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Abstract
Background Most COVID-19 vulnerability indices rely on measures that are biased by rates of exposure or are 
retrospective like mortality rates that offer little opportunity for intervention. The Moore-Hill Vulnerability Index (MHVI) 
is a precision public health early warning alternative to traditional infection fatality rates that presents avenues for 
mortality prevention.

Methods We produced an infection-severity vulnerability index by calculating the proportion of all recorded positive 
cases that were severe and attended by ambulances at small area scale for the East Midlands of the UK between 
May 2020 and April 2022. We produced maps identifying regions with high and low vulnerability, investigated the 
accuracy of the index over shorter and longer time periods, and explored the utility of the MHVI compared to other 
common proxy measures and indices. Analysis included exploring the correlation between our novel index and the 
Index of Multiple Deprivation (IMD).

Results The MHVI captures geospatial dynamics that single metrics alone often overlook, including the compound 
health challenges associated with disadvantaged and declining coastal towns inhabited by communities with post-
industrial health legacies. A moderate negative correlation between MHVI and IMD reflects spatial analysis which 
suggests that high vulnerability occurs in affluent rural as well as deprived coastal and urban communities. Further, 
the MHVI estimates of severity rates are comparable to infection fatality rates for COVID-19.

Conclusions The MHVI identifies regions with known high rates of poor health outcomes prior to the pandemic that 
case rates or mortality rates alone fail to identify. Pre-hospital early warning measures could be utilised to prevent 
mortality during a novel pandemic.
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Introduction
The COVID-19 pandemic has illuminated persis-
tent health inequalities globally, within countries, and 
between regions [1]. The impact of the virus on human 
health [2], and economic security [3], has not been 
homogenous. In the context of financial constraint, gov-
ernments have struggled to prioritise the allocation of 
scarce resources to address the most immediate chal-
lenges of the pandemic, including mitigating transmis-
sion, and protecting vulnerable communities from severe 
illness and mortality. To this end, numerous efforts have 
been made during the pandemic and retrospectively in 
consideration of future pandemics to develop vulner-
ability indices for informing mitigation measures, such 
as localised lockdowns and the dissemination of per-
sonal protective equipment (PPE) to healthcare workers 
[4]. Here, we present the Moore-Hill Vulnerability Index 
(MHVI) which represents the proportion of all positive 
cases that are likely to have been severe in the East Mid-
lands of the UK at a small area scale known as Middle 
Super Output Area (MSOA: average of 7200 people). 
Our approach utilizes spatial records of ambulance atten-
dance as a proxy for severe illness. In this context, vul-
nerability refers to the intersection of both exposure and 
susceptibility to sever illness [5]; similar to traditional 
infection-fatality rate analysis, our proposed index sug-
gests that regions with higher proportions of severe cases 
compared to instances of infection are more ‘vulnerable’ 
than those with lower proportions of severe cases. To our 
knowledge, the MHVI is the first index to operationalise 
prehospital data for precision public health and as an 
early warning system during a novel pandemic.

Over the past two years, multiple publications have 
presented vulnerability indices for COVID-19. Of these, 
most vulnerability indices fall into three categories. The 
first category is indices that use pre-existing metrics, such 
as regional rates of severe respiratory illness prior to the 
current pandemic [6, 7] to estimate areas with communi-
ties that are likely to be particularly vulnerable to illness 
from COVID-19 [8–12]. The second category is indices 
that utilise case rates or estimates of basic reproductive 
numbers (R0) [13] as measures of vulnerability, including 
developing predictive models. Multiple indices aggregate 
pre-existing metrics [14–18], like socio-economic [19, 
20], demographic [21], landscape [22], and health mea-
sures [4, 23, 24] to predict positive case rates.

Case-rates are a more reliable indicator of vulnerabil-
ity when the physiological impact of a virus is relatively 
homogenous and infection is likely to result in severe ill-
ness or mortality, such as with cholera in the 1800s [25] 
or more recently in Africa [26]. Historically, without 
treatment the proportion of all positive cholera cases 
resulting in mortality has been high [27, 26]. Thus, in 
many regions of the world, community case-rates are 

a useful metric for identifying vulnerable areas and pri-
oritising investment. By comparison to cholera, a much 
lower proportion of individuals who contract COVID-19 
experience severe or fatal symptoms [28], although the 
likelihood of mortality varies markedly between demo-
graphic groups, regions [29], and individuals with prior 
health conditions [30]. Thus, like influenza, positive case-
rates are not a reliable indicator for identifying particu-
larly vulnerable communities or regions for the purpose 
of mitigation.

The third category of vulnerability indices uses existing 
metrics similar to those described above (e.g., socio-eco-
nomic measures) to predict cases of mortality [31–34]. 
Mortality reflects vulnerability, however, without consid-
eration of unequal rates of exposure. Two communities 
with similar underlying vulnerabilities to severe illness 
from COVID-19 may experience vastly different mor-
tality rates per population due to varying exposure. For 
example, in the UK aging communities in rural areas 
who are typically more vulnerable to severe illness from 
COVID-19 tend to be spatially isolated from younger 
communities in urban areas [35]. In the early days of the 
pandemic these vulnerable rural communities were rela-
tively spatially segregated from high-density urban areas 
with high case-rates. As the pandemic progressed, some 
areas experienced increased exposure due to internal 
migration [36], including the mobility between urban and 
rural areas as urban residents relocated to second homes 
in rural areas [37], and for holidays during summer 
months [38]. Thus, the likelihood of exposure, and in turn 
mortality, increased in popular, previously isolated loca-
tions. For this reason, mortality rates alone may under-
represent vulnerability in more spatially isolated rural 
areas; vulnerability is the product of both physical expo-
sure, which is likely to vary over time in the context of 
evolving mitigation policy, and underlying susceptibility.

