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Abstract 

Background Previous studies have typically explored the daily lagged relations between influenza and meteorology, 
but few have explored seasonally the monthly lagged relationship, interaction and multiple prediction between influ-
enza and pollution. Our specific objectives are to evaluate the lagged and interaction effects of pollution factors 
and construct models for estimating influenza incidence in a hierarchical manner.

Methods Our researchers collect influenza case data from 2005 to 2018 with meteorological and contaminative 
factors in Northeast China. We develop a generalized additive model with up to 6 months of maximum lag to analyze 
the impact of pollution factors on influenza cases and their interaction effects. We employ LASSO regression to iden-
tify the most significant environmental factors and conduct multiple complex regression analysis. In addition, quantile 
regression is taken to model the relation between influenza morbidity and specific percentiles (or quantiles) of mete-
orological factors.

Results The influenza epidemic in Northeast China has shown an upward trend year by year. The excessive inci-
dence of influenza in Northeast China may be attributed to the suspected primary air pollutant,  NO2, which has been 
observed to have overall low levels during January, March, and June. The Age 15–24 group shows an increase 
in the relative risk of influenza with an increase in  PM2.5 concentration, with a lag of 0–6 months (ERR 1.08, 95% CI 
0.10–2.07). In the quantitative analysis of the interaction model,  PM10 at the level of 100–120 μg/m3,  PM2.5 at the level 
of 60–80 μg/m3, and  NO2 at the level of 60 μg/m3 or more have the greatest effect on the onset of influenza. The GPR 
model behaves better among prediction models.

Conclusions Exposure to the air pollutant  NO2 is associated with an increased risk of influenza with a cumulative lag 
effect. Prioritizing winter and spring pollution monitoring and influenza prediction modeling should be our focus.

Keywords Pollutants, Influenza, NO2, Generalized additive model, Time series analysis

†Ye Chen and Weiming Hou contributed equally to this work.

*Correspondence:
Jing Dong
jdong@cmu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-023-16712-6&domain=pdf


Page 2 of 11Chen et al. BMC Public Health         (2023) 23:1826 

Introduction
Influenza is an acute viral respiratory illness in humans, 
usually characterized by fever, headache, muscle pain, 
weakness, nasal congestion, sore throat and cough. Sea-
sonal epidemics of influenza viruses can spread rapidly 
and cause significant morbidity and mortality worldwide 
[1–3]. Globally, influenza is estimated to cause 3 to 5 mil-
lion severe cases and 290,000 to 650,000 deaths related 
to respiratory infections every year [4]. While certain 
non-pharmaceutical interventions that can effectively 
control influenza in the early stages exist, such as the use 
of masks, hand washing, and other hygiene measures, 
or even closing schools, influenza is still a big threat to 
human health [5]. As evidenced by the trends of influ-
enza incidence in such countries as Europe, the United 
States and Japan [6, 7], the situation remains grim and 
global preventive measures have little impact on the 
trend of influenza outbreaks. Currently few models can 
effectively predict influenza outbreaks. By monitoring 
influenza morbidity indicators on a daily basis after envi-
ronmental factors that tend to predict outbreaks can be 
identified and modelled, we could predict influenza virus 
outbreaks in advance to reduce or even prevent influenza 
with associated costs.

In early studies we can assume that air pollution may 
contribute to influenza-induced morbidity. An epide-
miological investigation suggests that particulate mat-
ter ≤ 10 μm  (PM10) and ozone  (O3) should be considered 
when forecasting the incidence of influenza [8, 9]. Influ-
enza viruses have been detected in polluted waters, pos-
sibly originating from bird excretion carrying the virus, 
as per some studies [10]. As shown in the 2002–2003 
SARS pandemic and the 2009  H1N1 influenza pandemic, 
influenza viruses are mainly transmitted through respira-
tory droplets. So air pollutants such as particulate mat-
ter (PM) and carbon monoxide (CO) may influence the 
transmission and prevalence of influenza viruses [11, 
12]. In addition, secondary human-to-human transmis-
sion may occur and the outbreak may lead to the closure 
of schools and workplaces. Previous studies have inves-
tigated how meteorological factors facilitate the trans-
mission of influenza among regions worldwide. A study 
in the UK showed that influenza viruses prefer low tem-
peratures in temperate regions [13], while researchers 
in Canada have observed that the increase of influenza 
viruses is associated with low temperatures and high 
relative humidity [14]. The different subtypes of influ-
enza viruses that have infected humans in recent decades 
include the  H10N8,  H5N6 and  H9N2, most of which were 
firstly reported in China [15].

