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Abstract 

Background  Currently, the influenza epidemic in China is at a high level and mixed with other respiratory diseases. 
Current studies focus on regional influenza and the impact of environmental pollutants on time series, and lack 
of overall studies on the national influenza epidemic and the nonlinear correlation between environmental pollutants 
and influenza. The unclear spatial and temporal evolution patterns of influenza as well as the unclear correlation effect 
between environmental pollutants and influenza epidemic have greatly hindered the prevention and treatment 
of influenza epidemic by relevant departments, resulting in unnecessary economic and human losses.

Method  This study used Chinese influenza incidence data for 2007–2017 released by the China CDC and air pol-
lutant site monitoring data. Seasonal as well as inter monthly differences in influenza incidence across 31 provinces 
of China have been clarified through time series. Space-Time Cube model (STC) was used to investigate the spatio-
temporal evolution of influenza incidence in 315 Chinese cities during 2007–2017. Then, based on the spatial hetero-
geneity of influenza incidence in China, Generalized additive model (GAM) was used to identify the correlation effect 
of environmental pollutants (PM2.5, PM10, CO, SO2, NO2, O3) and influenza incidence.

Result  The influenza incidence in China had obvious seasonal changes, with frequent outbreaks in winter and spring. 
The influenza incidence decreased significantly after March, with only sporadic outbreaks occurring in some areas. 
In the past 11 years, the influenza epidemic had gradually worsened, and the clustering of influenza had gradually 
expanded, which had become a serious public health problem. The correlation between environmental pollutants 
and influenza incidence was nonlinear. Generally, PM2.5, CO and NO2 were positively correlated at high concentrations, 
while PM10 and SO2 were negatively correlated. O3 was not strongly correlated with the influenza incidence.

Conclusion  The study found that the influenza epidemic in China was in a rapidly rising stage, and several regions 
had a multi-year outbreak trend and the hot spots continue to expand outward. The association between environ-
mental pollutants and influenza incidence was nonlinear and spatially heterogeneous. Relevant departments should 
improve the monitoring of influenza epidemic, optimize the allocation of resources, reduce environmental pollution, 
and strengthen vaccination to effectively prevent the aggravation and spread of influenza epidemic in the high inci-
dence season and areas.
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Background
Influenza is an acute respiratory infectious disease 
caused by the influenza virus with obvious seasonal 
characteristics. The entire world’s population is essen-
tially susceptible to influenza, which can be transmitted 
by aerosol, droplets, and physical contact. The burden of 
disease caused by influenza is severe. According to the 
World Health Organization (WHO), influenza kills about 
650,000 people worldwide each year. Since the 20th cen-
tury, there have been four influenza pandemics, but each 
has had significant differences with respect to virus sub-
types, disease populations, spatial and temporal distribu-
tion, and case fatality. Influenza and its complications are 
a serious public health problem worldwide [1, 2]. China 
has a higher incidence of influenza than other countries. 
Owing to the diversity of population, economy, environ-
ment, and other factors in different regions of China, the 
current unclear space-time evolution law of the influenza 
epidemic and complex pathogenic factors have brought 
great obstacles to the prevention and control of the influ-
enza epidemic in China. In recent years, infectious res-
piratory diseases have become more serious. Respiratory 
diseases such as coronavirus disease 2019 (COVID-19), 
which are still doing the rounds, are mixed with influ-
enza. The early symptoms for both are very similar. Dur-
ing the COVID-19 pandemic, an increase in the number 
of cases of influenza with similar symptoms likely sig-
nificantly increased the control of respiratory infectious 
diseases. Research on the spatio-temporal evolution 
of influenza and environmental risks may significantly 
reduce the disease and economic burden in China.