The most reliable measure of vulnerability considers 
the relationship between all positive cases and severe 
cases, such as infection fatality rate (IFR) [39, 40] or case 
fatality rate (CFR) [41, 42]. Both IFR and CFR reflect 
the proportion of positive cases that result in mortality. 
These measures are more accurate than either positive 
case-rates or mortality rates alone because vulnerability 
is the product of both physical exposure, reflected in case 
rates, and underlying susceptibility, reflected in mortal-
ity rates. Thus, geospatial comparison between regions 
to identify priority areas for investment and localised 
lockdowns should consider the ratio of all cases that are 
likely to be severe to control for exposure rates. Here, we 
present the MHVI which captures exposure and under-
lying susceptibility by computing the proportion of all 
positive cases that required ambulance attendance as an 
early-warning proxy measure of severe illness or future 
mortality.
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Ambulance attendance for suspected severe COVID-19 
reflects the intersectionality of exposure to the virus and 
underlying susceptibility, often related to pre-existing 
comorbidities and deprivation [5]. Unlike mortality rates, 
ambulance attendance records afford an opportunity for 
intervention in advance of illness escalating to fatality. For 
example, Fitzpatrick et al. [43] conducted data linkage in 
Scotland and explored patient pathways from ambulance 
attendance through to successive interactions with health 
care services. They found that ambulance attendance for 
patients with suspected COVID-19 that did not result 
in conveyance to hospital because symptoms were not 
deemed to be sufficiently acute was a strong predictor of 
mortality from COVID-19 within a 30-day period. Fur-
ther, for 50% of 5,720 patients attended by ambulances 
for COVID-19, the next unscheduled health appointment 
was presentation to emergency departments for severe 
COVID-19. Thus, ambulance attendance can act as an 
early warning for fatality and vulnerability to severe ill-
ness, as well as for tracking the geospatial progression of 
contagion in the early days of a novel pandemic before 
widespread community testing [5].

Records of ambulance attendance may inform a suit-
able metric for precision public health because during 
a pandemic with successive periods of lockdown when 
mobility is restricted, medical emergencies occur within 
homes, thus indicating vulnerable communities and 
regions. Our index computes the proportion of all con-
firmed positive cases that are likely to have been severe 
by comparing the number of positive cases reported by 
GOV.UK to the number of ambulance attendances for 
suspected severe COVID-19 in the East Midlands of the 
UK, between May 18th, 2020, when widespread commu-
nity testing began, and April 2nd, 2022. Prior to wide-
spread community testing, records of positive case-rates 
were not a reliable reflection of cases in communities. 
The MHVI is reported as a ratio from 0 to 1 whereby 0 
reflects least vulnerability to severe illness and 1 reflects 
greatest vulnerability. These MHVI scores are computed 
and visually displayed using mapping at the MSOA 
scale. Here we present our findings about most vulner-
able regions in the East Midlands of the UK, demonstrate 
the utility of the MHVI as an infection-severity precision 
public health early warning system, and suggest some 
avenues for reducing risk of mortality in the early phase 
of a novel pandemic.

Methods
Site location and population
The study region was the East Midlands, which rep-
resents a microcosm of the wider UK in relation to 
ethnic diversity, urban-rural characteristics, and socio-
economic dynamics [44]. The East Midlands spans an 
area of 15,627km [2], with an estimated population of 

4.8  million, and lies in the Central Eastern part of Eng-
land, including the urban areas of Derby, Leicester, Lin-
coln, Nottingham and Northampton. The population 
included, (a) all patients attended by ambulance for sus-
pected severe illness from COVID-19 following 999 calls 
to the East Midlands Ambulance Service NHS Trust 
(EMAS) between May 18th, 2020, and April 2nd, 2022, 
and (b) all patients who tested positive with COVID-19 
determined over the same period, as determined by lab-
oratory testing and reported by the UK Health Security 
Agency, via the GOV.UK data request dashboard [45].

Study design
The research employed a cross-sectional design using 
retrospective routine data collated by EMAS, and open-
source records of weekly confirmed COVID-19 cases 
occurring at the scale of MSOA reported by GOV.UK. 
The EMAS dataset contained all records of ambulance 
attendance for suspected severe illness from COVID-
19, including partial postcodes for each record. Post-
codes were aggregated to the scale of MSOA using 
ArcGISProTIM. Thus, both datasets involved in the 
research contained records of numbers of patients with 
suspected or confirmed COVID-19 as well as a common 
geospatial reference, the MSOA.

Research aims
The first aim of the research was to develop, and visu-
ally display with mapping an early warning precision 
public health vulnerability index, which we have termed 
the MHVI, using a similar approach to computing IFR 
and CFR. This was achieved by comparing case records 
of ambulance attendance for suspected severe illness 
from COVID-19 with records of all positive cases for 
the East Midlands at the scale of Middle Super Output 
Area (MSOA). The analysis was conducted for all data 
recorded between 18th May 2020 and 2nd April, 2022, as 
well as for three cumulative intervals: 18th May, 2020 to 
October 31st (approximately 5 months), 18th May, 2020 
to 17th April, 2021 (12 months), and 18th May, 2020 to 
October 2nd, 2021 (approximately 17 months). These 
dates were chosen in accordance with the weekly cumula-
tive data available from GOV.UK, and to ensure that each 
time period included the addition of a similar range of 
new data. This approach was taken to explore the utility 
of the MHVI in the real-world context of a newly emerg-
ing infectious disease and evolving datasets. The purpose 
of conducting the analysis at these cumulative intervals 
was partly methodological, and twofold; to consider 
changing spatial patterns of vulnerability over the course 
of the pandemic, and to determine an approximate time-
frame for the MHVI stabilising to reflect the geospatial 
patterns observed from analysing the full dataset.
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The second aim of the research was to explore the util-
ity of the MHVI for identifying vulnerable regions. This 
was achieved by comparing the spatial characteristics of 
the MHVI with the characteristics of case-rate data and 
with a validated vulnerability metric; the Index of Mul-
tiple Deprivation (IMD). Maps were prepared to visually 
display case-rate data and the IMD for the East Midlands 
region. Our expectation was that vulnerable regions iden-
tified by the MHVI would correspond with some vulner-
able regions highlighted by case-rates and identify some 
additional regions that case-rates alone may obscure. 
Deprivation is one of the strongest predictors of vulner-
ability to severe illness from COVID-19 [46, 47]. Thus, if 
reliable, we expected considerable overlap between the 
MHVI and the IMD, with the MHVI identifying addi-
tional regions, such as affluent aging communities in 
rural areas. In addition to visual analysis, we computed 
a Pearson’s correlation coefficient to determine the 
strength and direction of relationship between the MHVI 
and IMD decile scores. These analyses were undertaken 
to consider the validity of our new metric.

Measures
Three measures were included in the research: positive 
cases recorded by GOV.UK and obtained via an online 
data request dashboard developed by the UK Health 
Security Agency (GOV.UK, 2022), records of patients 
attended by the East Midlands Ambulance NHS Trust 
(EMAS) for suspected severe illness from COVID-19, 
and the Index of Multiple Deprivation (IMD) scores for 
the study region. The IMD is an aggregate index that syn-
thesises values from nine domains, including income, 
employment and health measures [48]. This research uti-
lises decile IMD values rather than raw scores. Table  1 
summarises these data and data sources.

