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Abstract 

Background Interrupted time series (ITS) analysis is a growing method for assessing intervention impacts on dis-
eases. However, it remains unstudied how the COVID-19 outbreak impacts gonorrhea. This study aimed to evaluate 
the effect of COVID-19 on gonorrhea and predict gonorrhea epidemics using the ITS-autoregressive integrated mov-
ing average (ARIMA) model.

Methods The number of gonorrhea cases reported in China from January 2005 to September 2022 was collected. 
Statistical descriptions were applied to indicate the overall epidemiological characteristics of the data, and then 
the ITS-ARIMA was established. Additionally, we compared the forecasting abilities of ITS-ARIMA with Bayesian struc-
tural time series (BSTS), and discussed the model selection process, transfer function, check model fitting, and inter-
pretation of results.

Result During 2005–2022, the total cases of gonorrhea were 2,165,048, with an annual average incidence rate 
of 8.99 per 100,000 people. The highest incidence rate was 14.2 per 100,000 people in 2005 and the lowest 
was 6.9 per 100,000 people in 2012. The optimal model was ARIMA (0,1, (1,3)) (0,1,1)12 (Akaike’s information crite-
rion = 3293.93). When predicting the gonorrhea incidence, the mean absolute percentage error under the ARIMA 
(16.45%) was smaller than that under the BSTS (22.48%). The study found a 62.4% reduction in gonorrhea dur-
ing the first-level response, a 46.47% reduction during the second-level response, and an increase of 3.6% dur-
ing the third-level response. The final model estimated a step change of − 2171 (95% confidence interval [CI] − 3698 
to − 644) cases and an impulse change of − 1359 (95% CI − 2381 to − 338) cases. Using the ITS-ARIMA to evaluate 
the effect of COVID-19 on gonorrhea, the gonorrhea incidence showed a temporary decline before rebounding 
to pre-COVID-19 levels in China.

Conclusion ITS analysis is a valuable tool for gauging intervention effectiveness, providing flexibility in model-
ling various impacts. The ITS-ARIMA model can adeptly explain potential trends, autocorrelation, and seasonality. 
Gonorrhea, marked by periodicity and seasonality, exhibited a downward trend under the influence of COVID-19 
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intervention. The ITS-ARIMA outperformed the BSTS, offering superior predictive capabilities for the gonorrhea inci-
dence trend in China.

Keywords Autoregressive integrated moving average models, Interrupted time series analysis, Intervention analysis, 
COVID-19, Gonorrhea

Background
Gonorrhea, caused by Neisseria gonorrhoeae, is a sexu-
ally transmitted disease leading to purulent infections 
in the urinary and reproductive systems. It is estimated 
that approximately 86.9  million adults develop the ill-
ness annually [1]. In men, it may present as urethritis, 
and in women, as cervicitis or urethritis, affecting vari-
ous genital sites (pharynx, rectum, and conjunctiva) [2, 
3]. In recent years, there has been a significant global 
increase in gonorrhea cases. In China, since its resur-
gence in 1975, the number of patients has consistently 
risen each year. Although there was a temporary decline 
due to an increase in syphilis cases, gonorrhea remains 
a prevalent sexually transmitted disease in China, classi-
fied as a Class B infectious disease according to the Law 
of the People’s Republic of China on the Prevention and 
Treatment of Infectious Diseases. In 2019, gonorrhea 
ranked fourth among the reported Class A and B infec-
tious diseases in China and continued to be a major 
contributor to the overall infectious disease burden. 
Gonorrhea not only poses direct health risks but also 
increases the transmission and acquisition of other sexu-
ally transmitted infections, including HIV. During preg-
nancy, Neisseria gonorrhoeae infections raise concerns 
as infected pregnant women can transmit the bacterium 
to the fetus during childbirth, leading to neonatal oph-
thalmia. This highlights the substantial public health and 
socioeconomic consequences of gonorrhea globally [4]. 
Gonorrhea stands as the second most common bacterial 
sexually transmitted infection today. Despite its typically 
uncomplicated clinical progression, it can lead to severe 
complications such as salpingitis, ectopic pregnancy, 
infertility, prostatitis, gonococcal conjunctivitis, and dis-
seminated gonococcal infection [5–7]. Furthermore, the 
cardiovascular and nervous system may also be involved 
[5–7].

