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Abstract
Background  Creating a spatial model of dengue fever risk is challenging duet to many interrelated factors that could 
affect dengue. Therefore, it is crucial to understand how these critical factors interact and to create reliable predictive 
models that can be used to mitigate and control the spread of dengue.

Methods  This scoping review aims to provide a comprehensive overview of the important predictors, and spatial 
modelling tools capable of producing Dengue Haemorrhagic Fever (DHF) risk maps. We conducted a methodical 
exploration utilizing diverse sources, i.e., PubMed, Scopus, Science Direct, and Google Scholar. The following data 
were extracted from articles published between January 2011 to August 2022: country, region, administrative level, 
type of scale, spatial model, dengue data use, and categories of predictors. Applying the eligibility criteria, 45 out of 
1,349 articles were selected.

Results  A variety of models and techniques were used to identify DHF risk areas with an arrangement of various 
multiple-criteria decision-making, statistical, and machine learning technique. We found that there was no pattern of 
predictor use associated with particular approaches. Instead, a wide range of predictors was used to create the DHF 
risk maps. These predictors may include climatology factors (e.g., temperature, rainfall, humidity), epidemiological 
factors (population, demographics, socio-economic, previous DHF cases), environmental factors (land-use, elevation), 
and relevant factors.

Conclusions  DHF risk spatial models are useful tools for detecting high-risk locations and driving proactive public 
health initiatives. Relying on geographical and environmental elements, these models ignored the impact of human 
behaviour and social dynamics. To improve the prediction accuracy, there is a need for a more comprehensive 
approach to understand DHF transmission dynamics.

Keywords  Dengue, Risk factor, Outbreaks, Scoping review

Spatial model of Dengue Hemorrhagic Fever 
(DHF) risk: scoping review
Ririn Pakaya1,2*, D. Daniel3, Prima Widayani4 and Adi Utarini1,5

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-023-17185-3&domain=pdf&date_stamp=2023-12-7


Page 2 of 16Pakaya et al. BMC Public Health         (2023) 23:2448 

Introduction
Dengue Haemorrhagic Fever (DHF) is a viral disease 
spread by the female Aedes mosquito, specifically the 
Aedes aegypti. DHF has become a major public health 
concern in tropical and subtropical countries around the 
world in recent years [1]. It is estimated that approxi-
mately 390  million infections occur each year, with 
approximately 3.9 billion people at direct risk of the dis-
ease [2, 3]. Aedes aegypti bites humans to spread DHF, 
commonly known as break-bone fever, after ingesting 
blood. The disease is swiftly spread over the world by 
it [4, 5]. The number of DHF cases reported to WHO 
increased 8 folds over the last two decades, from 505,430 
cases in 2000 to over 2.4  million in 2010, and 5.2  mil-
lion in 2019. Reported deaths between the years 2000 
and 2015 increased from 960 to 4032, affecting mostly 
the younger age group [6]. Globalization, trade, travel, 
demographic trends, and warming temperatures have all 
contributed to an increase in the global incidence of DHF 
[7]. In addition, DHF transmission and disease exhibit 
inherently dynamic spatial and temporal patterns due to 
a changing environment and population immunological 
profile [8]. The heterogeneous risk factors for DHF make 
it difficult to consider epidemiological changes as a single 
factor. Based on Kahn et al. (2018) [9] stated that the cur-
rent expansion of dengue appears multifactorial and may 
include climate change, virus evolution, and societal fac-
tors such as rapid urbanization, population growth and 
development, socioeconomic factors, and global travel 
and trade. Despite its complexity, analysis of variables 
related to the distribution of DHF risk can be a useful 
tool for generating spatial and temporal scenarios of DHF 
for surveillance [8]. DHF surveillance is useful for the 
systematic and continuous collection, recording, analysis, 
interpretation, and dissemination of DHF that reflects 
the current health status of a community or population 
so that actions can be taken to prevent or control DHF 
[10].

Several researchers have developed a model to predict 
the DHF risk to assist surveillance in determining DHF 
policy [11]. The output of these models can aid in deci-
sion-making processes regarding control purposes and 
surveillance methods, as well as serve as good predictive 
tools in the future. Prediction is a component of surveil-
lance and, more specifically, early warning systems [12]. 
It is the timely collection and analysis of data, as well 
as the application of risk-based assessments to prompt 
decision-making processes that trigger disease inter-
vention strategies to minimize the impact on a specific 
population. The involvement of various factors originat-
ing from the human, animal, and insect sectors, as well 
as the disease itself, makes early warning systems for 
DHF risk particularly complex [13]. The authors inves-
tigate the various models available for DHF surveillance 

and their use as an early warning tool and the factors that 
influence DHF risk. The model’s ability to be an effective 
risk-reduction tool has been used to improve the public 
health surveillance system in a variety of ways. They may 
have similar structural designs, functions, and analytical 
approaches, but they perform and predict DHF outbreak 
risk differently [14–16]. There is an increasing number 
of research reports on DHF outbreak prediction tools. 
Racloz et al. (2012) [12] previously highlighted the ben-
efits of combining various epidemiological tools, such 
as mapping and mathematical models, to create an early 
warning system. Another study by Louis et al. (2014) [8] 
focused on risk-mapping for DHF from 2005 to 2013. 
Baharom et al. [13] reviewed the most recent literature 
(2014–2021) and discussed the evidence for various early 
warning systems, their performance, and ability to pre-
dict DHF outbreaks.

