based stratification results indicate that, in comparison to 

Fig. 7  The lagged effects of RH on metabolic syndrome mortality at various lag days
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young individuals, the elderly exhibit a delayed response 
to various T mean levels, underscoring their heightened 
sensitivity to temperature fluctuations. This aligns with 
our common understanding, as younger individuals often 
possess better physical resilience and adaptability to tem-
perature changes. Research has consistently shown that 
extreme temperatures, both hot and cold, significantly 
elevate mortality rates among the elderly [52]. This is in 
line with our own findings. Furthermore, we observed 
that the elderly demonstrate a delayed response to ultra-
high T mean levels on the day of exposure. A study on 
the environment and elderly people reported that elderly 
people are more sensitive to immediate exposure to high 
temperatures, which indirectly explains this phenom-
enon [53].

In our analysis of RH, we did not find a significant cor-
relation with the risk of MetS-related mortality. How-
ever, when we conducted subgroup analysis by dividing 
the year into hot and cold seasons, we observed that ultra 
high RH increased the mortality rate of MetS during the 
hot season. At present, there are few studies on RH and 
MetS, a randomized controlled experiment found that 
diabetes patients could not tolerate humid and warm air 
with humidity more than 50%, and high humidity would 
increase the blood flow of pat [54]. This is likely because 
individuals with diabetes have reduced capacity to regu-
late their body temperature, indirectly increasing their 
risk in humid environments [55]. In addition, only one 
study shows that there is a positive correlation between 
RH and MetS, women living in high RH are more likely 
to suffer from MetS [56]. But no such association was 
found in male, young and elderly, which is consistent 
with some of our findings. The results of the study for 
the female population are different, which is quite under-
standable. Quito, with its tropical rainforest climate char-
acterized by high temperatures and abundant year-round 
precipitation, maintains consistently high relative humid-
ity. Compared to subtropical monsoon humid regions, 
the average temperature in Quito is higher. Our analysis 
of the mean temperature (T mean) revealed an increased 
risk of MetS-related mortality among women at higher 
T mean levels, possibly contributing to higher mortality 
rates among women exposed to elevated temperatures, 
leading to these contrasting findings. Due to the limited 
existing research on RH and MetS, further investigation 
is needed to clarify the conflicting results.

This article uses advanced statistical methods to con-
trol the influencing factors of atmospheric pollutants, 
evaluate the relationship between RH, T mean, and DTR 
with MetS mortality risk, and further stratify the data by 
gender and age to provide more detailed results. There is 
relatively little research on the impact of meteorological 
conditions on MetS, which is a new research direction. 
However, this study still has some limitations. Firstly, 

our meteorological data is sourced from meteorological 
stations rather than personal environmental exposure, 
potentially leading to exposure misclassification and an 
underestimation of climate’s impact. Secondly, the types 
of confounding factors included in this study model 
are limited. Due to the confidentiality of the data, other 
potential confounding factors such as the deceased’s 
occupation, dietary habits, and socio-economic informa-
tion cannot be obtained, which may limit the biological 
significance of the results. Furthermore, this study pri-
marily focuses on short-term exposure to meteorologi-
cal factors and may overlook inconsistent results due to 
long-term exposure. Except for RH, water vapor pressure 
may be a better indicator of atmospheric humidity condi-
tions, and in future research, further analysis of the long-
term effects of exposure to each meteorological factor is 
needed. Finally, further research is needed in molecular 
biology to investigate the causal relationship between 
MetS mortality and meteorological factors.

This study explores the link between short-term cli-
mate changes and MetS mortality, offering public 
health insights for metabolic syndrome prevention and 
improved resource allocation during high-risk periods.

Conclusions
This study revealed that both DTR and Tmean elevate 
the overall risk of MetS-related mortality in the entire 
population of Wuhu. Lower DTR has a more pronounced 
effect on women and the elderly, and ultra low and high 
T mean is a risk factor for MetS mortality in women and 
men. Additionally, the elderly need to pay more atten-
tion to temperature changes, and different levels of T 
mean increase the risk of death as well. MetS patients 
should avoid exposure to high temperature and relative 
humidity.
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