The World Health Organization (WHO) had declared 
COVID-19 a global emergency on January 30, 2020. 
The causative agent, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), can lead to respiratory 
diseases, pneumonia, lung failure, and death [8]. This 
pandemic has exerted immense pressure on global 
medical systems, as early reports from China under-
scored the strain on hospital staff [9]. Governments 
worldwide implemented diverse policies and restrictive 
measures to reduce the spread of COVID-19. Despite 

an initial decline in reported disease transmission dur-
ing the epidemic blockade, there was a rebound by 
the year’s end [10]. The impact of the COVID-19 pan-
demic extends beyond its direct effects, potentially 
causing delays in detecting sexually transmitted infec-
tions and accessing medical care. This poses challenges 
for individuals in identifying conditions like gonor-
rhea promptly, leading to postponed treatment and 
increased health risks [10]. While combating COVID-
19, studies indicated a decrease in the incidence of res-
piratory and intestinal infectious diseases in 2020 [11], 
likely attributed to the reallocation of medical resources 
and interruptions in non-COVID-19 medical services. 
Consequently, treatment delays for sexually transmitted 
diseases occurred, with individuals resorting to inap-
propriate self-treatment or remaining untreated post-
infection. It is speculated that implementing social, 
physical, and travel restrictions, coupled with recom-
mendations for hand disinfectants and mask-wearing, 
may contribute to diminishing the spread of general 
infectious diseases. Regarding the effectiveness of the 
COVID-19 pandemic on sexually transmitted infec-
tions, intriguingly, some studies indicated a low sever-
ity index only in the initial months of the pandemic. 
However, it is premature to assess the long-term impact 
on gonorrhea incidence during the early stages of the 
COVID-19 pandemic, necessitating further research to 
explore additional factors influencing sexual behavior 
during the ongoing COVID-19 situation [12].

Interrupted time series (ITS) analysis is a powerful and 
increasingly popular design for evaluating public health 
interventions. This approach estimates trend changes in 
comparison to a counterfactual scenario after the inter-
vention. In the absence of the intervention, the counter-
factual represents the anticipated continuous trend. The 
analysis categorizes time into “before the intervention” 
and “after the intervention” stages, offering a valuable 
comparison to assess intervention impacts by scrutiniz-
ing changes during the intervention period. In our study, 
we employed ITS analysis to evaluate the impact of 
COVID-19 on gonorrhea incidence both before and after 
its occurrence. The ITS-autoregressive integrated moving 
average (ARIMA) model was also utilized to predict the 
trend of gonorrhea incidence in China. This predictive 
model serves as a foundation for informing strategies in 
the prevention and control of gonorrhea.
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Materials and methods
Monthly gonorrhea case notifications spanning Janu-
ary 2005 to September 2022 were obtained from the 
National Notifiable Infection Disease Surveillance Sys-
tem (NNIDSS). Simultaneously, population data were 
extracted from the Statistical Yearbook of China. A 
total of 18 years of data were collated for the analysis 
of this study. Subsequently, we constructed the ITS-
ARIMA model using the data between January 2005 
and December 2019 to forecast the number of gonor-
rhea cases between January 2020 and September 2022. 
This approach facilitated the evaluation of disparities 
between the predictions and the actual values, offering 
a comprehensive assessment of the intervention’s effec-
tiveness. Furthermore, we conducted a sensitivity anal-
ysis using the Bayesian structural time series (BSTS) to 
affirm the robustness of the ITS-ARIMA.

Numerous statistical models can be employed for ITS 
analysis [13]. Currently, the two most popular models 
are the ARIMA and Segmented Regression (SR) mod-
els. For effective ITS analysis, it is essential that the 
changing trend of the dependent variable before and 
after the intervention follows a linear pattern, making 
SR model a suitable approach for such cases. How-
ever, if the time series data exhibits a non-linear trend, 
potential seasonality, or periodicity, ITS-ARIMA would 
become a valuable tool. ITS-ARIMA model needs to be 
established through a series of procedures to explain 
the autoregression, moving average, stationarity, and 
other characteristics of the time series.