The research gap is visible in the scope of DHF risk 
modelling, particularly from 2011 to 2021, lacks current 
investigations into DHF dynamics and risk factors. To fill 
this void, we hypothesized that a thorough and updated 
examination of predictor variables and modelling tech-
niques during this time period will not only address 
research gap but also contribute to the improvements of 
DHF risk maps. This pioneering investigation not only 
addresses the prevailing research gap but also promises 
to yield a novel contribution in the form of refining the 
DHF risk maps, thereby ushering in a new era of data-
driven and well-informed public health decision-making. 
The purpose of this scoping review is to summarize the 
most recent literature on the risk model of DHF (2011–
2021), as well as to compare the most important predic-
tors and the most commonly used modelling methods in 
order to generate specific types of risk maps with vary-
ing applicability and relevance for public health decision 
making.

Materials and methods
Data source and search strategy
The Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) 2020 statement is used 
to report this scoping review. It took place from January 
to August 2022. Systematic searching strategies include 
identification, screening, and the eligibility process. In 
the identification stage, synonyms and variations were 
used to enrich the keywords, then applied in the search 
process [13]. The combinations of search terms we use 
include; (i) “spatial model” and “Dengue risk”; (ii) “risk” 
and “Dengue” and “spatial analysis”; (iii) “hazard” and 
“Dengue” and “Geographic Information System” (iv) 
“vulnerability” and “Dengue” and “Geographic Infor-
mation System”; (v) “capacity” and “Dengue” and “spa-
tial analysis”; (vi) “Factor influence” and “dengue risk”. 
The following databases were searched electronically; 
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PubMed, Scopus, Science Direct, and Google scholar in 
the first step of the multi-level approach we used Medi-
cal Subject Heading terms (for PubMed) and undertook 
plain text searches for keywords connected with Boolean 
operators. There were no limitations on the time frame 
or language of publishing. Even though the search was 
limited to the English language, no articles that were 
published in other languages were disqualified from full 
text evaluation [8].

Inclusion and exclusion criteria
Based on the developed review question and specific 
inclusion and exclusion criteria, two authors screened 
the title and abstract. The results were pooled using 
Mendeley, and duplicates were removed during a second 
round of revisions. After retrieving the search results, 
papers for inclusion were selected in two stages. The first 
step involved two independent researchers selecting arti-
cles from the search results based on titles and abstracts, 
as well as specific inclusion and exclusion criteria. Addi-
tional literature was found by scanning the bibliographies 
of the reviewed articles. The full text of studies related to 
the research questions was examined. Based on the title 
of the abstract screen, research whose inclusion appeared 
ambiguous was included. In the second stage, all articles 
underwent a full-text review by two reviewers (Fig. 1).

For eligibility, 45 full-text articles were success-
fully retrieved. All full-text articles were reviewed 

independently by two authors. All studies that were 
discovered to be unrelated to the interest and intended 
outcome were excluded. The reasons for the article’s 
omission were documented. A number of 88 articles were 
excluded because they were: (1) non-spatial, (2) did not 
have a risk model, and (3) did not have a full-text article. 
The remaining 45 articles were eligible for data extraction 
(Fig. 1).

Data extraction
Two author and an independent reviewer performed 
data extraction using pretested data extraction forms 
and stored these in a Microsoft Excel 2019 spreadsheet. 
Disagreements were resolved by consensus. The follow-
ing publications characteristics was extracted from each 
paper: publication year, country, region, administrative 
level (district, municipality, regency/city, province, and 
country, region, and continental), type of scale (urban or 
rural), spatial model (Multiple Criteria Decision Mak-
ing, Statistical, and Machine Learning), dengue data use, 
and categories of predictors (population, demographic, 
social-economy, climatology, environmental, ento-
mological, capacity, and epidemiological). The model-
ing variables are summarized in each study’s narrative 
description (Table 1).

Fig. 1  Stages of systematic review
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Results
Characteristics of included studies
A comprehensive search of international peer-reviewed 
journals published from 2011 onwards yielded a total 
of 1329 published articles. These, 1349 articles were 
obtained from four databases (302 from PubMed, 389 
from Scopus, 638 from Science Direct, and 20 from 
Google Scholar). Following removal of duplicates and 
screening of the title 234 articles remained. Of these, 101 
articles were excluded for the following reasons unre-
lated to DHF, not an English article, conference pro-
ceedings, book chapters, reports, and published before 
2011. A total of 88 articles were then excluded from the 
remaining 133 articles due to nonspatial, no risk model 
developed, and full text articles no available. Finally, the 
systematic review included 45 publications that met the 
eligibility criteria (Fig. 1; Table 1).

Journals published in the last 12 years were used as the 
deadline for this study (2011–2022). Since 2011, the num-
ber of publications has increased. The majority of studies 
(n = 29, 64.44%) have been published after 2017 (Fig.  2). 
This systematic review included 45 studies that met the 
eligibility criteria. Thirty-three (73.3%) of the 45 studies 
were conducted in Asia, eleven (24.4%) in America, and 

one (2.2%) in Africa. Half (51.11%) of the studies were 
conducted in Brazil, India, Indonesia, Malaysia, and 
Thailand (Fig.  3). The most extended surveillance data 
time frame was 24 years (33), followed by 18 years (41). 
Generally, studies used monthly and annual data units. 
The characteristics of included studies are summarized in 
Table 1.

Scale and scope
DHF risk maps provide localized risk assessments by 
considering the specific characteristics of an area. By 
analyzing data at a smaller scale, such as neighbor-
hoods or districts within a city, these maps can highlight 
areas that are more susceptible to dengue transmission. 
This information is crucial for local health authorities 
to implement targeted interventions, allocate resources 
effectively, the efficiency of control measures and reduces 
the burden on resources [17]. Of the 45 total studies, 
39 (86.67%) were applied to the administrative level, 
such as district, municipality, regency/city, province, 
and country, and 6 (13.33%) were applied to the conti-
nent and region, respectively. Studies were done at the 
regency/city, province, country, region, and continen-
tal levels were more likely to include a mix of urban and 

Fig. 3  Number of included articles by country of study

 

Fig. 2  Number of studies based on year of publication from 2011 to 2022
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rural areas. Urban and rural (mixing) (62.22%) and rural 
(28.89%) was the most common study area analyzed 
(Table 1). Because they were more general and geograph-
ically extended, studies done at country, state and prov-
ince levels were more likely to include rural areas. The 
distribution of studies by region, country and administra-
tive level is shown in Fig. 4.