Previous studies had shown that influenza in China 
had obvious seasonality, with a significant increase in 
the number of influenza infections in winter and spring. 
Studies conducted in different regions of the world have 
found regional variations in influenza seasonality. In 
tropical and subtropical regions, there were many peaks 
in influenza incidence [3]. In the middle latitudes that 
experience distinct seasons, influenza was more preva-
lent in winter and varied with latitude [4]. China has a 
large area and diverse weather patterns, and the influenza 
incidence in China also showed regional differences. A 
number of studies have been conducted from the aspect 
of epidemiological characteristics [5], regional clustering 
[6, 7], and prediction [8] of influenza. Few studies had 
combined time series and spatial heterogeneity to fur-
ther investigate the spatio-temporal evolution pattern of 
influenza incidence across the country.

Environmental epidemiological studies have shown 
that exposure to environmental pollutants significantly 
affects the risk of influenza [9, 10]. With the devel-
opment of spatio-temporal statistical analysis tech-
niques, many mathematical models have been used to 
study the environmental risk factors of influenza on 
a macro scale and their effects. Su et  al. used wavelet 
coherence analysis and GAM to explore the short-
term and delayed effects of environmental pollutants 
based on daily influenza incidence and pollutant data 
in Jinan, China [11]. Liao et al. analyzed the excess risk 
and lag effect of various environmental pollutants on 
influenza incidence by using a GeoDetector model 
and distributed lag nonlinear model [12]. Zhang et al. 
analyzed the community-level association between 
PM2.5 and influenza using random forest and spatio-
temporal Bayesian model [13]. Most studies focused 
on the time series of influenza incidence to study the 
effects of short-term or long-term exposure to envi-
ronmental pollutants. The exploration of spatial het-
erogeneity of environmental pollutants and influenza 
incidence in different regions is still in its early stage. 
One study showed that the influence of environmen-
tal pollutants on influenza had obvious regional dif-
ferences [14]. At present, GWR and several spatial 
models are the main research methods for the spatial 
correlation effect between environmental factors and 
influenza incidence. GWR was based on linear models 
without considering the nonlinear effects of influenc-
ing factors. The GWR model showed poor adaptability 
to the multicollinearity of environmental factors with 
complex interactions. GAM is usually used to study 
the short-term lag effect of environmental factors on 
disease. Given the characteristics of its additive model, 
it can also better explore the nonlinear spatial correla-
tion effect of environmental factors and influenza inci-
dence [15].

In this study, an STC model was established based 
on the time series and spatial heterogeneity of influ-
enza incidence, to explore the spatio-temporal evolu-
tion of influenza incidence in China. Combined with 
GAM, the nonlinear spatial correlation effect between 
environmental pollutants and influenza incidence was 
explored. This study will help to better understand 
the developmental trend of the influenza epidemic in 
China, clarify the impact of environmental pollutants 
on influenza, and provide a basis for the prevention and 
control of the influenza epidemic.
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Materials and methods
Influenza incidence data
Influenza incidence data in China from 2007 to 2017 were 
obtained from The Data Center of China Public Health 
Science of Chinese Center for Disease Control and Pre-
vention (CDC http://​www.​phsci​enced​ata.​cn/​Share/​index.​
html?​ed9df​15d-​9e67-​49c4-​9416-​1f179​d1981​18). The data-
base contains influenza incidence data from 2007 to 2017 
from 315 municipalities in 31 provinces of China. Some 
data of a small number of municipal regions are missing. 
Due to difficulties in data acquisition, data of Hong Kong, 
Macao and Taiwan are not included.

Environmental pollutants data
The concentration data of environmental pollutants 
came from 1,496 national air quality monitoring sta-
tions, including the longitude and latitude of the stations 
as well as the daily concentrations of PM10, PM2.5, SO2, 
NO2, CO and O3 in 2017. However, some time period 
data were missing. In this study, Python was used to 
carry out data cleaning, and some sites with special val-
ues and seriously missing data were eliminated, and then 
sliding average processing method was used to calculate 
the annual average concentration of six air pollutants 
from national ambient air quality monitoring stations in 
2017. The Kriging method was used to interpolate the 
site data to cover the entire study area, followed by sec-
tional statistics to match the influenza incidence data. 
Table 1 shows the summary of environmental pollutants 
used in this study.