ITS analysis involves collecting data at various time 
points both before and after the intervention, aiming to 
mitigate the influence of any pre-existing declining or ris-
ing trends in the outcome variable. To comprehensively 
assess the impact of the intervention, statistical models 
are deployed. These models evaluate changes in both 
the level and trajectory of the outcome variable before 
and after the intervention point. The ITS design involves 
scrutinizing trends in the variables of interest and esti-
mating deviations from what would have been expected 
in the absence of the intervention, often referred to as the 
counterfactual trend.

Fitting ARIMA model
ARIMA model is a famous time series prediction method 
proposed by Box and Jenkins [14, 15]. ARIMA (p, d, q) 
stands for the autoregressive integrated moving average 
model. In this acronym, AR represents autoregressive, 
denoted by p which signifies the autoregressive order. 
MA represents moving average, indicated by q repre-
senting the number of moving average terms. The d in 
ARIMA refers to the order of differencing applied to 
stabilize the time series data before modelling, ensuring 
that it becomes stationary [16]. All the parameters of the 
ARIMA could be determined through the three iterative 
steps of model identification, parameter selection, and 
model verification [17–19] (Fig. 1).

(1)  Model stationarity test: An autocorrelation func-
tion (ACF) plot illustrates the correlation between each 
observed data point and its preceding value at various 

Fig. 1 Flow chat for ARIMA model selection
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lags. When seasonality is evident in time series data, it 
is commonly addressed by implementing a seasonal dif-
ferencing process within the ARIMA model (2)  Model 
selection: In our research, we used the automated algo-
rithm, auto.arima(), to identify suitable ARIMA model. 
This algorithm, available in the R package, has the ability 
to pinpoint potential values for the p and q parameters. 
Nevertheless, there are instances where these parameters 
may be estimated by examining ACF and Partial ACF 
(PACF) plots. To ensure a good fit, we relied on two cru-
cial information criteria: Akaike’s information criterion 
(AIC) and Bayesian information criterion (BIC). The opti-
mal ARIMA model was identified by minimizing these 
two information criteria (3) Model checking: This stage 
mainly tests whether the fitted model is reasonable. It 
involves two key assessments: first, testing the significance 
of the estimated values of model parameters, and second, 
examining whether the residual series of the model dem-
onstrates characteristics of white noise. Model verifica-
tion is essential to confirm how well the model aligns with 
the data. If the model effectively captures the underlying 
correlations, the residuals from the model should behave 
like a white noise series. This evaluation was carried out 
by scrutinizing residual plots and conducting tests such as 
the Ljung-Box Q test for residuals.

Use the ITS‑ARIMA to evaluate interventions
ITS analysis is employed to assess the impact of interven-
tion implementation on the observed outcomes, referred 
to as the “intervention effect”. We conducted a compari-
son between the pre-intervention and the post-interven-
tion to evaluate whether there was a significant change 
in the post-intervention compared to the pre-interven-
tion [20]. Although various effects could be observed, 
we focused on three main types: step change, pulse, and 
ramp [17]. If we used  T0 to represent the starting time of 
the intervention, these effects would be summarized as 
follows:

(1) Step change: A sudden and sustained change where 
the time series is shifted either up or down by a 
given value immediately following the intervention. 
The step change variable takes the value of 0 before 
the start of the intervention, and 1 afterward.

 

(2) Pulse: A sudden and temporary change that is 
observed for one or more time points immediately 
after the intervention, followed by a return to the 
baseline level. The pulse variable takes the value of 1 
on the date of the intervention, and 0 otherwise.a

 

(3) Ramp: A change in slope that occurs immediately 
after the intervention. The ramp variable takes the 
value of 0 before the start of the intervention and 
increases by 1 after the date of the intervention.

 

Transfer functions
We assumed that the most likely response of COVID-19 
to gonorrhea would include one or more of the following 
combinations: (1) Transient changes followed by a return 
to the previous level; (2)  Long term changes in levels; 
(3)  Changes in the time series characterized by a ramp. 
These modes are represented by combinations or slopes 
of step functions and impulse functions. All trends are 
assumed to be “0” before the starting point of COVID-19. 
Subsequently, the model and transfer function selection 
were estimated based on the cross-correlation func-
tion between the assumed function and the time series, 
assuming that the transfer function is only applied at the 
beginning of the delay function or its shape undergoes a 
brief modification. The optimal model is chosen by con-
sidering criteria such as the minimum AIC, prediction 
variance, the number of effective items, and simplicity 
[21]. The ARIMA model can extend beyond the basic 
intervention influence shape, incorporating more com-
plex effects through the “transfer function”. This function 



Page 5 of 11Li et al. BMC Public Health         (2023) 23:2073  

describes the relationship between the intervention 
(occurrence of COVID-19) and the outcome (gonorrhea 
incidence), modifying the relationship between differ-
ent types of changes (step change, pulse, and ramp) and 
time series to fit a more intricate relationship. Model fit-
ting statistics, such as AIC or BIC, aid in determining the 
most suitable form of the transfer function and the tim-
ing of the event.