Study design
All studies were conducted retrospectively. Retrospective 
descriptive is research conducted with the main aim of 
making a picture or description of a situation objectively 
by looking back. Although some studies (8, 14, 15, 21, 23, 
24, 34, 36, 39, 45) did not use DHF data as a reference, 
the majority of them used secondary data on DHF cases 
from health surveillance system surveys. Aside from 
reported DHF cases, critical predictors for model genera-
tion and DHF risk maps included variables from a variety 
of categories, including population, demography, socio-
economic, climatology, environmental, entomological, 
capacity, and epidemiological data. The peer-reviewed 
articles used data ranging from one to twenty years. 
Eleven studies (1, 5, 6, 9, 10, 11, 16, 18, 28, 32, 37) used 
data sets with a duration of fewer than three years, while 
twenty-four of the 45 studies used data sets with a dura-
tion of three years or longer (2, 3, 4, 7, 12, 13, 17, 19, 20, 

22, 25, 26, 27, 29, 30, 31, 33, 35, 38, 40, 41, 42, 43, 44) 
(Table 1).

Predictors
Climatology data
Twenty-one studies incorporated climatic predictors in 
their model generation (1, 2, 6, 7, 9, 13, 16, 22, 26, 27, 29, 
31, 32, 33, 34, 35, 36, 39, 40, 41, 43) (Table 1). Three stud-
ies used precipitation, temperature, and humidity (26, 29, 
35). Predominantly used predictors were precipitation 
and temperature (2, 6, 7, 9, 16, 22, 27, 31, 33, 34, 39, 40, 
41, 43), and eleven studies used only one rain parameter, 
namely 1, 13, 16, 19, 23, 24, 28, 30, 32, 34, 36. Thirteen 
studies used climatological stations to interpolate the 
spatial distribution of temperature and eight studies used 
remote sensing to analyze Land Surface Temperature 
(LST) (13, 19, 23, 24, 28, 30, 31, 34). They used remotely 
sensed data on climatic variables to address the lack of 
routinely collected data from meteorological stations. 
These climatological variables were used to characterize 
the spatial and temporal DHF risk.

Environmental data
Environmental information comprised data on elevation, 
slope, land use/land cover, vegetation, and microenviron-
ment. Elevation and slope derived from Digital Elevation 
Model (DEM) (1, 14, 16, 24, 27, 28, 32, 42, 43). Extract 

Fig. 4  Map of areas with dengue risk based on The Centers for Disease Control and Prevention, The National Center for Emerging and Zoonotic Infectious 
Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD) with number of publications reviewed in respective countries
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each studied DEM that represents the various grid-cell 
sizes used in the worked example. Aedes aegypti are 
abundant, and endemic DHF virus transmission occurs 
in low-elevation areas but where a large proportion of the 
human population lives in high-elevation cities located 
above the elevation ceiling below which local climates 
allow for the proliferation of the mosquito vector and 
endemic DHF virus transmission [18].

Twenty-five studies generated land use/landcover (1, 2, 
3, 9, 13, 14, 15, 16, 21, 23, 24, 25, 28, 29, 30, 31, 32, 34, 
35, 37, 39, 40, 42, 43, 45). Generally, land use/land cover 
consists of built-up, vegetation, agriculture, and water-
bodies. Developed land has been shown to increase DHF 
incidence, and urban land has been shown to increase the 
risk of extended DHF distribution [19]. Vegetation cover 
was obtained from Enhanced Vegetation Index (EVI) and 
Normalized Difference Vegetation Index (NDVI). The 
simultaneous deterioration of vegetation cover (vigor and 
density) in the area was directly related to an increase in 
the occurrence of DHF cases [19]. Eleven studies (13, 19, 
23, 24, 25, 26, 28, 29, 30, 31, 34) used satellite images to 
gain information on the environmental vector breeding 
appropriateness. Enhanced Vegetation Index (EVI) and 
Normalized Difference Vegetation Index (NDVI) can 
be used to quantify vegetation greenness, The Normal-
ized Difference Built-up Index (NDBI) uses the NIR and 
SWIR bands to emphasize manufactured built-up areas, 
and The Normalized Difference Water Index (NDWI) is 
known to be strongly related to the plant water content. 
Three studies (13, 31, 34) were sourced from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS), and 
eight studies (19, 23, 24, 25, 26, 28, 29, 30) were sourced 
from Landsat 8 Operational Land Manager and Thermal 
Infrared Sensor (OLI/TIRS) imagery. Meanwhile, predic-
tors used in microenvironmental data include the follow-
ing: garbage, and sanitation, (4, 7, 36, 37, 40). One of the 
key factors influencing DHF in developing countries is a 
lack of basic sanitation facilities, waste management, and 
clean water [20].

Entomological data
Entomological data were collected at the egg, larval, and 
adult stages. Mosquito egg and larval collections were 
conducted using dark containers containing water and a 
substrate, traditional dipping techniques, or the record-
ing of an index (Breteau index, container index, and 
house index). Two studies used the Bretau Index (BI) 
(35, 37), which defined the number of positive contain-
ers/number of houses explored × 100. Three studies used 
the house index (HI) (35, 36, 37), which is defined as the 
number of infected houses × 100/total number of houses, 
and two studies used the Container Index (CI) (37, 42), 
which define the number of infected containers × 100/
total number of containers [65]. Two studies (4, 11) used N
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egg, larval, and adult indicators as input predictors for 
model generation. Capture activities used different types 
of traps to estimate adult mosquito population densities.