Numerous studies, both domestically and interna-
tionally, have investigated the correlation between 
the seasonal distribution patterns of influenza and 

meteorological and pollution factors. In China, Yuzhou 
Zhang et  al. [16] explored the effect of different mete-
orological factors on influenza incidence in Shanghai 
by developing a distribution lagged nonlinear model 
(DLNM). Some researches indicated that in the multi-day 
lag model, there was a statistically significant correlation 
between  SO2,  NO2 and  O3 concentrations and influenza 
risk between lags 0 and 1 [17]. Similarly, in Nanjing, Lei 
Huang et  al. [18] found that  PM2.5 and  NO2 were asso-
ciated with an increase in influenza cases. Air pollutants 
significantly affect the susceptibility of human respiratory 
epithelial cells to influenza virus infection by increasing 
virus attachment and entry.

The overall objective of this study is to explore influ-
enza epidemic characteristics, lagged effects of pollut-
ants and develop models suitable for predicting influenza 
virus outbreaks. Our specific objectives are to: a) screen 
environmental predictors of influenza outbreaks; b) 
evaluate the lagged and interaction effects of pollution 
factors; c) construct models for estimating influenza 
incidence in a hierarchical manner, selecting appropriate 
models for different characteristics.

Materials and methods
Figure  1 shows the geographical location of the study 
area—Heilongjiang, Jilin and Liaoning provinces, which 
lie between 120° and 135° E and 40° and 53° N latitude 
in China. These three provinces are located in Northeast 
China with a medium level of economic development 
and population density.

We collected influenza case surveillance data from the 
National Public Health Data Centre of China between 
2005 and 2018. All patients are diagnosed according to the 
criteria of influenza management issued by the Ministry of 
Health of the People’s Republic of China. We obtained the 
corresponding daily weather data including air tempera-
ture, dew point temperature etc. from the China Mete-
orological Data Sharing Service. Pollutant information is 
originally from the National Oceanic and Atmospheric 
Administration (NOAA) including CO,  NO2,  O3 etc.

Statistical methods
To address missing values in the influenza epidemic and 
meteorological pollution data, we use multiple interpola-
tion to fill them. LASSO regression analysis is used for fea-
ture selection in response to the effects of meteorological 
and pollution factors. We develop quantile regression mod-
els and generalized additive models [13] with a maximum 
lag of 6 months to assess the extreme effects of pollution 
and meteorological factors on influenza cases, lags, and 
interactions between pollutants, respectively. Finally, we 
make prediction by complex regression models. All analysis 
in our study is performed in R software (version 4.1.3).
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The screening of lasso regression with environmental 
variables
There are N sets of observations, each consisting of a 
total response variable y and p associated characteristic 
variables xi = (xi1, …, xip) T. A linear regression model can 
be set as follows:

where β0 and β = (β1, β2, …, βp) are unknown parameters 
and ei is the error term. The introduction of some varia-
bles in practical problems not only complicates the calcu-
lation, but also risks increasing the data covariance, thus 
affecting the model fit. We can use lasso regression to 
estimate the parameters by solving the following problem:

yi = β0 +

p

j=1

xijβj + ei, i = 1, · · · ,N

minβ0,β

N
�

i=1



yi − β0 −

p
�

j=1

xijβj





2

, � β�1 ≤ t

where � β �1=
∑p

j=1

∣

∣βj
∣

∣ is the l1 parametrization of β 
and t is the specified tuning parameter. Overall, the lasso 
method improves the overall prediction accuracy, and the 
inclusion of the constraint term compresses the coeffi-
cients of some of the eigenvariables in the model to zero, 
thus enabling the selection of important variables among 
the many eigenvariables.