Results
Statistical description
During 2005–2022, the total number of reported gon-
orrhea cases was 2,165,048, with an annual average 
incidence rate of 8.99 per 100,000 people. The highest 
incidence rate, observed in 2005, was 14.2 per 100,000 
people, while the lowest occurred in 2012 at 6.9 per 
100,000 people. Overall, a declining trend was evi-
dent in the reported gonorrhea cases, with an average 
annual percentage change (AAPC) of -3.5 (95% con-
fidence interval [CI] -5.9 to -1.0; t = -6.818, P = 0.006). 
The trend exhibited three stages: a rapid reduction from 
2005 to 2012, with an annual percentage change (APC) 
of-10.0 (95% CI -12.8 to -7.1; t = -7.4, P < 0.001); a rapid 
rise from 2012 to 2018 (APC = 6.3, 95% CI 0.8 to 12.1; 
t = 2.5, P = 0.029); and a slight reduction from 2018 to 

2022 (APC = -5.6, 95% CI -12.4 to 1.8; t = -1.7, P = 0.12) 
(Fig.  2). The seasonal indexes of gonorrhea incidence 
data from January to December were 0.94, 0.74, 0.94, 
0.95, 1.01, 1.04, 1.09, 1.09,1.06, 1.02, 1.07, and 1.08, 
respectively. This indicated periodic and seasonal fluc-
tuations in gonorrhea incidence, with higher incidence 
observed in July and August and lower incidence in Feb-
ruary each year.

Plot data
The incidence data of gonorrhea was modelled using 
ITS-ARIMA. In Fig. 3, the monthly incidence time series 
of gonorrhea in China was depicted from January 2005 to 
September 2022. The gonorrhea incidence series before 
the COVID-19 intervention spanned from January 2005 
to December 2019, while that after the COVID-19 inter-
vention spanned from January 2020 to September 2022. 
As shown in Fig. 3a, gonorrhea exhibited a pronounced 
downward trend in the initial stages of the COVID-19 
outbreak in 2020, followed by an upward trend. Nota-
bly, there were evident periodic and seasonal patterns 
between January 2005 and September 2022. After sea-
sonally and nonseasonally differencing once, the time 
series plot is provided in Fig. 3b.

Fig. 2 Joinpoint regression plot displaying the gonorrhea epidemiological trends from 2005 to 2022
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Select model
Given the presence of seasonality, we first performed 
a seasonal and nonseasonal difference. After mitigat-
ing both trend and seasonality, the gonorrhea time 
series tends toward stability. In the ACF and PACF plots 
(Fig.  4), bars above or below the dotted line indicated 
statistically significant autocorrelation (P < 0.05). Upon 
applying seasonal differencing to the raw data, noticeable 
autocorrelations emerged in the ACF plot (Fig.  4a). A 
comparison between Fig. 4a and b revealed that most of 
the autocorrelations were effectively eliminated through 
only the first-order difference.

Check residuals
The optimal model was chosen based on minimizing 
both AIC and prediction variance. To identify ITS-
ARIMA model components, we employed the auto-
mated algorithm auto.arima() from the prediction 
package in R. This algorithm iteratively explores poten-
tial ARIMA models to find the one with the lowest AIC 
or BIC.