Capacity
Capacity indicators reflect populations’ ability to cope 
with or prevent DHF outbreaks by assessing their pre-
paredness and response mechanisms [59]. Eleven studies 
stated women and their education level play critical roles 
in the home (4, 5, 7, 8, 9, 15, 34, 35, 36, 37, 40). They fre-
quently manage household conditions, waste, water, the 
family’s health care, etc. Households with a low female 
literacy rate and education level had an increased risk 
of Aedes aegypti oviposition sites around them. Good 
access to healthcare (2, 7, 8, 9, 13, 15, 31, 34, 40, 45) can 
reduce susceptibility, particularly to complications, and 
increase early disease diagnosis and immediate medi-
cal care to reduce morbidity and thus reduce population 
susceptibility; thus, distance to a hospital was included 
as an indicator of adaptive capacity [59]. One study uses 
mosquito preventive measures (17) like litter outdoors, 
used car tires outdoors, bottles outdoors, indoor flower 
vases, screened windows/doors, mosquito nets, insec-
ticide repellent, and container washing. The presence 
of the used container, litter outdoors, bottles outdoors, 
indoor flower vases, and used car tires outdoors may cre-
ate a suitable environment to develop mosquito breeding 
sites [66]. Mosquito vectors bite continuously through-
out the day, these precautions must be taken both inside 
and outside the home (for example, at work/school), like 
screened windows/doors, mosquito nets, and insecticide 
repellent [63]. Three studies use poverty households (31, 
36, 40) as a DHF risk because in areas with high poverty 
households, there is often limited access to basic ameni-
ties like clean water, proper sanitation, and healthcare 
services. These conditions can contribute to the pro-
liferation of Aedes aegypti and increase the DHF risk. 
Additionally, poverty may lead to overcrowded living 
conditions, which can facilitate the spread of the virus 
[59].

Epidemiological
Epidemiology is the study of the distribution, patterns, 
and determinants of health-related events, including dis-
eases, within a population. The majority of studies (1, 2, 
3, 5, 7, 8, 9, 13, 14, 15, 16, 23, 24, 27, 29, 31, 32, 34, 35, 39, 
40, 43, 45) described and modelled the DHF risk occur-
rence using population distribution and density (Table 1). 
These data were derived primarily from the national cen-
suses. Population density data were used in the 23 articles 
reviewed. The demographic data used several predictors 
including age, gender, race/ethnicity, occupation, and 
sex. These were used in 16 of 45 studies reviewed (4, 5, 7, 
8, 9, 15, 18, 21, 31, 34, 35, 37, 38, 40, 41, 44). Meanwhile, 

the predictors used in social and economic data included; 
housing type, residential buffer, urban proportion, prox-
imity to road/road network, toilet type, mean distance to 
hospital, poverty incidence, number of household rooms, 
number of persons per household, crowding, duration 
of residence, people who did not study nor worked, fol-
lowing any type of study, having a job, household density 
and gross domestic product (GDP). Most studies that 
included socio-economic predictors identified some of 
them as significant.

The majority of DHF cases were caused by infection 
with one of the four dengue virus serotypes (DENV) 
(1–4). Seventeen studies (2, 3, 12, 16, 17, 20, 21, 23, 28, 
30, 32, 33, 35, 36, 37, 38, 42) used DF/DHF cases or inci-
dence. One study (1) used DF/DHF incidence buffer. DF/
DHF is a viral infection spread by mosquitoes, that live 
for an average of 8–15 days and can fly 30–50 m per day, 
covering a distance of 240–600  m in their lifetime [21]. 
One study (10) used the incidence rate. An incidence rate 
describes how quickly a disease occurs in a population.

Modelling approaches
DHF risk maps were created using a variety of Multi Cri-
teria Decision Making (MCDM), statistical, and Machine 
Learning (Fig.  5). The majority of studies employed 
MCDM approaches. To estimate the DHF risk occur-
rence over a geographical area, reported DHF cases were 
combined with other selected predictors (climatology, 
environmental, entomological, capacity, and epidemio-
logical). The maps were created using values calculated 
from the chosen predictors for each raster map (smallest 
surface area with a specific value). In terms of method-
ology, we distinguish the use of models from the use of 
indices in order to obtain risk estimates. Models imply 
the use of variables individually, whereas indices use a 
composite of variables computed from available data.

Seven studies (6, 12, 13, 17,19, 27, 33) used the Bayes-
ian approach. It has the advantage of fully quantifying 
uncertainty in estimates and can handle small sample 
sizes [58]. A Bayesian spatial model was used to generate 
a map of DHF relative risk in an area and investigate the 
relationship between socio-environmental factors and 
DHF risk using spatial autocorrelation [17]. Five stud-
ies (7, 9, 31, 34, 40) used The Water Associated Disease 
Index (WADI) to identify and visualize vulnerability to 
different water-associated diseases by integrating a range 
of social and biophysical determinants in map format [27, 
29, 50, 53, 59]. It aims to assess vulnerability by integrat-
ing disease-specific measures of environmental expo-
sure (i.e., temperature, precipitation, land use, etc.) with 
disease-specific measures of social susceptibility (i.e., life 
expectancy, educational attainment, access to health-
care, etc.) to provide a holistic picture of risk to disease. 
The WADI tool complements early warning models for 



Page 9 of 16Pakaya et al. BMC Public Health         (2023) 23:2448 

water-associated disease by providing upstream infor-
mation for planning prevention and control approaches, 
which increasingly require a comprehensive and geo-
graphically broad understanding of vulnerability for 
implementation [27].