The lagging and interaction effect of generalized additive 
model [13]
The models are listed as follows (Model 1):

Here, Yt is the number of monthly counts of influenza 
cases in monthly t; α1 is the intercept of the whole model; 
S () is a smoothing function, and the penalty spline method 
is often used to smooth the parameters; M represents the 
estimated environmental variable related to influenza; β 
is the regression coefficients. The optimal degrees of free-
dom (df) for the spline function are estimated by Akaike 
information criterion for Poisson (AIC) and Minimum 
partial regression coefficient  (PACFmin) criteria.

log[E(Yt)] = α1+
∑

S
(

M, df , lag
)

+ S
(

Time, df
)

+ Factor(Montht)+ βYeart

Fig. 1 The geographical location of Northeast in China

The map was created by ArcGIS 10.3 (Environmental Systems Research Institute; Redlands, CA, USA). The base map was acquired from the data 
center for geographic sciences and natural sources research, CAS (http:// www. resdc. cn/ data. aspx? DATAID= 201)

http://www.resdc.cn/data.aspx?DATAID=201
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Subsequently, we explore the interaction of pollutants 
on the prevalence of influenza. The model can be written 
as follows (Model 2):

α2 is the intercept; X1 indicates two of the interaction 
factors whereas X3 denote the other one; S(X1, X2) is a 
spline function of the interaction between the parameters 
X1 and X2. M is the meteorological factors.

The establishment of Gradient boosting regression tree 
(GBRT) and Gaussian process regression (GPR) model
If the input training set is: T = {(× 1, y1), (× 2, y2), …, (xN, 
yN)}, the training samples i = 1, 2, …, N, the number of itera-
tion rounds t = 1, 2, …, T, and the loss function is L, then the 
GBRT algorithm is divided into the following three steps:

First, initialize the weak learner: f0(x) = argmin
N
∑

i=1

L
(

yi , c
)  

Next, calculate the negative gradient  rti and the output 
of each leaf node region of the regression tree,  Rtm output 
value  ctm, and update the strong learner:

Finally, get strong learners: 

From a function space perspective, a Gaussian process 
[19] is defined to describe the distribution of the func-
tion (f(x)). The GP is the set of any finite number of ran-
dom variables that have a joint Gaussian distribution, and 
its properties are determined entirely by the mean and 
covariance functions, that is:

where x,x’ ∈ R are arbitrary random variables. Thus GP 
can be defined as f (x) ~ GP(m(x), k(x, x’)) and the mean 
function is generally taken to be 0 (m(x) = 0). For the 
regression model as follows:

log[E(Yt)] = α2+ S
(

X1,X2, lag, df
)

+ S
(

X3, lag, df
)

+
∑

S
(

M, df
)

+ S
(

Time, df
)

rti = −

[

∂L
(

yi, f(x1)
)

∂f

]

f(x)=ft−1(x)

ctm = argmin
∑

XiǫRtm

L
(

yi, ft−1(Xi), c
)

ft(x) = ft−1(x)+

M
∑

m=1

ctmI(XǫRtm)

f (x) = fT (x) = f0(x)+

T
∑

t=1

M
∑

m=1

ctmI(x∈Rtm)

{

m(x) = E[f(x)]

k
(

x, x
′
)

= E
[

(f(x)−m(x))
(

f
(

x
′
)

−m
(

x
′
))]

where x is the input value, f is the function value, and y 
is the observation plus the observation affected by noise, 
if noise ε ∼ N

(

0, σ2n
)

 yields a priori distribution of the 
observation y as follows:

Results
Influenza surveillance in Northeast China
From 2005 to 2018, a total of 32,989 influenza cases were 
reported in the three eastern provinces of China, show-
ing an increasing trend every year (Table  1 and Fig.  1). 
Heilongjiang province exhibited a significantly high level 
of epidemic in the first few years, followed by Liaon-
ing province, which has consistently been the main epi-
demic area since then and had 14,921 reported cases of 
influenza by 2018. Young children aged 5–14  years and 
young adults aged 25–59 years had the highest incidence 
of influenza, accounting for 55.35% of all reported cases 
(Table 1). Significant differences in the incidence of influ-
enza were observed in terms of seasonality, age, and 
region (P < 0.05).

The screening and extreme effect for meteorological 
and pollutant factors among influenza prevalence
We apply a fivefold cross-validation to select a model 
with small and stable error fluctuations and a param-
eter λ of 28.3327. The results of the runs are shown in 
Fig. 2 and Table S1. After the initial selection of the lasso 
method, six of the variable variables including air tem-
perature (AT), dew point temperature (DPT), sea level 
pressure (SLP),  NO2,  PM10 and  PM2.5 are selected and the 
coefficients of the other independent variables are con-
tracted to zero.