The “auto. arima” program was used to simulate 
the gonorrhea epidemic data from January 2005 to 
September 2022. Following the program run, the 
ARIMA (0,1,3)(0,1,1)12 (AIC = 3278, AICc = 3278.58, 
and BIC = 3301.09) was initially selected through 
step and pulse changes, but MA2 = 0.098 (t = 1.150, 
P = 0.125) did not pass the test, leading to the deletion 
of this coefficient. The ARIMA(2,1,0)(1,1,1)12 model 
(AIC = 3286.11, AICc = 3286.69, BIC = 3309.19, and 
LL = -1636.05) was selected through step and ramp 
changes. Considering that the ARIMA (0,1,3)(0,1,1)12 
model with the step and pulse changes presented lower 
values of AIC and BIC (Table 1), the sparse coefficient 
ARIMA (0,1, (1,3)) (0,1,1)12 (MA1 = -0.62, t = -8.63, 
P < 0.01; MA3 = 0.157, t = 1.86, P < 0.05, and SMA1 = 
-0.7996, t = -12.90, P < 0.001) was thus selected as the 
optimal model. Subsequently, residual checkes are pro-
vided in Fig. 5, suggesting a roughly constant variance 
as time increases. The histogram indicated that predic-
tion errors were approximately normally distributed 

Fig. 3 Monthly gonorrhea incidence series and the differenced series. a Time series plot showing the original gonorrhea incidence; (b) Time series 
plot showing the seasonally and nonseasonally differenced gonorrhea incidence

Fig. 4 Autocorrelation and partial autocorrelation function (ACF and 
PACF) plots. a Seasonal differencing; (b) nonseasonal differencing
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with a mean close to 0. No evident pattern or significant 
autocorrelation was observed in the residuals, support-
ing the normal distribution. The P-value for Ljung-Box 
Q test was 0.062, showing a white noise series of the 
forecast residuals. These results indicated a good fit of 
the chosen model.

The training set, consisting of data from January 
2005 to December 2019, was used to derive the opti-
mal ARIMA (0,1,3)(0,1,1)12 and BSTS models. Subse-
quently, predictions were made for the data spanning 
January 2020 to September 2022 (Table  2). The analy-
sis revealed that the resulting mean absolute percent-
age error (MAPE) was smaller for the ITS-ARIMA 
model (MAPE = 16.45%) compared to the BSTS model 
(MAPE = 22.48%). This suggested that the forecasts 
generated by the ITS-ARIMA model were closer to the 
observed values.

In the BSTS analysis (Fig. 6), the first panel illustrates 
gonorrhea case notifications alongside counterfactual 

forecasted results for the post-outbreak period. The 
second panel depicts the pointwise causal effect, indi-
cating the disparity between actual values and fore-
casted values. The third panel presents the cumulative 
effect of the COVID-19 outbreak by aggregating the 
pointwise contributions from the second panel. The 
cumulative effect revealed that following the COVID-
19 pandemic, although there was an upward trend in 
the later stage of gonorrhea, the overall trend remained 
downward. This aligned with the findings of the ITS-
ARIMA model, affirming the model’s effectiveness.

Considering different national response levels, the 
responses were broadly categorized into three levels in 
out study: the first level from February 2020, the second 
level from March to April 2020, and the third level from 
May 2020 to September 2022. A comparison of predicted 
and actual values of gonorrhea at different response lev-
els from February 2020 to September 2022 using the ITS-
ARIMA model is presented in Table 3, revealing a 62.4% 
reduction in gonorrhea during the first-level response, a 
46.47% reduction during the second-level response, and a 
3.6% increase during the third-level response.

Final model
After the occurrence of COVID-19, the fitting and obser-
vational values are illustrated in Fig.  7. It was projected 
that gonorrhea cases would decrease in January 2020, 
indicating a transient impact modelled as a pulse func-
tion. Post-COVID-19, gonorrhea exhibited a declining 
trend, suggesting potential long-term changes through 
a step function. The final model indicated a sudden 