Multi Criteria Decision Making (MCDM) is consid-
ered a complex decision-making tool involving quantita-
tive and qualitative factors. Several studies (1, 14, 24, 30, 
45) have been found engaging the application of AHP 
in DHF risk assessment through multi-criteria decision 
analysis and the use of GIS and high-resolution satel-
lite data to find out DHF risk areas [44]. Furthermore, 
using AHP with GIS for DHF risk zonation modeling and 
mapping can display construct results with spatial rela-
tionships. Understanding the pattern and distribution of 
DHF outbreaks can be aided by the spatial relationship. 
AHP assists decision makers in making correct decisions 
by putting their intensity of importance, and inconsis-
tency will appear if the decision is incorrect. Maximum 
Entropy (MaxEnt) is a machine learning program that 
uses presence-only data to predict distributions based on 
the principle of maximum entropy [43, 46, 51, 62]. The 
basic principle of the MaxEnt model is to estimate the 
potential distribution of DHF by determining the distri-
bution of the maximum entropy (i.e., closest to uniform), 
with constraints imposed by the observed spatial distri-
butions of the DHF and the environmental conditions 
(23, 26, 32, 43) [43].

Geographically Weighted Regression (GWR) among 
others is the most widely used multivariate local statis-
tics to cope with spatially non-stationary processes that 

allowed to change of parameters locally [23, 35, 42]. 
GWR can measure the spatial dependency in a dataset 
and is easily understood due to the traditional regression-
based framework. The GWR model was compared to 
describe the spatial relationship of potential environmen-
tal and socioeconomic risk factors with DHF incidence 
(3, 15, 22). Four studies were conducted to determine 
the DF incidence hotspot zonation map using the Kernel 
Density Estimation (KDE) method (10, 17, 42, 44). KDE 
was used to fit a smoothly tapered surface to point lay-
ers, and Euclidean distance was used to identify polygon 
layer close exposures. The risk values for each layer were 
ranked based on their contribution to DHF incidence 
transmission [61]. Two studies used each model i.e., Step-
wise Logistic Regression (2, 26), Multinomial Logistic 
(4, 28), Poisson (5, 42), Principal Component Analysis 
(8, 35), Generalized Additive Models (11, 29), Logistic 
Regression (18, 37), Random Forest (25, 32). The Random 
Forest method is a powerful and widely used machine 
learning algorithm that can be applied to the creation of a 
dengue risk map. It is to predict and visualize areas with 
a higher likelihood of DHF outbreak or transmission. 
Several models were only used by one study e.g., Local 
Moran’s, PA Tools; LISA, OLS, J48, GoM, ANN, WLC, 
BWM, GEMF (Figuer 4).

Discussion
Retrospective studies
Most of studies were conducted retrospectively and 
non-retrospective studies are not the primary choice 
in dengue risk studies. Non-retrospective studies were 

Fig. 5  Types of modeling approaches

 



Page 10 of 16Pakaya et al. BMC Public Health         (2023) 23:2448 

not the main choice in dengue fever risk studies due to 
limitations in search terms, currently there is an increas-
ing number of early warnings, machine learning, and AI 
modeling in DHF risk that cover location coverage but 
cannot be extracted through the identification stage. 
This is due to the combination of search terms used that 
are closely related to “spatial” and “Geographic Infor-
mation Systems”, where these two keywords are closely 
related to retrospective research which involves the col-
lection and analysis of data that has occurred in the time 
period before the research began. This means the study 
looks back to collect data and tries to identify relation-
ships between past factors. DHF risk can vary spatially 
over time. Retrospective studies, which involve collect-
ing historical data over an extended period, allow for the 
examination of how DHF risk has evolved and fluctuated 
in different geographic areas (spatial patterns). Addition-
ally, they provide the opportunity to identify and analyze 
spatial trends in dengue risk factors and help researchers 
detect hotspots or clusters of dengue cases and investi-
gate the factors contributing to these clusters. The DHF 
risk is influenced by various factors related to the past, 
including climate, urbanization, population movements, 
and vector distribution. Understanding the historical 
context of these factors is critical to developing accurate 
spatial models. Retrospective data can provide insight 
into how these factors change over time.

Predictors
Different approaches to DHF risk mapping employed a 
wide range of predictors without following a predictable 
pattern. This observation highlights the complexity and 
variability of DHF transmission dynamics and the chal-
lenges involved in accurately predicting and mapping 
DHF risk [67]. It suggests that researchers and practitio-
ners in this field recognized the importance of consider-
ing multiple factors and variables to capture the diverse 
aspects that influence DHF risk. By using a broad set of 
predictors, researchers likely aimed to capture the com-
plex interactions between climatological, environmen-
tal, entomological, capacity, and epidemiological factors 
that contribute to DHF risk. This approach acknowl-
edges that no single predictor may provide a complete 
understanding of DHF risk, and a comprehensive assess-
ment requires considering multiple factors simultane-
ously. In summary, the absence of a pattern of predictor 
use associated with specific approaches in creating DHF 
risk maps indicates the adoption of diverse predictors 
to account for the multifaceted nature of DHF trans-
mission dynamics and create more comprehensive risk 
assessments.