Exposure–response relationships for pollutants 
with different lag times
From the line graph of Figure S1 regression coefficients, we 
can see that SLP does not fluctuate at different levels, while 
 PM2.5 fluctuates at different concentrations, but the over-
all effect increases with the quantile. In addition,  PM10, 
 NO2 and AT has a negative effect on influenza incidence 
at different levels, and the overall effect also increases 
with the quantile. Significant differences were observed 
between the age groups of 25–59  years and 60 + year. In 

y = f (x)+ ε

y ∼ N
(

0, K(X,X)+ σ
2
nIn

)
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Table 2 and Fig. 3, in the single-pollutant model we find a 
negative association between short-term exposure to  NO2 
(within 1 month) and monthly influenza incidence (ERR-
2.68% (-4.72%, -0.60%)), and this implies that low levels of 
 NO2 may be the most responsible air pollutant for excess 
influenza incidence. The Age 25–59  years group is the 
most susceptible to  NO2, followed by the Age 0–4  years 
group, and the ERR increases with lag in both groups, 
with essentially no lag in the 60 + years age group.  NO2 
showed a positive correlation with influenza incidence in 
patients aged 15–24 and 25–59 years at a 3-month lag. At 
a 5-month lag, there was a positive correlation between 
influenza incidence and  NO2 in patients aged 0–4, 15–24, 
and 25–59 years. At a maximum lag time of 6 months, the 
influenza incidence in patients aged 15–24 shows a posi-
tive correlation with  PM2.5.

Interaction and comparison of multiple‑pollutant model
We develop a multi-pollutant model with a single-day 
lagged ERR maximum and significance test, yield-
ing a lagged day of 5 days for  PM10,  PM2.5 and 4 days 
for  NO2. Figure S2 revealed that  PM10 has interactive 

effects with  PM2.5 and  NO2 on influenza incidence. 
Additionally, there is a weak positive correlation 
between pollutants and the risk of incidence. Moreo-
ver, ambient temperature (AT) exhibits positive cor-
relation with the risk of incidence at low temperatures 
and inverse correlation at high temperatures, while 
dew point temperature (DPT) shows an inverse trend 
compared to AT. Figure 4 indicated a non-linear effect 
of pollutants on influenza onset, with  PM10 levels 
of 100–120  μg/m3 and  PM2.5 levels of 60–80  μg/m3, 
and  NO2 levels above 60  μg/m3 exhibiting the great-
est impact. Results from the statistical test presented 
in Table 3 suggest that the  PM10 and  PM2.5 interaction 
model is better  (R2 = 99.1%). These findings demon-
strate the significant impact of air pollutants on influ-
enza onset.

From the comparison of the parameters of the two 
modelling approaches in Table  4, the model fit is the 
best in Liaoning Province among different regions 
 (R2 > 70%), and the model fit is the best among Age 
25–59 groups, while the GPR model shows the same fit 
as the GBRT model.

Table 1 Distribution of the influenza cases by age, region and season group in northeast China, 2005–2018

Characteristic 0–4 5–14 15–24 25–59  ≥ 60 Total Population ILI
No of ILI cases (%) (104) (10–2%)