Fig. 5 Residual check for the final ARIMA (0,1,3)(0,1,1)12 model

Table 1 Identified possible ITS-ARIMA with the AIC, AICc, BIC, 
and LL

ARIMA model AIC AICc BIC LL

ARIMA(0,1,3)(0,1,1)12 3278 3278.58 3301.09 -1632

ARIMA(1,1,2)(0,1,1)12 3279.25 3279.83 3302.34 -1632.63

ARIMA(2,1,1)(0,1,1)12 3280.38 3280.96 3303.46 -1633.19

ARIMA(2,1,0)(0,1,2)12 3280.4 3280.98 3303.49 -1633.2

ARIMA(0,1,2)(0,1,2)12 3281.18 3281.76 3304.27 -1633.59

ARIMA(2,1,0)(1,1,1)12 3286.11 3286.69 3309.19 -1636.05
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decrease in gonorrhea cases after COVID-19, followed 
by a gradual return to pre-COVID-19 levels. The model 
assumed an immediate decrease (step change) and a 
pulse change in gonorrhea incidence after the interven-
tion. The estimated final model suggested a step change 
of -2171 (95% CI -3698 to -644) cases and an impulse 
change of -1359 (95% CI -2381 to -338) cases. Gonor-
rhea incidence showed a declining trend in the months 
post-COVID-19, returning to pre-COVID-19 levels from 
the second half of the year to the end. Figure 7 provides a 
comparison of the predicted and observed values of the 
ITS-ARIMA model without intervention (counterfac-
tual). Based on the ITS-ARIMA model, a re-simulation of 

the data from January 2005 to September 2022 predicted 
the gonorrhea epidemic trends in China from October 
2022 to December 2023 (Table  4), estimating a total of 
116,035 (95% CI 72,261 ~ 159,809) cases and a monthly 
average of 7736 (95% CI 4817 ~ 10,654) cases.

Discussion
During the COVID-19 outbreak, all provinces in China 
implemented emergency responses, employing a series of 
measures to control the spread. These measures may also 
have an impact on the epdemic patterns of other infec-
tious diseases. This study utilized the ITS-ARIMA model 
to assess the impact of COVID-19 on gonorrhea and 
predict its epidemic trend, providing valuable insights 
for effective prevention and control strategies against 
gonorrhea.

In this study, an overal decline in gonorrhea cases was 
observed (AAPC = -3.5), followed by a slight reduction 
from 2018 to 2022 (APC = -5.6). The immediate drop 
in testing and notifications during the introduction of 
COVID-19 restrictions could be attributed to various 
factors, including changes in healthcare services, altera-
tions in sexual practices, and reduced opportunities for 
disease transmission through international travel. The 
sustained decrease might indicate a lasting change in dis-
ease transmission, considering the increasing gonorrhea 
cases before the pandemic [22]. The estimated cumula-
tive effect of the COVID-19 outbreak on the decline in 
gonorrhea case notifications in Fig.  6 indicated that 
despite a later-stage increase, the overall trend remained 
downward. Sensitivity analysis, comparing the ITS-
ARIMA and BSTS models, consistently supported the 
effectiveness of the former, with a smaller MAPE (16.45% 
vs. 22.48%). The ITS-ARIMA model outperforms the 
BSTS model in simulating the gonorrhea epidemic trend 
and assessing prevention and intervention effectiveness. 
The superior predictive performance of the ITS-ARIMA 
model in this study may be attributed to the data type. 
Future research could explore alternative predictive 
models such as long short term memory neural net-
work (LSTM) [23], Big Data Analytics Methods [24], or a 
hybrid of LSTM-ARIMA [25].

Since the implementation of COVID-19 restrictive 
measures in January 2020, the reported cases of gon-
orrhea have been notably affected, primarily due to a 
reduction in screening frequency. In the initial months 
of 2020, the positive detection rate for gonorrhea infec-
tions declined, aligning with findings from an Austral-
ian study [25]. Several factors contribute to this trend: 
First, social distancing and mobility restrictions likely 
reduced the risk associated with potential sexual behav-
ior. Second, decreased access to screening occurred as 

Table 2 Prediction of gonorrhea incidence from January 2020 
to September 2022 after COVID-19 intervention using the ITS-
ARIMA model and BSTS model