Temperature  DHF risk is influenced by temperature as 
it affects both the mosquito vector and the virus. Higher 

temperatures can accelerate the development of the DHF 
virus within mosquitoes, leading to increased viral repli-
cation and a shorter incubation period. Warmer tempera-
tures can also speed up the mosquito’s life cycle, resulting 
in more frequent breeding and shorter intervals between 
generations, thereby increasing the chances of DHF risk 
[68]. Rainfall: DHF risk is closely linked to rainfall pat-
terns. Mosquitoes require water for breeding, and rainfall 
provides ideal breeding sites for the Aedes aegypti. Heavy 
rainfall can create stagnant water pools and increase the 
availability of breeding sites. However, excessive rainfall 
can also flush away breeding sites or dilute larval habi-
tats, reducing mosquito populations. On the other hand, 
periods of drought followed by rainfall can create tempo-
rary water sources, which can lead to a sudden increase 
in mosquito populations and DHF transmission [69]. 
Humidity: High humidity can facilitate the survival and 
reproduction of mosquitoes. Aedes aegypti thrive in 
humid environments, and higher humidity levels can pro-
long their lifespan and increase their ability to transmit 
DHF. Additionally, increased humidity can also affect the 
development of the DHF virus within mosquitoes, poten-
tially leading to higher viral loads and increased transmis-
sion [70].

Elevation  Generally, the DHF risk is higher in areas with 
lower elevations. This is because Aedes aegypti, which are 
responsible for spreading the DHF virus, prefer warm and 
humid environments. They thrive in areas with stagnant 
water, such as water containers, flower pots, and discarded 
tires, which are common breeding grounds for mosqui-
toes. Lower elevations tend to have higher temperatures 
and higher humidity, creating more favorable conditions 
for mosquito breeding and the survival and replication of 
the DHF virus [71]. Additionally, lower elevations often 
have a denser population and urban areas, which can fur-
ther increase the DHF risk due to a higher concentration 
of potential mosquito breeding sites. In contrast, higher 
elevations, especially in mountainous or cooler regions, 
tend to have a lower DHF risk. The cooler temperatures 
and reduced humidity at higher elevations are less favor-
able for the survival and reproduction of Aedes aegypti. 
As a result, the mosquito population may be lower, and 
the DHF risk decreases.

Vegetation and land-use  The presence of dense veg-
etation and specific land-use types can influence the 
DHF risk. Dense vegetation provides shaded areas and 
increased moisture, creating suitable resting and breed-
ing sites for mosquitoes. Dense vegetation with thick foli-
age can provide shade and retain water, creating favorable 
conditions for mosquito breeding [72]. Overgrown veg-
etation can also make it difficult to detect and eliminate 
mosquito breeding sites. Vegetation plays a crucial role in 
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maintaining ecological balance and regulating mosquito 
populations. In healthy ecosystems, various predators, 
such as dragonflies, birds, and bats, help control mosquito 
populations. Vegetation can contribute to local climate 
regulation by providing shade and reducing temperature 
[73]. Changes in vegetation cover can alter local micro-
climates [74], potentially affecting mosquito populations 
and DHF transmission dynamics. Certain land-use types, 
such as urban areas with inadequate waste management 
systems, can contribute to the accumulation of water 
in containers and other objects, creating ideal breeding 
grounds for mosquitoes. Rapid urbanization often leads 
to the creation of more artificial containers and increased 
water storage practices, providing additional breeding 
sites for mosquitoes [75].

Capacity. The presence of well-equipped healthcare 
facilities, including hospitals and clinics, plays a crucial 
role in diagnosing and treating DHF cases promptly. 
A region with limited healthcare infrastructure may 
face challenges in identifying and managing DHF cases 
effectively, potentially leading to increased transmission 
and more severe outcomes. Regions with strong vector 
control programs, such as regular monitoring, surveil-
lance, and effective mosquito control strategies, can sig-
nificantly reduce the mosquito population and minimize 
the DHF risk. Adequate resources and infrastructure for 
implementing such measures are essential for mitigating 
the risk. Timely and accurate surveillance systems are 
vital for detecting DHF cases, monitoring disease trends, 
and implementing appropriate control measures. Regions 
with robust public health surveillance systems can iden-
tify outbreaks early on, allowing for swift intervention 
and prevention efforts [40]. Educating the public about 
DHF prevention measures, such as eliminating breeding 
sites and practicing personal protection methods, can 
help reduce the DHF risk. Regions with effective commu-
nity engagement programs and resources for public edu-
cation are more likely to have a higher level of awareness 
and adherence to preventive measures [76].

Entomological  Understanding the dynamics of mos-
quito populations and their behavior is crucial for assess-
ing the DHF risk. Entomological measurements provide 
insights into the abundance and activity of mosquitoes 
in a given area, which can help predict and monitor the 
potential for DHF outbreaks [77]. Larvae abundance 
refers to the number of mosquito larvae found in breeding 
sites, such as water containers or stagnant water sources 
[78]. Monitoring larvae abundance helps identify areas 
with high mosquito breeding activity and serves as an 
indicator of potential mosquito populations. While these 
entomological measurements provide valuable data for 
understanding mosquito populations and activity, their 

direct relationship to clinical DHF cases is complex and 
not fully elucidated.