Year

 2005 15(9.32%) 74(45.96%) 13(8.07%) 46(28.57%) 13(8.08%) 161 10757 0.01

 2006 37(22.70%) 73(44.79%) 22(13.50%) 29(17.79%) 2(1.23%) 163 10917 0.01

 2007 132(37.93) 141(40.52%) 26(7.47%) 42(12.07%) 7(2.01%) 348 10952 0.03

 2008 119(40.34%) 100(33.9%) 22(7.46%) 48(16.27%) 6(2.03%) 295 10874 0.03

 2009 324(12.83%) 889(35.21%) 684(27.09%) 559(22.14%) 69(2.73%) 2525 10907 0.23

 2010 677(27.15%) 681(27.31%) 359(14.39%) 668(26.78%) 109(4.37%) 2494 10955 0.23

 2011 178(22.97%) 155(20.00%) 57(7.35%) 322(41.55%) 63(8.13%) 775 10966 0.07

 2012 438(19.57%) 477(21.31%) 215(9.61%) 906(40.48%) 202(9.03%) 2238 10973 0.20

 2013 436(21.26%) 332(16.19%) 165(8.04%) 874(42.61%) 244(11.90%) 2051 10976 0.19

 2014 782(21.66%) 1115(30.89%) 307(8.50%) 1066(29.53%) 340(9.42%) 3610 10976 0.33

 2015 666(25.87%) 463(17.99%) 174(6.76%) 916(35.59%) 355(13.79%) 2574 10947 0.24

 2016 963(24.34%) 1080(27.30%) 270(6.83%) 1200(30.33%) 443(11.20%) 3956 10910 0.36

 2017 1070(24.62%) 1173(26.99%) 368(8.47%) 1196(27.52%) 539(12.40%) 4346 10875 0.40

 2018 2181(29.26%) 1653(22.18%) 381(5.11%) 1982(26.59%) 1256(16.85%) 7453 10836 0.69

Province Region

 Heilongjiang 1973(22.85%) 2915(33.77%) 1172(13.58%) 2025(23.46%) 548(6.35%) 8633 3773 2.29

 Jilin 2306(24.44%) 2316(24.55%) 947(10.04%) 2930(31.05%) 936(9.92%) 9435 2704 3.49

 Liaoning 3739(25.06%) 3175(21.28%) 944(6.33%) 4899(32.83%) 2164(14.50%) 14921 4359 3.42

 Total 8018(24.31%) 8406(25.48%) 3063(9.28%) 9854(29.87%) 3648(11.06%) 32989 10836 3.04

Seasons

 Spring(Mar-May) 1968(23.67%) 2410(28.99%) 675(8.12%) 2310(27.79%) 950(11.43%) 8313

 Summer(Jun-Aug) 426(19.00%) 283(12.62%) 175(7.81%) 896(39.96%) 462(20.61%) 2242

 Autumn(Sep-Nov) 935(16.22%) 1420(24.64%) 772(13.40%) 1908(33.11%) 728(12.63%) 5763

 Winter(Dec-Feb) 4689(28.13%) 4293(25.75%) 1441(8.64%) 4740(28.43%) 1508(9.05%) 16671
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Discussion
Based on this study, it is determined that influenza epi-
demics in the northeastern region of China exhibit pro-
nounced seasonality of winter-spring and demonstrate 
an upward trend annually. Prior to 2018, the province of 
Liaoning continued to be the primary epicenter of influ-
enza outbreaks within the northeastern region, with a 
higher prevalence of cases observed among young chil-
dren and adolescents, which could be attributed to their 
relatively weaker immune systems rendering them more 
susceptible to influenza viral infections [20].

Our single-pollutant lagged modeling yields intrigu-
ing results, indicating that lower concentrations of 
 NO2 in January, March, and June may be the primary 
contributing factor to excessive influenza incidence. 
Exposure to  NO2 can lead to reduced virus-specific 
immunity and increased cellular inflammation, poten-
tially causing the onset of influenza virus, regardless 
of whether it occurs before or after respiratory virus 
infection. The relative risk of influenza associated with 
 NO2 exposure increased with higher  NO2 concentra-
tions in the age groups of 0–4, 15–24, and 25–59. This 
suggests that young adults may have a higher suscepti-
bility to influenza under  NO2 exposure due to the rapid 
release of immune cells stimulated by the virus, result-
ing in an increased relative release of immune cells. The 

disruption of immune cell homeostasis caused by the 
rapid release of immune cells stimulated by influenza 
viruses may explain the higher susceptibility of young 
adults to influenza under  NO2 exposure. This could be 
the result of a relative increase in immune cell release 
in this age group [21]. In the age group of 15–24, the 
relative risk of influenza associated with  PM2.5 expo-
sure increased with higher  PM2.5 concentrations at lag 
0–6  months. This suggests that long-term exposure 
to high levels of  PM2.5 beyond 6 months may increase 
the risk of influenza. This was similar to the results of a 
monitoring study that found: Age 0–4 were significantly 
susceptible to  PM10 and  NO2; Age 5–14 were signifi-
cantly susceptible to  PM2.5 and  PM10; and Age 15–24 
were significantly susceptible to all air pollutants ana-
lyzed [18]. During the remaining lag months with low 
concentrations of  PM2.5,  PM10 and  NO2, the onset of 
influenza is mainly attributed to factors other than air 
pollution, as indicated by ERR < 0. This may be due to 
low levels of external pollution, which increase popula-
tion activity during high influenza season (spring, win-
ter) and result in aggregated activity, thereby enhancing 
the risk of influenza.