Records of ambulance attendance for suspected severe 
illness from COVID-19 were collated and obtained from 
EMAS, including provisional diagnosis by medically 
trained clinicians. In the absence of laboratory testing, 
these clinical assessments, including biological measures 
like blood-oxygen levels, have been shown to be reliable 
indicators of COVID-19 positive patients [5, 49]. Before 
laboratory capacity for community testing increased in 
May of 2020, testing by polymerase chain reaction (PCR) 
was largely confined to patients suspected of severe 

illness, including those conveyed by ambulance to hospi-
tals. Prior research has found a very strong positive corre-
lation between daily rates of suspected severe illness from 
COVID-19 based on ambulance attendance records, 
and daily rates of cases confirmed by PCR in the early 
months prior to May 18th when widespread community 
testing began [5]. After this point in time, the number 
of confirmed cases far exceed the number of ambulance 
attendance for suspected severe illness from COVID-19. 
Confirmed cases reflect risk of exposure while severe ill-
ness, such as cases attended by ambulances, indicate the 
intersectionality of exposure and underlying susceptibil-
ity, including old age and prior health conditions.

Data cleaning and handling
We linked one socio-economic dataset and two clinical 
datasets. For the purpose of comparative analysis with 
the MHVI, Index of Multiple Deprivation decile scores 
were aggregated from lower super output area (LSOA) 
to MSOA. Clinical datasets included daily records of 
ambulance attendance for suspected severe COVID-19 
in the East Midlands area, and weekly aggregate records 
of COVID-19 cases confirmed cases by laboratory tests, 
over a seven-day period, from the date the sample was 
taken of the person being tested. Two stages of data 
cleaning were undertaken over a two-day period. Firstly, 
cleaning was conducted to harmonise the daily ambu-
lance records with weekly GOV.UK records of confirmed 
cases at the scale of MSOA to produce the final data set 
for computing the MHVI for the period May 18th, 2020 
to April 2nd, 2022. Secondly, this process was repeated 
on sub-sets of the data to investigate changing geospatial 
trends over time, and to identify a reliable time-period 
for analysing vulnerability. Three cumulative sub-sets 
were produced at approximately 5-month intervals 
(0-5months, 0–11 months, and 0–17 months). Additional 
cleaning was also required to harmonize ambulance and 
GOV.UK records over these time periods. Data harmon-
ising steps are detailed in S-3 and visualised in Fig. 1.

Construction and spatial representation of the Moore-Hill 
Vulnerability Index (MHVI)
Following data harmonisation, the MHVI was calculated 
for the full dataset (May 18th, 2020, to April 2nd, 2022) as 
well as for the three cumulative periods specified above 

Table 1 Measures included in the research
Measure Data Source
IMD Decile values (1 = most deprived, 10 = most affluent) https://hub.arcgis.com/datasets/

communities:lower-super-output-
area-lsoa-imd-2019-osgb1936

Positive cases Weekly sum of cases per MSOA https://coronavirus.data.gov.uk/
details/download

Severe suspected cases Daily sum of ambulance attendance EMAS

https://hub.arcgis.com/datasets/communities:lower-super-output-area-lsoa-imd-2019-osgb1936
https://hub.arcgis.com/datasets/communities:lower-super-output-area-lsoa-imd-2019-osgb1936
https://hub.arcgis.com/datasets/communities:lower-super-output-area-lsoa-imd-2019-osgb1936
https://coronavirus.data.gov.uk/details/download
https://coronavirus.data.gov.uk/details/download
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(C1, C2 and C3). MHVI scores compare the number of 
ambulance attendances for suspected severe illness from 
COVID-19 to the overall number of positive cases pro-
portionally, at the scale of MSOA. A score closer to the 
value of 1 indicates that a high proportion of all positive 
cases were likely to have been attended by ambulances 
and considered severe. A score closer to the value of 0 
indicates that a low proportion of all positive cases were 
likely to have been attended by ambulances. These scores 
were displayed visually on four maps, one each for the 
three cumulative periods considered, and a fourth dis-
playing scores computed from the full dataset. For the 
purpose of mapping, scores were divided into class inter-
vals using the geometric intervals classification (GIC). 
This algorithm takes into consideration equal interval, 
natural breaks [50], and quantile methods, to balance and 
highlight both middle and extreme values within classifi-
cations [51]. This approach minimizes the sum of squares 
of the number of elements in each interval class. Given 
that the rates of positive and severe cases of COVID-
19 varied over time, the range of scores also varied per 
cumulative period. Thus, rather than using standardised 
intervals for all maps, intervals were computed for each 
cumulative period. Interval values are displayed on maps 

to demonstrate how proportions of overall cases that 
are likely to have been severe changed throughout the 
pandemic.

Results
Descriptive statistics
Table  2 reports descriptive statistics, including the 
number of records of patients attended by ambulances 
for suspected severe COVID-19 (EMAS data) and the 
number of records of confirmed cases (GOV.UK). These 
statistics are reported for the full study period (Full) 
between May 18th, 2020, and April 2nd, 2022, as well 
as for three cumulative periods: cumulative period one 
(C1) is between May 18th, 2020, and October 31st, 2020; 
cumulative period two (C2) is between May 18th, 2020, 
and April 17th, 2021; cumulative period three (C3) is 
between May 18th, 2020, and October 2nd, 2021. These 
statistics reflect the data included in the research after 
data cleaning.

The Moore-Hill Vulnerability Index scores
The first aim of the study was to develop and display the 
MHVI. The MHVI was determined by computing the 
proportion of COVID-19 cases confirmed and reported 

Fig. 1 Schematic of data harmonisation steps for East Midlands Ambulance Service NHS Trust (EMAS) records of suspected severe illness from COVID-19 
and GOV.UK records of cases confirmed by laboratory testing. Harmonisation steps are included for the full dataset and three cumulative periods, C1, C2 
and C3
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by GOV.UK that were likely to have been severe based 
on ambulance attendance for suspect severe COVID-
19. This analysis was conducted for the full dataset (May 
18th, 2020, to April 2nd, 2022) as well as for the three 
cumulative periods defined above. The MHVI was com-
puted at the scale of MSOA. MHVI scores are values 
between 0 (representing low vulnerability) and 1 (repre-
senting high vulnerability). These scores are presented in 
S-2 (Table S5-S8). A summary of the 20 maximum and 
minimum values for the full dataset, including number of 
confirmed cases (GOV.UK), number of suspected severe 
illness (EMAS), and location is presented in Table  3 
below. For the purpose of ground-truthing these observa-
tions we have also included aggregate IMD decile scores 
for each of the most and least vulnerable MSOAs.