Epidemiological  Epidemiology is concerned with study-
ing the distribution and determinants of diseases within 
populations. The size and density of the population in an 
area can affect the DHF risk. Population. Higher popula-
tion densities increase the likelihood of DHF transmission 
by providing more opportunities for mosquitos to come 
into contact with humans. Furthermore, if infected indi-
viduals move between different areas, large populations 
can facilitate the virus’s rapid spread [67]. Demographic. 
Demographic data is critical in understanding population 
dynamics and identifying areas that are more vulnerable 
to DHF outbreaks when developing DHF risk maps at the 
local level [68]. Age is an important factor, as older indi-
viduals may have developed immunity through previous 
exposure to the DHF, while younger populations, includ-
ing children, maybe more at risk [69]. Social-economic. 
Social-economic conditions can significantly impact the 
DHF risk. Poverty and inadequate housing conditions, 
such as lack of proper sanitation and access to clean water, 
can contribute to the proliferation of mosquito breeding 
sites [70]. These conditions often exist in urban slums or 
overcrowded areas where stagnant water collects and pro-
vides ideal breeding grounds for mosquitoes [71]. Lack of 
resources and infrastructure for mosquito control and 
prevention measures can also increase the risk. Addition-
ally, socioeconomic factors can impact healthcare-seeking 
behavior, which may delay the diagnosis and treatment 
of DHF cases [72, 73]. DHF Cases. Epidemiological data 
on DHF cases, can help public health authorities imple-
ment targeted interventions, such as mosquito control 
measures and public awareness campaigns, to reduce the 
DHF risk. DHF cases is particularly prevalent in the Asian 
region [1]. This predominance can be linked to a number 
of causes, including the region’s tropical and subtropical 
climate, which offers an ideal setting for the Aedes mos-
quitos responsible for viral transmission [79]. The high 
population density in many Asian countries, increasing 
urbanization, and inadequate sanitary facilities all con-
tribute to the growth of mosquito breeding grounds. Fur-
thermore, in some locations, poor healthcare access and 
inadequate public health measures may result in under-
reporting and difficulty in limiting disease spread.

The weakness of current DHF risk maps
Host serological profile and virus genetic diver-
sity  Dengue is caused by four distinct serotypes of the 
dengue virus (DENV-1, DENV-2, DENV-3, and DENV-
4) [80]. Once a person is infected with one serotype, they 
develop lifelong immunity to that specific serotype but 
remain susceptible to the other serotypes. This creates a 
complex pattern of immunity in the population, known 



Page 12 of 16Pakaya et al. BMC Public Health         (2023) 23:2448 

as the host serological profile. The immunity levels to dif-
ferent serotypes vary across different geographic regions, 
as well as within different age groups within the same 
region. Current DHF risk maps often rely on data such as 
reported DHF cases and mosquito surveillance to predict 
the DHF risk. However, these maps may not accurately 
capture the host serological profile of the population. If a 
prediction model fails to consider the serological profile 
and immunity levels in a given area, it may underestimate 
or overestimate the DHF risk. This can lead to ineffective 
allocation of resources and public health interventions.

DHF viruses are genetically diverse, even within each 
serotype. Genetic variations in the virus can influence 
their ability to transmit and cause severe disease. Some 
strains may be more virulent, while others may be less 
likely to cause severe symptoms. Additionally, the genetic 
diversity of the virus can affect the effectiveness of diag-
nostic tests and vaccines. Current DHF risk models often 
do not account for the genetic diversity of the DHF virus. 
They may assume a uniform distribution of virus strains 
or rely on limited genetic data. As a result, these mod-
els may overlook important variations in viral strains 
that can impact the transmission dynamics and severity 
of DHF outbreaks. Consequently, the accuracy of predic-
tions may be compromised.

To address these weaknesses, ongoing research is 
focused on improving DHF risk models by incorporating 
data on host serological profiles and virus genetic diver-
sity. By integrating information on population immunity 
levels and the genetic characteristics of circulating virus 
strains, it is possible to enhance the accuracy and effec-
tiveness of DHF risk maps.

Climate Change  It can have a significant impact on the 
DHF risk. Rising temperatures associated with climate 
change create favorable conditions for the Aedes aegypti 
to thrive [81–84]. Warmer temperatures increase mos-
quito reproduction rates, shorten the time it takes for 
mosquitoes to become infectious, and speed up the virus 
replication within the mosquitoes. As a result, higher 
temperatures enhance the transmission of DHF virus and 
can lead to more frequent outbreaks [71]. It can alter rain-
fall patterns, leading to increased rainfall intensity and 
changes in the distribution and frequency of precipita-
tion. Heavy rainfall events can create breeding sites for 
mosquitoes by providing them with more stagnant water, 
such as in puddles, containers, or water storage facili-
ties. This facilitates the proliferation of Aedes aegypti and 
increases the chances of DHF transmission [85]. Climate 
change is also linked to an increase in the frequency and 
intensity of extreme weather events, such as hurricanes, 
cyclones, and floods [86]. These events can disrupt sanita-
tion systems, damage infrastructure, and displace popula-
tions, leading to the creation of temporary water storage 

sites. These sites often become breeding grounds for mos-
quitoes and contribute to the spread of DHF. Changes in 
climate can also impact the geographic range of the Aedes 
aegypti, enabling them to expand their range to higher 
altitudes and latitudes [87, 88]. As a result, areas that were 
previously unaffected by DHF may become suitable habi-
tats for mosquito breeding and DHF transmission. This 
expansion exposes populations with little or no prior 
immunity to the disease, making them more vulnerable. 
Climate change can disrupt ecological systems and eco-
logical interactions, including those between mosquitoes, 
their predators, and competitors [89]. These disruptions 
can affect the natural balance that helps control mosquito 
populations and limit the spread of diseases like DHF.

Overall, climate change acts as a catalyst for DHF trans-
mission by creating favorable environmental conditions 
for mosquito breeding, altering mosquito distribution, 
and influencing the dynamics of DHF virus replication 
within mosquitoes. Understanding and addressing the 
link between climate change and DHF risk is crucial for 
implementing effective preventive measures and public 
health strategies to combat the disease.