The longitudinal study shows that the highest over-
all risk (ERR) of influenza onset is observed for pollut-
ants with a lag of 5–6 months, indicating that long-term 

Fig. 2 The process of lasso regression variable screening
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exposure to pollutants may primarily promote influenza 
onset. However, in the age groups of 15–24 and 60 + , 
 NO2 exposure is associated with a higher risk of influ-
enza onset at an early stage. The lagged effects of  PM2.5, 
 PM10 and  NO2 are characterized by a bimodal distribu-
tion, with a significant decrease in the risk of influenza 

onset during the first 2  months of exposure. However, 
the risk of influenza onset is found to be higher during 
the 2nd-3rd and 4th-5th months of exposure to these 
pollutants. Several studies have suggested that influenza 
viruses exhibit higher sensitivity and pathogenicity dur-
ing the winter season, based on experimental findings 
[22]. This might also be consistent with the findings of 
some surveys: The correlation between air pollutants 
and influenza varies by season and region, with higher 
effects estimated for the cold season, eastern and cen-
tral regions, and provinces with wetter conditions and 
larger populations [23]. In the multi-pollutant lagged 
interaction model, ambient temperature (AT) is found to 
be positively correlated with the risk of influenza onset 
at low temperatures, while pollutants are only weakly 
positively correlated with the risk of morbidity. This sug-
gests that lower temperatures may facilitate the spread of 
pollutants, thereby exacerbating the spread of influenza 
viruses and causing the onset of influenza. These find-
ings are consistent with the seasonal characteristics of 
influenza onset, which predominantly occur during the 
winter and spring seasons in this study. The quantitative 
analysis of interaction models reveals that the interaction 
between  PM10 and  PM2.5 has a more significant effect on 
influenza onset. Several studies have suggested that par-
ticulate matter (PM) may stimulate macrophage apop-
tosis in lung tissue, which could exacerbate the damage 
caused by influenza viruses to the respiratory tract. This 
may explain why the combined effect of  PM10 and  PM2.5 
is more detrimental to influenza onset [24].

Fig. 3 The associations between ambient air pollution and monthly Influenza prevalence with total and all ages

Fig. 4 The fitting interactions of the association among pollutants 
and Influenza cases based on the generalized additive model
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During heavy pollution, reduced outdoor activities and 
increased indoor activities can heighten the risk of influ-
enza [25]. Hence, the significance of the current study lies 
in the investigation of the link between pollutants and the 
development of influenza, which is in line with various 
domestic and international studies [17, 26, 27].

Temperature and sea level pressure are the most rel-
evant meteorological factors in our study, as they can 
affect the transmission of pathogens and impact human 

immune function, leading to respiratory disease develop-
ment [28–30]. In our final GAM model, we did not find 
a significant association between meteorological factors 
and influenza incidence. This may be due to the potential 
confounding effect of regional environment and lifestyle 
habits on the transmission of influenza.

Our analysis involves multiple models exploring the 
relationship between environmental factors and influ-
enza incidence, and subsequent subgroup analyses 

Table 3 Test of interaction model of multiple pollution factors

Interaction Parameters edf Ref.df χ2 P R2(adj) Deviance 
explained

UBRE

s(PM10lag5,PM2.5lag5) PM10lag5,PM2.5lag5 2.899 2.978 58.74  < 2e-16*** 0.991 99.50% 2.326

NO2lag4 1.742 1.894 20.23 2.82e-05***

time 10.549 10.83 607.2  < 2e-16***

AT 6.493 6.866 266.9  < 2e-16***

DPT 6.908 6.979 283.3  < 2e-16***

SLP 1.966 2.293 27.3 1.04e-05***

s(PM10lag5,NO2lag4) PM10lag5,NO2lag4 2.962 2.994 106.2  < 2e-16*** 0.989 99.50% 2.527