Visual analysis
Maps were produced to visually present the MHVI at the 
scale of MSOA for the full study period (May 18th, 2020, 
to April 2nd, 2022) as well as for each of the cumulative 
periods defined above (C1, C2 and C3). Fig.  2 displays 
the MHVI mapped at MSOA for the full study period. 
Fig. 3 displays the MHVI mapped at MSOA for each of 
the cumulative periods C1 (map a), C2 (map b), and C3 
(map c).

Exploring the utility of the MHVI for identifying vulnerable 
regions
The second aim of the research was to consider the util-
ity of our novel index for identifying vulnerable regions 
by comparing the geospatial distribution and patterns of 
the MHVI to other indices that are often used as prox-
ies for, or measure of vulnerability to severe illness from 
diseases like COVID-19. Thus, two additional maps are 
displayed in Fig. 4 alongside the MHVI map (Fig. 4a) for 
the purpose of comparative analysis. The first additional 
map is of case rates per 100,000 people based on GOV.
UK records of confirmed COVID-19 cases (Fig. 4c). The 
values for positive case-rates per 100,000 at MSOA scale 
are presented in S-2 (Table S5). The second additional 
map displays the Index of Multiple Deprivation scores 
for the study region, including all MSOAs that appear in 
the full dataset capturing both EMAS and GOV.UK cases 
occurring between May 18th, 2020, and April 2nd, 2022 

(Fig. 4b). The IMD map was used to explore the utility of 
the MHVI for identifying vulnerable regions; deprivation 
is a widely accepted proxy measure of vulnerability to 
severe illness [52], including from COVID-19 [46]. This 
visual comparative analysis was used to ground-truth our 
novel metric, the MHVI.

In addition to the visual analysis presented above, 
we considered the strength and direction of relation-
ship between the MHVI scores and IMD decile scores 
for each MSOA by computing the Pearson correlation 
coefficient. In addition to MHVI scores, Table S5 in S-2 
presents the IMD decile scores for each MSOA included 
in the research (n = 569). The analysis found a moder-
ate negative correlation between IMD decile scores and 
MHVI scores, r=-.51, p < .01, N = 569. Given that lower 
IMD scores indicate greater deprivation and higher 
MHVI scores indicate greater vulnerability, this finding 
suggests that deprivation is associated with greater vul-
nerability at an area level.

Discussion
Emerging infectious diseases occurring in developed 
regions of the modern world vary considerably from 
those of the past; compared to diseases with very high 
infection fatality rates like cholera [25, 26] and smallpox 
[53], the risk of mortality from COVID-19, influenza, 
and other SARS viruses varies widely; the infection fatal-
ity rate is low for the general population, with consider-
ably higher risk of mortality for aging populations [54] 
and people with pre-existing health conditions [55]. The 
COVID-19 virus displays unique epidemiological traits, 
like a longer incubation period than influenza, and the 
virus is most contagious before symptoms present [56]. 
These viral characteristics have proved particularly chal-
lenging for mitigation; in the early phase of the pandemic 
the spatial nature of vulnerability, including how to pri-
oritise regional investment and mitigation measures, was 
not immediately obvious. As the pandemic progressed, 
the effect of human behaviour on viral-host dynamics 
became evident; the ‘rush to the pub’ in advance of the 
first national UK lockdown, outdoor space crowding 
in the summer months [57], and the regional migration 
from urban to rural areas [58] increased case rates as 
well as the exposure of vulnerable communities. In this 

Table 2 Descriptive statistics for the number of records of patients attended by ambulances for suspected severe COVID-19 by the 
East Midlands Ambulance Service NHS Trust (EMAS), the number of records of confirmed cases by GOV.UK, and the number MSOAs 
with both ambulance attendance and GOV.UK records
Time period EMAS

suspected cases
GOV.UK
confirmed cases

Number of
MSOAs

C1 6819 67,388 568

C2 16,758 311,657 569

C3 18,934 579,411 569

Full 20,724 1,496,639 564
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rapidly evolving context, traditional measures of vulner-
ability like case rates and mortality, are susceptible to 
error. The current research develops a novel early warn-
ing precision public health equivalent to the infection 
fatality rate, which controls for changing levels of expo-
sure. In the following, we consider the geospatial pat-
terns of vulnerability identified by mapping the MHVI 

including the characteristics of highly vulnerable regions, 
and explore the utility of the MHVI compared to other 
validated indices.

Geospatial patterns identified by the MHVI
Above we presented four maps visually displaying the 
MHVI scores computed using GOV.UK weekly rolling 

Table 3 Maximum and minimum values for the full dataset, including MHVI, records of positive cases of COVID-19 (GOV.UK), records 
of cases attended by ambulance for suspected severe illness from COVID-19 (EMAS), and location (MSOA). The top twenty maximum 
MHVI values and records, representing greatest vulnerability, are represented in black. These values are listed in order from most 
vulnerable regions. The bottom twenty minimum MHVI values and records, representing least vulnerability, are represented in grey. 
These values are listed in order from least vulnerable regions
MHVI GOV.UK cases EMAS cases MSOA Area name IMD
0.0616 1640 101 E02005433 Ingoldmells & Chapel St Leonards 1