Mobility  Travel and Migration: People travel between 
regions, countries, and even continents, potentially car-
rying the DHF virus with them. This movement can intro-
duce the virus to new areas or contribute to the spread of 
existing outbreaks [90]. Prediction maps may not account 
for the movement patterns of individuals, making it dif-
ficult to accurately predict the introduction or spread 
of DHF in different locations. Urbanization and Urban 
Mobility: Rapid urbanization and increased urban mobil-
ity play a significant role in DHF transmission. Urban 
areas provide favorable breeding grounds for mosquitoes, 
and people frequently move within and between cities, 
potentially spreading the virus [91]. The movement of 
infected individuals from one urban center to another 
can result in the dispersion of DHF cases, challenging the 
predictive accuracy of static maps. Seasonal and Tempo-
rary Migration: Seasonal migration, particularly in agri-
cultural or tourist regions, can contribute to the spread of 
DHF. Temporary workers or tourists moving into DHF-
endemic areas may bring the virus from their place of 
origin or contract the infection locally and then spread it 
upon returning home [9, 92]. Prediction maps might not 
account for these temporary movements, leading to inac-
curate estimations of DHF risk.

For future studies, DHF risk efforts may need to inte-
grate more dynamic data sources, such as real-time 
mobility data, social media trends, and other relevant 
indicators. By incorporating these factors, predictive 
models can potentially improve their ability to account 
for the impact of mobility on DHF transmission and pro-
duce more reliable risk maps.
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Scale and temporal resolution  The weakness of cur-
rent DHF risk maps originating from scale refers to limi-
tations in the spatial resolution or granularity at which 
the predictions are made [93]. DHF is a vector-borne 
disease transmitted by Aedes aegypti, and its incidence 
can vary significantly at different geographic scales, such 
as district, municipality, regency/city, province, coun-
try, region, and continental [8]. At larger scales, such as 
country, region or continental levels, DHF risk maps may 
provide a broad overview of the disease risk in a partic-
ular area. However, these maps often fail to capture the 
local heterogeneity within that region. The incidence of 
DHF can vary widely even within a single city or regency, 
with certain neighborhoods or communities being more 
susceptible to outbreaks due to factors like population 
density, environmental conditions, and socioeconomic 
factors. Predictions made at a larger scale may not capture 
these fine-grained variations.

On the other hand, when DHF risk maps are created at a 
smaller scale, such as at the neighborhood or household 
level, they may provide more localized information and 
be useful for targeted interventions. However, generating 
accurate predictions at such fine scales can be challeng-
ing due to limitations in data availability and the com-
plexity of the disease dynamics. Another aspect related to 
scale is the temporal resolution of the predictions. DHF 
transmission patterns can change over time, with sea-
sonal variations and fluctuations in mosquito populations 
[94]. Predictions made at coarse temporal scales, such 
as yearly or quarterly, may not capture the short-term 
dynamics and fail to provide timely information for pub-
lic health interventions.

To overcome the weaknesses of current DHF risk 
maps originating from scale, it is important to integrate 
data from multiple sources and use advanced modeling 
techniques. This includes incorporating high-resolution 
spatial data, such as satellite imagery or geospatial data 
on human mobility, and leveraging machine learning or 
statistical models that can handle complex and dynamic 
interactions. Furthermore, efforts should be made to col-
lect and analyze local data at smaller scales to improve 
the accuracy and granularity of the predictions.

Limitation in DHF risk modelling  Data Limitations: 
The accuracy and reliability of prediction models heavily 
depend on the quality and quantity of data available for 
training [95]. However, there may be limitations in data 
availability, completeness, or accuracy, which can lead to 
less reliable predictions. Complex Interactions: Predictive 
models attempt to capture these complex interactions, but 
it can be challenging to accurately represent all the vari-
ables and their relationships [96]. Oversimplification or 
incomplete understanding of these interactions can result 
in less accurate predictions. Uncertainty and Variability: 

DHF transmission is subject to inherent uncertainty and 
variability [84]. Factors such as climate variability, vec-
tor control measures, and human mobility can introduce 
unpredictability in the spread of the disease. Prediction 
models may struggle to accurately capture these uncer-
tainties and provide precise estimates of DHF risk. Lack 
of Incorporating Real-time Data: Many DHF risk mod-
els rely on historical data and static variables. However, 
real-time data, such as updated mosquito surveillance 
data or information on ongoing control measures, can 
significantly enhance the accuracy of predictions. Models 
that do not incorporate real-time data may fail to capture 
dynamic changes in DHF transmission patterns. Model 
Validation and Generalization: Predictive models need to 
be validated and tested against independent datasets to 
assess their accuracy and generalizability. Inadequate vali-
dation or overfitting to training data can lead to models 
that perform well on historical data but fail to accurately 
predict future DHF outbreaks.

It is necessary to conduct ongoing research and make 
improvements to DHF risk models to address these flaws. 
Incorporating more comprehensive and high-quality 
data, considering complex interactions, improving spa-
tial and temporal resolution, accounting for uncertainty, 
integrating real-time data, and thorough model valida-
tion are essential steps toward enhancing the accuracy 
and reliability of DHF risk maps.

Conclusions
Spatial models of DHF risk offer valuable insights into 
the distribution and factors influencing the occurrence 
of DHF. These models utilize geographical, environmen-
tal, and epidemiological information to predict high-risk 
areas, thus, identifying regions where DHF outbreaks are 
likely to occur. The findings suggest that proactive sur-
veillance and public health actions should focus on high-
risk areas identified by these models to effectively control 
DHF spread and reduce its public health impact. The 
effectiveness of the spatial DHF risk model has certain 
limitations. It heavily depends on geographical and envi-
ronmental aspects such as temperature, precipitation, 
and vegetation, but fails to account for human behavior 
and social factors contributing to DHF transmission. 
Furthermore, the model assumes a static relationship 
between the environmental factors and DHF risk, over-
looking the dynamic nature of the disease amidst chang-
ing urban landscapes and population movements. Its 
accuracy may also suffer due to insufficient data quality 
in resource-constrained areas, potentially introducing 
biases and uncertainties into the predictions. Thus, while 
the Spatial Model offers valuable insights, it oversimpli-
fies the intricate interplay between environmental, social, 
and human factors in the dynamics of DHF transmission.
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