Time Actual 
value

ITS‑ARIMA model BSTS model

Forecasts 95% CI Forecasts 95% CI

2020-1 8254 9489 7899 ~ 11,078 7264 5704 ~ 8969

2020-2 3524 7140 5507 ~ 8773 9355 7578 ~ 10,980

2020-3 4664 9167 7411 ~ 10,924 9454 7622 ~ 11,197

2020-4 6267 9331 7418 ~ 11,245 10,316 8519 ~ 11,994

2020-5 8104 10,077 8019 ~ 12,135 10,117 7957 ~ 12,108

2020-6 9292 10,023 7830 ~ 12,216 11,025 8820 ~ 13,447

2020-7 10,621 11,047 8727 ~ 13,368 11,050 8762 ~ 13,311

2020-8 10,724 11,193 8752 ~ 13,635 10,430 7814 ~ 13,111

2020-9 11,643 10,601 8045 ~ 13,157 10,075 7030 ~ 12,918

2020-10 10,551 10,261 7595 ~ 12,928 10,443 7365 ~ 12,993

2020-11 11,260 10,603 7831 ~ 13,375 10,298 7343 ~ 13,615

2020-12 11,691 10,621 7747 ~ 13,495 9379 6192 ~ 12,920

2021-1 10,284 9479 6377 ~ 12,580 6950 3084 ~ 10,688

2021-2 7650 7095 3878 ~ 10,312 9127 5505 ~ 12,598

2021-3 10,878 9107 5760 ~ 12,454 9188 4881 ~ 13,160

2021-4 10,874 9271 5791 ~ 12,751 10,051 5938 ~ 14,066

2021-5 10,773 10,017 6409 ~ 13,625 9874 5662 ~ 14,106

2021-6 10,950 9962 6230 ~ 13,694 10,768 6469 ~ 15,272

2021-7 11,747 10,987 7135 ~ 14,838 10,745 6267 ~ 15,612

2021-8 12,019 11,133 7165 ~ 15,101 10,195 5640 ~ 15,056

2021-9 11,744 10,541 6460 ~ 14,621 9958 5210 ~ 15,085

2021-10 10,720 10,201 6010 ~ 14,391 10,278 5153 ~ 15,468

2021-11 11,119 10,542 6245 ~ 14,840 10,204 4829 ~ 15,765

2021-12 11,264 10,560 6159 ~ 14,962 9219 3463 ~ 15,042

2022-1 9273 9418 4811 ~ 14,025 6790 1376 ~ 13,164

2022-2 6979 7035 2310 ~ 11,760 8925 3288 ~ 15,081

2022-3 8886 9047 4191 ~ 13,902 9019 2812 ~ 15,220

2022-4 7821 9210 4221 ~ 14,200 9819 3655 ~ 16,446

2022-5 8395 9956 4837 ~ 15,076 9753 2945 ~ 16,849

2022-6 8988 9902 4655 ~ 15,148 10,607 4031 ~ 17,916

2022-7 9263 10,926 5556 ~ 16,297 10,473 3160 ~ 17,568

2022-8 9275 11,073 5581 ~ 16,564 9983 3017 ~ 17,287

2022-9 8598 10,480 4870 ~ 16,090 9715 2262 ~ 17,573
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in-person medical services. Third, healthcare personnel, 
including those specializing in gonorrhea management, 
were reassigned to address the pressing needs of the 
COVID-19 pandemic. Fourth, shortages in laboratory 
supplies may have hindered timely testing and report-
ing. Lastly, the severe phase of the COVID-19 pandemic 
may have resulted in reporting delays and missed cases 

Fig. 6 Time series plot illustrating the estimated causal effects of the COVID-19 outbreak on the decline in gonorrhea case notifications 
from January 2020 to September 2022

Table 3 Comparison of the forecasted and actual values at various response levels using the ITS-ARIMA model from February 2020 to 
September 2022

Time True values Predict values Absolute effect Relative effect (%)

2020-2 3524 9374 -5850 -62.4%

2020-3 ~ 2020-4 10,931 20,419 -9488 -46.47%

2020-5 ~ 2022-9 291,386 281,367 10,019 3.6%

2020-2 ~ 2022-9 305,841 299,786 6055 2.02%

Fig. 7 Actual values and forecasted values in the absence 
of intervention under the ITS-ARIMA model

Table 4 Predicted gonorrhea incidence from October 2022 to 
December 2023 using the ITS-ARIMA model