0.0437 1098 47 E02005429 Sutton-on-Sea 2

0.0405 1826 73 E02005428 Mablethorpe 1

0.0331 2176 72 E02002884 Forest Fields 2

0.0314 2069 65 E02005438 Skegness South 1

0.0301 2160 65 E02002887 Beechdale 1

0.0291 2679 78 E02004116 Clay Cross 3

0.0276 3152 87 E02002813 Rose Hill & Castleward 1

0.0265 1846 49 E02005437 Skegness Town 1

0.0265 2188 57 E02004102 Buxton North 5

0.0259 2205 57 E02005846 Worksop Cheapside 1

0.0253 1892 47 E02004034 Ripley West 8

0.0252 3806 94 E02002898 Lenton & Dunkirk 6

0.0252 2102 53 E02005467 Holbeach 6

0.0250 1797 43 E02004067 Boythorpe & Birdholme 1

0.0249 2121 53 E02005664 Kingsley Park & Racecourse 3

0.0248 2302 57 E02002904 Clifton South 2

0.0244 2369 58 E02002831 Rushey Mead South 4

0.0241 3323 80 E02002845 North Evington & Rowlatts Hill 2

0.0240 2331 56 E02005673 Stornton & Sixfields 4

0.0032 2843 9 E02005630 Oundle, Warmington & Titchmarsh 9

0.0040 3221 13 E02005390 Burbage Sketchley & Stretton 10

0.0046 2394 11 E02004088 Long Eaton West 10

0.0046 2166 10 E02005919 Ratcliffe, Sutton Bonington & Gotham 9

0.0048 2523 12 E02005380 Market Bosworth, Barlestone & Sheepy 
Magna

9

0.0050 2622 13 E02005343 Countesthorpe & Kilby 10

0.0050 2773 14 E02005372 Dunton Bassett, Claybrooke & Swinford 9

0.0051 2559 13 E02005920 East Leake 10

0.0052 2115 11 E02004122 Willington South & Repton 10

0.0053 3000 16 E02005381 Desford & Newbold Verdon 8

0.0057 2479 13 E02005865 Ravenshead & Newstead 9

0.0057 3004 15 E02005909 Lady Bay (urban minor con)**** 10

0.0058 2739 16 E02005499 Dunholme & Welton 8

0.0059 3207 19 E02005387 Hinckley West (urban city town)**** 7

0.0061 2311 14 E02002867 Uppingham, Lyddington & Braunston 9

0.0061 2950 18 E02005622 Long Buckby East & Ravensthorpe 10

0.0061 1471 9 E02005918 Keyworth South 9

0.0061 3104 19 E02005370 Broughton Astley 10

0.0065 1841 12 E02005460 Ruskington West & Cranwell 10

0.0066 2725 18 E02005399 Ashby de la Zouch North (urban city 
town)***

8
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positive COVID-19 cases and EMAS records of cases 
of suspected severe illness from COVID-19, including a 
map showing scores for the complete dataset (Fig. 2), and 
maps showing scores for each of three cumulative peri-
ods (Fig.  3) preceding the final complete dataset. Here, 
we outline some observations about the location and 
characteristics of regions with highest and lowest vulner-
ability scores, and consider the time period over which 
our index becomes a reliable reflection of longer-term 
trends. The analysis below highlights some key regions 
of interest in the East Midlands area. These regions are 
emphasized in Fig. 5.

Most and least vulnerable areas
Our first observation about the spatial distribution of 
MHVI scores computed from the complete dataset is that 
there are three interrelated defining features of regions 

associated with high and low vulnerability; the degree 
of deprivation, rural-urban dynamics, and the economic 
characteristics of regions, including the nature of current 
economic activities within the region, and historic lega-
cies of economic transformations.

Overall, we found a moderate negative correlation 
between MHVI scores and IMD decile scores, suggesting 
that higher MHVI scores (indicating great vulnerability) 
are more likely to occur in regions with lower IMD scores 
(indicating greater deprivation). Degree of deprivation 
and vulnerability reflects the urban-rural characteristics 
of regions. Without exception, the top twenty least vul-
nerable regions are categorised in the most affluent IMD 
deciles, with 19 categorised in the top three most affluent 
deciles (deciles 8–10). With five exceptions, least vulner-
able regions are classified as rural villages in dispersed 
areas or rural towns on the fringe of mixed urban-rural 

Fig. 2 Map displaying MHVI scores for the East Midlands of the UK at the scale of MSOA. Scores were calculated for the entire study period, between May 
18th, 2020, and April 2nd, 2022
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land uses [59]. The exceptions include three urban areas 
situated in rural hinterlands such as extensive nature 
reserves and agricultural areas (Burbage Sketchley & 
Stretton; Long Eaton West; Ashby de la Zouch North). 
Only two of least vulnerable regions are located in wider 
urban landscapes (Hinckley West; Lady Bay).

Nearly all least vulnerable regions are former agricul-
tural areas that have retained characteristics of rurality 
and undergone processes of rural gentrification whereby 
the resident rural population is displaced by ex-urban 
populations with greater capital [60]. These affluent rural 
villages and towns are often located in the rural hinter-
lands of major cities, like Ratcliffe, Sutton Bonington 
and Gotham located in the rural hinterlands of Notting-
ham. Exceptions include Hinckley West and Lady Bay 
which have industrial legacies. Notably, Hinckley West 

is also the least affluent of the low-vulnerability regions. 
However, most of the least vulnerable regions are char-
acterised by affluence, rurality, and the likely transition 
from predominately agricultural societies to gentrifying 
middleclass societies [60]. The process of urban-rural 
in-migration has been particularly prolific in the East 
Midlands compared to other regions of the UK [61], as 
original residents are superseded by younger families and 
professional couples who often commute to nearby larger 
urban areas for employment [62].

By comparison, the majority of most vulnerable regions 
are classified as urban areas, with the exception of Hol-
beach which is a rural town with urban fringe hinter-
land. Of these, approximately one quarter have industrial 
legacies, one quarter are located on the Lincolnshire 
coastline with tourism legacies, and the remainder were 

Fig. 3 Map displaying MHVI scores for the East Midlands of the UK at the scale of MSOA. Scores were calculated for each of three data sub-sets reflecting 
the three cumulative periods considered for the purpose of comparative analysis (C1, C2 and C3)
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agricultural, or priory settlements subsumed into urban 
areas by degrees. In contrast to least vulnerable regions, 
the socio-economic characteristics of most vulnerable 
areas reflect the heterogeneity of COVID-19 impacts; 
while the majority are located in deprived urban centres 
and peripheries, nearly one quarter of areas identified as 
most vulnerable are categorised as affluent (in the top 
five IMD deciles), including the rural town of Holbeach. 
These observations may explain the only moderate cor-
relation between deprivation and vulnerability reported 
above. The economic heterogeneity of vulnerable areas 
is consistent with the known demographic dynamics of 
severe illness from COVID-19, in particular the risk to 
aging communities [54]. Comparatively affluent vulner-
able regions like Ripley West in the Amber Valley, and 

Holbeach in Lincolnshire are characterised by a higher 
proportion of aging population compared to surrounding 
areas [63, 64].

Geospatial trends associated with vulnerability and 
deprivation also reflect the complex economic history 
of regions. Four of most vulnerable regions (IMD deciles 
1–5) are characterised by ‘post-industrial towns’, non-
metropolitan urban areas including Clay Cross, Rose Hill 
and Castle Ward, and Buxton North in Derbyshire, typi-
cally associated with low pay, low skilled service sector 
employment [65]. Five of most vulnerable regions (IMD 
deciles 1–2) are declining former coastal tourism destina-
tions located along the Lincolnshire coastline. Based on 
current economic conditions, these geospatially distant 
post-industrial and declining coastal areas are similarly 

Fig. 4 Maps visually comparing the spatial distribution of MHVI scores (a), the Index of Multiple Deprivation (b), and confirmed cases of COVID-19 based 
on GOV.UK testing data (c)
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considered as ‘left behind’ of ‘forgotten’ places with few 
opportunities for social mobility [66–68]. However, they 
also share a unique legacy.