PM2.5lag5 1.002 1.003 10.22 0.00142**

time 10.835 10.97 737.2  < 2e-16***

AT 6.775 6.951 229.1  < 2e-16***

DPT 6.586 6.901 268.7  < 2e-16***

SLP 2.07 2.411 26.47 1.22e-05***

Table 4 Comparison of the prediction results with the gradient boosted regression tree (GBRT) and gaussian distribution regression 
(GPR) models

Model Stratification Parameters cv.fold Training set Test set

RMSE R2 MAE RMSE R2 MAE

GBRT Total ntree = 301, shrinkage = 0.01 5 172.93 0.68 101.93 545.77 0.77 347.27

Heilongjiang ntree = 170, shrinkage = 0.01 5 101.96 0.43 52.91 162.11 0.72 103.09

Jilin ntree = 414, shrinkage = 0.01 5 50.26 0.72 33.67 240.82 0.72 171.42

Liaoning ntree = 560, shrinkage = 0.01 5 46.38 0.79 27.38 155.14 0.78 85.29

Age0-4 ntree = 369, shrinkage = 0.01 5 47.63 0.70 31.45 190.33 0.77 114.36

Age5-14 ntree = 162, shrinkage = 0.01 5 100.67 0.42 47.90 150.98 0.62 75.65

Age15-24 ntree = 267, shrinkage = 0.01 5 23.39 0.50 11.60 24.08 0.73 15.40

Age25-59 ntree = 445, shrinkage = 0.01 5 27.23 0.81 18.64 129.02 0.77 85.24

Age60- ntree = 344, shrinkage = 0.01 5 9.99 0.67 6.39 86.49 0.73 68.67

GPR Total sigma = 0.3410, tol = 0.0005, error = 0.32 5 170.56 0.70 101.35 540.63 0.82 332.61

Heilongjiang sigma = 0.3410, tol = 0.0005, error = 0.49 5 90.71 0.54 48.61 143.50 0.79 91.62

Jilin sigma = 0.3410, tol = 0.0005, error = 0.35 5 55.72 0.68 37.30 243.98 0.81 163.64

Liaoning sigma = 0.3410, tol = 0.0005, error = 0.19 5 44.61 0.84 31.41 169.93 0.76 104.32

Age0-4 sigma = 0.3410, tol = 0.0005, error = 0.33 5 49.23 0.70 33.39 195.84 0.80 119.73

Age5-14 sigma = 0.3410, tol = 0.0005, error = 0.47 5 88.21 0.57 44.56 140.75 0.65 78.62

Age15-24 sigma = 0.3410, tol = 0.0005, error = 0.44 5 21.34 0.61 11.46 18.38 0.81 13.28

Age25-59 sigma = 0.3410, tol = 0.0005, error = 0.22 5 29.58 0.80 21.00 129.21 0.82 83.95

Age60- sigma = 0.3410, tol = 0.0005, error = 0.28 5 9.33 0.74 6.71 88.05 0.74 68.70
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demonstrate significant differences in the predic-
tions made by region and age group. Interestingly, 
the Gaussian process regression (GPR) model outper-
forms the Gradient Boosting Regression Tree (GBRT) 
model in terms of predictive accuracy. In conclusion, 
the study suggests that Liaoning Province is proficient 
in predicting influenza outbreaks and accounting for 
environmental factors. Moreover, it serves as a suit-
able representative region for the northeastern part of 
China. Our study also finds that the model’s fit and vali-
dation are satisfactory for the age group of 25–59 years, 
who are susceptible to influenza outbreaks. However, 
the predictive stability is suboptimal for the age group 
of 5–14  years, possibly due to the clustering of young 
individuals during the cold season.

It is notable that our study quantifies the impact of var-
ious factors on influenza incidence. The use of the GAM 
model allows us to control important confounding fac-
tors and examine the long-term monthly lagged effects 
of co-exposure to  PM10 and  PM2.5. However, it should 
be noted that our study is conducted at an aggregate 
level and does not involve individual-level analysis. And 
the data is only collected from the Northeast region, so 
caution is needed when extending our findings to other 
regions. However, our study provides a starting point for 
future population epidemiology studies with larger sam-
ples and broader geographic coverage.
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