Time Forecasts 95% CI

2022-10 8291 6582 ~ 10,000

2022-11 8662 6776 ~ 10,548

2022-12 8768 6671 ~ 10,865

2023-01 7213 4916 ~ 9510

2023-02 4623 2142 ~ 7103

2023-03 6670 4019 ~ 9322

2023-04 6744 3931 ~ 9556

2023-05 7450 4485 ~ 10,414

2023-06 7749 4640 ~ 10,858

2023-07 8557 5310 ~ 11,805

2023-08 8658 5278 ~ 12,038

2023-09 8339 4831 ~ 11,846

2023-10 7793 4070 ~ 11,516

2023-11 8203 4326 ~ 12,081

2023-12 8315 4284 ~ 12,347
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in the gonorrhea data. Our research substantiated the 
underreporting of potential gonorrhea cases in China 
during the COVID-19 pandemic. However, exploring 
this topic is intricate due to various factors, including 
potential overlapping effects of other interventions or 
policies. The direct impact of COVID-19 control meas-
ures on public gatherings and access to public places 
could confound the normal transmission patterns of 
gonorrhea. Simultaneously, these measures may have 
deterred individuals from seeking resources for gonor-
rhea testing. China’s experience has shown that COVID-
19 lockdowns resulted in insufficient and delayed 
opportunities for individuals with HIV/AIDS and tuber-
culosis to receive diagnosis and testing [26, 27]. The gon-
orrhea cases varied at different stages of the pandemic 
response, linked to differing levels of containment and 
closure policies [28]. These observations collectively 
suggested that gonorrhea may have continued to spread 
throughout the COVID-19 pandemic, albeit possibly at 
a lower transmission rate. Moreover, it is crucial to con-
sider the lag effect of intervention measures, including 
delays in medical treatment, detection, and treatment of 
gonorrhea patients, along with suboptimal management. 
These factors not only worsen the severity of the disease 
but also heighten the risk of gonorrhea transmission. 
Currently, prioritizing access to care for individuals with 
gonorrhea and encouraging preventive measures among 
high-risk populations are crucial steps to mitigate the 
potential for a sharp resurgence in gonorrhea cases. 
Continuous nursing efforts, including telemedicine, offer 
an uninterrupted avenue for comprehensive gonorrhea 
care, ensuring detection, treatment, and prevention are 
not compromised during this period.

Gonorrhea, a prevalent venereal disease globally, 
exhibits seasonal variations in incidence. Typically, 
the incidence peaks in summer and autumn, while the 
trough in spring and winter. The autumn surge in gon-
orrhea cases may be linked to hormonal influences that 
promote increased sexual activity. Research has revealed 
elevated testosterone levels in the autumn, peaking in 
October, correlating with heightened sexual activity [29, 
30]. The ITS-ARIMA model is effective in mitigating sea-
sonal effects when modelling gonorrhea incidence. Glob-
ally, the prevalence of gonorrhea is most pronounced in 
Europe, the Americas, and some African countries [31]. 
The gonorrhea incidence is the highest among the poor, 
sexually active people, adolescents, blacks, less educated 
people, and unmarried people, who play a role in spread-
ing gonorrhea [32]. Efforts to combat gonorrhea should 
focus on improving the detection of gonococcal resist-
ance and raising the criteria for diagnosis and treatment 
of gonorrhea patients. Increasing public awareness of 

self-protection measures is crucial for reducing inci-
dence. Additionally, prioritizing early detection and 
prompt treatment remains fundamental in the ongoing 
battle against gonorrhea.

Limitations should be mentioned in this study. First, 
passive monitoring systems may inevitably lead to under-
reporting, under-diagnosis, or delayed reporting. Sec-
ond, our analysis utilized the national monthly gonorrhea 
incidence data, making it challenging to incorporate 
influencing factors such as air quality and weather condi-
tions at a natinal level. Also, certain socio-economic indi-
cators are only reported on a quarterly basis in China, 
further integration of these influencing factors was 
excluded. Lastly, policy landscapes are dynamic and sub-
ject to rapid changes, underscoring the need for further 
research to enhance our understanding of the situation 
and its complexities.

Conclusion
ITS serves as a valuable tool for gauging intervention 
effectiveness, providing flexibility in modeling vari-
ous impacts. The ITS-ARIMA model, adept at assess-
ing trends and adjusting for serial correlation and 
seasonal impact, serves to evaluate the influence of 
COVID-19 interventions on gonorrhea. Moreover, the 
ITS-ARIMA model proves instrumental in predicting 
the trajectory of gonorrhea incidence, offering a robust 
foundation for effective prevention and control strate-
gies. Our findings suggested a sustained decline in gon-
orrhea incidence since the COVID-19 measures began, 
not solely attributed to reduced testing but influenced 
by factors like prolonged social distancing and reduced 
high-risk behavior. As restrictions ease, prioritizing 
care for gonorrhea patients and promoting preventive 
measures are crucial to prevent a potential resurgence.
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