During the early 20th Century, large areas of Not-
tinghamshire and Derbyshire contained coalfields, with 
communities developing around single coalmines. These 
communities were devastated by colliery closures from 
the 1980s onwards, and many have never fully recovered 
[69, 70]. Seaside towns on the Lincolnshire coast, like 
Skegness, Ingoldmells, Chapel St Leonards, Mablethorpe 
and Sutton-On-Sea, developed as popular tourist resorts 
in the 19th century, principally serving the industrial 
working-class of the East Midlands [71]. Similar regional 
organisation of industrial workforces and resort towns 
can be identified in Lancashire with Blackpool, York-
shire with Scarborough, and Bridlington and London 
with Margate, Southend-on-Sea and Brighton. The links 
between Lincolnshire coastal towns and the industrial 

East Midlands is evident in the Derbyshire Miners Con-
valescent Home in Skegness, which served as a health 
retreat for Derbyshire miners recovering from illness for 
90 years [72]. Following deindustrialisation, families with 
mining legacies often relocated to former coastal holiday 
destinations like Skegness. Thus, the historic connectiv-
ity between coastal and industrial regions is mirrored by 
contemporary geospatial health patterns, highlighting the 
importance of contextualising routinely collated medical 
data. These patterns are not intuitive. Coastal towns are 
typically perceived as sites of restoration [73] while post-
industrial regions are often associated with high rates of 
underlying health issues [74, 75].

Overall, the characteristics of most and least vulnera-
ble regions identified by the MHVI highlight distinctions 
between rural and urban areas, more affluent and more 
deprived areas, and areas that have undergone gentri-
fication compared to those that have suffered economic 

Fig. 5 Map of the East Midlands region emphasizing 14 MSOA regions of interest
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hardship associated with deindustrialisation and the 
decline of coastal tourism. Urban density and deprivation 
are often considered as indicators of high risk to severe 
illness from disease [76]. In the UK, younger and older 
generations are heavily segregated into urban and often-
affluent rural areas respectively [35]. Thus, given the epi-
demiology of COVID-19 and the susceptibility of aging 
communities [54], both deprived urban and affluent rural 
communities are vulnerable to severe illness from the 
virus [5].

Reliability of MHVI scores across cumulative periods
Analysis of maps displaying MHVI scores for each of 
three cumulative periods compared to the final complete 
dataset suggests that while scores for some most and least 
vulnerable regions remain consistently high (e.g., Skeg-
ness on the east coast, Clay Cross in Derbyshire) or low 
(e.g., west of Derby towards Stoke-on-Trent) over time, 
most scores stabilise between 11 and 17 months into 
the pandemic. Overall, geospatial patterns from MHVI 
scores during the first cumulative period (May 18th to 
October 31st, 2020) exaggerate the severity of vulner-
ability, particularly in the south and between Boston and 
Peterborough in the east. This is probably due to the slow 
dissemination of community testing in the months fol-
lowing the introduction of testing beyond Public Health 
England level 3 laboratories [77]. A Similar observation is 
made by Davenport and colleagues [42] who calculated a 
case fatality rate (CFR) for England in the early months of 
the pandemic and concluded that their values were likely 
to be an overestimation of how lethal the virus was due to 
testing being limited to key workers and only seriously ill 
patients at this time [42].

In contrast, ambulance use for severe illness from 
COVID-19 was more consistent than rates of testing. 
Not all patients attended by ambulances for COVID-19 
were considered severely ill and transported to hospital 
[78]. However, throughout the pandemic, patients expe-
riencing severe illness from the virus were more likely 
to be admitted to hospital via ambulance conveyance 
rather than walk-in, partly due to government guidance 
and mobility restrictions limiting taxi and public trans-
port use [79]. Thus, although ambulance data is indica-
tive of numbers of patients experiencing severe illness 
rather than an accurate measure, the degree of accuracy 
was more stable over the study period compared to posi-
tive case records, for which accuracy varied consider-
ably depending on the extent of community testing. As a 
result, the ratio of ambulance attendances to all positive 
cases occurring in the first cumulative period (Fig. 3a) is 
artificially high in multiple regions.

Our observations about MHVI scores over successive 
cumulative periods are illuminating for several reasons. 
Firstly, regions with vastly different MHVI scores in the 

first 5 months compared to the first 11 months of the 
pandemic, such as areas in rural Lincolnshire, may have 
experienced longer delays with the expansion of com-
munity testing. Further research could examine the root 
cause of health service disparities related to establishing 
testing centres in those regions. Secondly, most vulner-
able regions with connected industrial-coastal legacies 
identified from the full dataset map are consistently some 
of the most vulnerable regions in each iteration of the 
MHVI, which may indicate community characteristics 
related to susceptibility to severe illness from the virus, 
such as pre-existing health conditions [74] and older age 
[54].

A final point of comparison between MHVI scores 
for each cumulative time period (Fig.  3) and the com-
plete dataset is related to the nature of scores; over time, 
and as the size of the dataset examined increases, the 
MHVI values decrease substantially. For the first cumu-
lative period (Fig.  3a), the maximum score represented 
on the map in red indicating greatest vulnerability, is 
0.636364, suggesting that in most vulnerable regions, 
more than 60% of all positive cases were likely to have 
required ambulance attendance for severe illness from 
COVID-19. For the second cumulative period (Fig.  3b), 
the highest score indicating greatest vulnerability was 
0.2, suggesting that 20% of all positive cases were likely 
to have required ambulance attendance. The maximum 
score for the third cumulative period was 0.112727, sug-
gesting approximately 10% of positive cases requiring 
ambulance attendance. For the final complete dataset 
(Fig. 3c), most vulnerable regions are characterised by a 
score of 0.061585, indicating that approximately 0.6% of 
all positive cases are likely to have required ambulance 
attendance for severe illness. This final score reflect-
ing greatest vulnerability across the entire dataset from 
May 18th, 2020 to April 2nd, 2022 is consistent with the 
average infection fatality rate (IFR) for the virus interna-
tionally. Meyerowitz-Katz and Merone [80] conducted 
a meta-analysis of 24 studies estimating the COVID-19 
IFR and concluded the average rate across a wide range 
of geographical regions was 0.68%, with a range of 0.53–
0.82%. Thus, while the accuracy of the MHVI computed 
from the complete dataset containing nearly two years’ 
worth of records is comparable to more widely estab-
lished infection fatality measures, earlier iterations based 
on smaller data sets are less reliable. However, geospatial 
analysis of cumulative datasets may elucidate genuine 
regional vulnerability inequalities with important impli-
cations for prioritising mitigation efforts. The merit of 
our index is highlighting regions that are comparatively 
more or less vulnerable than others in real time.
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Validity and utility of the MHVI for precision public health
Comparative analysis for exploring validity
Common geospatial indicators of vulnerability to severe 
illness from COVID-19 include measures of deprivation 
[47] like the IMD [46], positive case rates [15], and mor-
tality rates [31]. To validate the utility of our novel index 
for precision public health, we compared the spatial dis-
tribution of the MHVI to that of the IMD and positive 
case rates per 100,000 population for the same region. 
We also considered similarities and differences between 
our index and an alternative mortality-based index pub-
lished by Daras et al. [31] for the whole of England. All 
comparative analyses were conducted at the same scale, 
MSOA.

Deprivation often reflects underlying susceptibility 
related to factors like prior multimorbidity [81] and poor 
health literacy [82]. However, in the case of COVID-19, 
affluent aging populations are also vulnerable to severe 
illness [5]. Overall, we observe strong continuity between 
the geospatial trends of the MHVI and the IMD for most 
deprived regions like Skegness on the Lincolnshire coast-
line. However, unlike the IMD, the MHVI also identifies 
more affluent regions with aging communities, such as 
areas in the Peak District.

Positive case rates reflect exposure to a virus rather 
than vulnerability to severe illness. Unsurprisingly, the 
geospatial distribution of the MHVI varies considerably 
from that of positive case rates (Fig. 4). Regions like the 
Lincolnshire coastline and some rural areas in the Peak 
District have low rates of positive cases while the MHVI 
identifies these areas as highly vulnerable based on the 
proportion of all cases that are likely to have been severe. 
However, in some areas the MHVI and case-rate data 
converges. For example, some urban areas identified as 
highly vulnerable by the MHVI, such as the cluster in the 
north of Nottinghamshire and the post-industrial town of 
Buxton in Derbyshire, also experienced high positive case 
rates per population. Thus, the geospatial patterns dem-
onstrated by the MHVI and positive case rates overlap in 
vulnerable urban regions, which are likely to have experi-
enced greater exposure to the virus [83], and deviate con-
siderably in more isolated rural and coastal regions.

The distribution of mortality from COVID-19 also 
demonstrates some similarities and differences to the 
MHVI, indicative of varying exposure between regions. 
Like case rates, similarities exist between mortality rates 
per population and the MHVI for regions that are likely 
to have experienced high exposure like urban areas (e.g., 
Buxton). In contrast, patterns of vulnerability in more 
isolated locations vary between the two indices, such 
as for the Lincolnshire coastline. Both Skegness and 
Mablethorpe are characterised by extreme deprivation 
and larger than national average aging populations [84]. 
According to Daras et al. [31], Mablethorpe experienced 

considerably higher mortality per population from 
COVID-19 than Skegness. In contrast, our MHVI sug-
gests these regions have experienced similarly high vul-
nerability in relation to the proportion of cases that are 
likely to be severe.

The difference in vulnerability classification between 
the mortality index and our MHVI for these two coastal 
towns may be due to the confounding issue of exposure. 
The population of Mablethorpe is nearly half that of 
Skegness with more than double the population density 
[85]. Given that contagious disease spreads more rap-
idly in higher density environments [76], it is likely that 
a larger proportion of vulnerable people per population 
were exposed to, and subsequently died from the virus 
in Mablethorpe compared to Skegness. Thus, consider-
ing mortality rates without controlling for factors that 
impact exposure, such as population density, as opposed 
to population size, may misrepresent underlying vulnera-
bility; vulnerable individuals in more diffuse geographical 
landscapes have less chance of contracting a contagious 
disease [42].

In summary, our analysis suggests that the MHVI 
captures the nuances and complexities of vulnerability 
related to a novel virus with heterogenous effects across 
the demographic, socio-economic, and geographic 
dynamics of populations in the UK. By comparison, stan-
dard measures of vulnerability, like the IMD [42], only 
identify a proportion of most vulnerable regions, and 
these tend to be in high population density areas.

Utility of the MHVI for precision public health
The MHVI could be used to improve the reliability of 
other data sets that emerged prior to accurate measures 
of positive case rates, such as patient self-reports of 
symptoms lodged through the NHS COVID-19 phone 
application, for the purpose of informing service delivery 
and prioritising resources like personal protective equip-
ment (PPE) for medical staff, particularly in low-density 
areas with high vulnerability like rural and coastal Lin-
colnshire where health services may be less prepared for 
pandemic-related medical emergencies. For example, 
during the early phase of the pandemic when PPE was 
scarce, the MHVI could identify regions, outside of the 
most obvious high-density urban centres, where primary 
care staff are most likely to encounter extremely vulnera-
ble patients. This analysis could facilitate the allocation of 
resources to most vulnerable regions for preventing con-
tagion within medical environments like hospitals, nurs-
ing homes, and general practices. To support the utility 
of the MHVI for precision public health, the geospatial 
patterns presented here should be considered alongside 
other COVID-19 vulnerability analyses, such as stud-
ies that include adjustment for demographic variables 
[31]. Taken together, IFRs and vulnerability analyses that 
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elucidate relationships between risk factors and health 
outcomes are a more holistic representation of pandemic 
health burden than either approach independently.

High rates of ambulance attendance for severe illness 
from a novel coronavirus may also indicate areas where 
additional support from primary care providers could 
help to prevent mortality. Not all patients attended by 
ambulances for suspected severe illness from COVID-19 
are conveyed to hospital; the attending paramedic may 
decide that the condition of the patient does not require 
immediate medical attention. In some cases, those non-
conveyed patients have been found to experience worsen-
ing illness over the following month resulting in mortality 
[43]. Our index could act as an early warning system for 
prioritising follow-up consultation services for non-
conveyed patients (E.g., telehealth services), particularly 
in regions with high proportions of people experienc-
ing severe illness. In the event of a future pandemic with 
similar epidemiological traits, professional networks like 
the UK-wide 999 Research Forum and National Ambu-
lance Research Steering Group (NARSG), are well placed 
to harness existing collaborations between emergency 
service providers and research groups to conduct rapid 
analysis of ambulance data. Currently, all UK ambulance 
Trusts have data share agreements with higher educa-
tional institutes coordinated through NARSG.

Importantly, the characteristics of contagious diseases 
vary. For example, compared to influenza, COVID-19 
has a longer incubation period, is more contagious with 
highly heterogenous health outcomes, infected indi-
viduals are more likely to be asymptomatic than experi-
ence severe symptoms, and the virus is most contagious 
before symptoms present [56]. Thus, the MHVI will be 
most useful for predicting vulnerability during pandem-
ics involving contagious diseases with similar etiological 
and epidemiological traits as COVID-19. In such cases, 
regions with high MHVI scores, indicating extreme vul-
nerability, could be targeted for educational interventions 
to raise awareness about worsening symptoms. Botan et 
al. [86] found that a leaflet-based educational interven-
tion about diabetes management was effective for reduc-
ing repeat use of ambulance services for hypoglycaemic 
events. A similar approach could be used to inform 
non-conveyed COVID-19 patients in highly vulnerable 
regions of symptoms associated with rapid deterioration, 
such as low blood-oxygen levels, and to encourage home 
self-assessment, including the use of smart-phone based 
breathing sound apps that detect declining lung capacity 
[87]. App development for identifying unhealthy breath-
ing associated with COVID-19 is currently underway 
[88].

Over the longer-term, the geospatial trends elucidated 
by the MHVI offer insights to the underlying drivers of 
vulnerability, and the importance of society-environment 

relationships. The characteristics of the spaces that peo-
ple inhabit, and the legacy of those spaces influences 
contemporary health inequalities that may be obscured 
by one-dimensional indices like case-rates or mortality 
alone. Some regions, like coastal towns, that experience 
challenges associated with contemporary conditions, 
such as poor access to healthcare, are also faced with the 
enduring and inter-generational health profiles of com-
munities. Regions at the intersection of past and current 
risk factors for poor health outcomes like Mablethorpe 
and Skegness [89] are an increasing priority for wider 
investment to improve social mobility beyond the times-
cale of the pandemic.

Limitations
Using ambulance data as a proxy measure of severe ill-
ness from COVID-19 encounters similar limitations to 
other routine clinical data, such as self-reported data 
collated via the NHS Test and Trace App. In particular, 
patient self-assessments of illness are often inaccurate. 
However, the clinical judgement of paramedics attending 
medical emergencies is guided by Public Health England’s 
case definition symptom criteria for COVID-19 diagno-
sis, which includes measures that have been proven to 
predict positive COVID-19 case rates with a high degree 
of accuracy [5]. These measures, such as self-reported 
olfactory and taste dysfunction [90, 91] and blood oxy-
gen levels [49], are routinely collected by paramedics and 
used to inform decisions about whether a patient is likely 
to be experiencing illness from the virus.

While spatial data can indicate socio-economic and 
landscape related factors that might explain severe ill-
ness, these data cannot determine causality. Qualitative 
research is required to ground truth our findings. Further, 
it is likely that in addition to geographic and the area-
level socio-economic characteristics of regions, other fac-
tors, such as the demographic characteristics of regions, 
also influence vulnerability. For instance, conditions 
related to ethnicity almost certainly increase vulnerabil-
ity, including multi-generational occupancy housing [91, 
92], increased exposure due to low-income employment 
in ‘essential’ services [93], and higher rates of pre-exist-
ing co-morbidities [94]. However, these dynamics cannot 
be determined from aggregate anonymised datasets and 
would require costly, time-consuming data linkage that is 
unlikely to be achieved in real-time.

Factors beyond the scope of this study may affect 
ambulance use, such as close proximity to hospitals with 
accident and emergency services [5], and willingness to 
call an ambulance, which is often related to deprivation 
and health literacy, including ability to recognize severe 
symptoms of escalating illness [82]. The underreporting 
of cases and mortality is well documented [95]. Using 
South Korea as a benchmark region to adjust case rates 
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for underreporting, Jagodnik et al. [96] estimate that 
case rates in the UK during 2020 were likely to have been 
more than 14 times greater than reported rates. Thus, we 
recognize that our index is indicative of comparative geo-
spatial vulnerability trends, rather than an absolute mea-
sure of COVID-19 cases. Future research could involve 
adjusting the MHVI for underreporting, although to be 
meaningful this process would need to consider regional 
variation in underreporting, such as differences between 
more affluent and more deprived areas.

Finally, further research is needed to validate the MHVI 
beyond the epidemiological context of the COVID-19 
pandemic and the regional context of the East Midlands 
of the UK. A starting point would be to replicate the 
research for other regions of the UK and other regions of 
the world with centralised ambulance services.

Conclusions
Vulnerability to severe illness from contagious disease 
occurs at the nexus of underlying susceptibility to poor 
health outcomes and exposure to a virus [5]. The most 
reliable measure of vulnerability is the proportion of 
overall positive cases resulting in mortality [40]. How-
ever, at the height of a pandemic, the data required for 
computing a case fatality rate (CFR) may not be available 
in the timeframe required, or at the geographical scale, 
for decision making. Further, while a CFR based on mor-
tality records suggest opportunities for localised mitiga-
tion efforts, such as enforcing regional lock-down, this 
approach is somewhat retrospective; there is no avenue 
for intervention to prevent the escalation of illness to 
mortality. Our index uses ambulance data and adapts the 
concept of a CFR for real-time precision public health. In 
summary, our analysis of geospatial trends over the first 
nearly two years of the COVID-19 pandemic emphasize 
the following key points:

  • The geospatial distribution of the MHVI suggests 
that vulnerability transcends socio-economic, and 
rural-urban boundaries, challenging many of the 
traditional assumptions about contagious disease 
disproportionately impacting more deprived and 
more urban regions;

  • Iterations of the MHVI computed from data collated 
in early phases of the pandemic experience similar 
inaccuracies to other indices developed from 
alternative measures of vulnerability during the 
same period. However, the final iteration, computed 
from nearly two years’ worth of data, is consistent 
with international CFRs computed using mortality 
records;

  • Unlike traditional methods of computing CFRs, 
the MHVI presents opportunities for intervention, 
including prioritising PPE and educational 
programmes to prevent the worsening health of 

vulnerable patients, as well as protecting health care 
staff;

  • The MHVI captures geospatial dynamics that 
single metrics alone often overlook, including 
the compound health challenges associated with 
deprived and declining coastal towns inhabited by 
communities with post-industrial health legacies;

In the context of emerging infectious disease in the mod-
ern world, knowledge is cumulative and all possible ave-
nues for protecting societies should be embraced. The 
global evidence base is convergent, and our understand-
ing of host-society dynamics is evolving as we continue 
to triangulate our knowledges and datasets from across 
numerous research disciplines, institutions, and regions. 
Our contribution to precision public health is twofold; 
we introduce a historic geographical component to the 
narrative around vulnerability, and also highlight the 
merits of pre-hospital data for optimising health service 
delivery, identifying vulnerable communities in real-time, 
and intervention to prevent mortality. We hope that oth-
ers working with ambulance data will replicate our meth-
odologies and ground truth our approach beyond the 
UK. The geospatial analysis of ambulance data is in its 
infancy; the opportunities for future-proofing our societ-
ies against the threat of novel diseases are limitless.
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