Space‑time cube model (STC)
Figure  1 shows the Space-time cube model. The STC 
was proposed by Hagerstrand in 1970, and further dis-
cussed by Rucker and Szego. The STC can show how 
influenza incidence changes over time in geographic 
space, and identify the spatio-temporal evolution pat-
tern of influenza incidence through spatio-temporal 
clustering and hotspot analysis. On the basis of two-
dimensional plane space, a one-dimensional time axis 
was added to the STC, and time steps were used to 
divide the STC into multiple time slices, and then a 

three-dimensional cube combining the spatial location 
and time series was formed. It can represent changes of 
influenza incidence at a given location over time steps.

Based on the established STC, Getis-Ord Gi* was 
used to analyze the spatial hot spots of each time slice, 
and then Mann-Kendall statistical method was used to 
measure the trend of the bin time series in each loca-
tion [16], so as to identify the spatio-temporal aggrega-
tion pattern. The Mann-Kendall trend test is as follows:

For a bin time series with a sample size of n, each cube 
piece value on the bin time series was calculated and 
compared with the previous cube piece value, and the 
value was assigned according to its comparison results.

Where diff is the assignment, i is a cube piece, j is the 
next cube piece.

The results of each pair of time periods were summed:

diff =







1, xj > xi
0, xj = xi
−1, xj < xi

SUM =

n−1

i−1

n

j=i+1

diff

Table 1  Summary of environmental pollutants

Mean SD Minimum P25 Median P75 Maximum

CO (µg/m3) 1.078 0.283 0.552 0.865 1.015 1.238 2.175

NO2 (µg/m3) 28.722 7.863 13.114 22.675 28.039 33.520 47.564

O3 (µg/m3) 97.740 10.230 75.567 89.353 96.226 104.847 122.909

PM10 (µg/m3) 86.254 32.701 33.460 61.450 83.799 101.976 267.537

PM2.5 (µg/m3) 48.999 16.322 16.443 37.145 47.692 56.697 96.901

SO2 (µg/m3) 24.915 11.887 4.313 16.976 21.839 29.798 62.730

Fig. 1  Space-time cube model

http://www.phsciencedata.cn/Share/index.html?ed9df15d-9e67-49c4-9416-1f179d198118
http://www.phsciencedata.cn/Share/index.html?ed9df15d-9e67-49c4-9416-1f179d198118
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The expected result of SUM is 0, indicating that there 
is no trend in influenza incidence at this location over 
time. Based on the variance of the values in the STC bin 
time series, the observed SUM was compared with 0 to 
determine whether the difference was statistically signifi-
cant. The trend of each bin time series will be recorded 
as Z-score and p-value. By categorizing Z-scores and 
p-values, The spatio-temporal evolution pattern of influ-
enza incidence can be classified as New, Consecutive, 
Sporadic, Oscillating, Intensifying, Persistent, Diminish-
ing, Historical hot or cold spots, as well as one pattern 
with no significant hot or cold spots characteristics [17]. 
Table  2 shows the classification definitions of each hot 
and cold spot pattern.

Based on the established STC, the time series cluster-
ing method used the k-means clustering algorithm to 
classify the spatial units with similar time series in the 
STC, so as to identify the temporal variation characteris-
tics of influenza incidence in different cities. In this study, 
the cluster number was set as 5 categories.

Generalized additive model (GAM)
Poisson regression generalized linear model had been 
widely used in the study of the harm of environmen-
tal pollution to human health, which can quantitatively 
evaluate the intensity of the correlation effect between 
environmental pollutants and health. However, the gen-
eralized linear model assumes that the observations are 
independent. Health data on time series are all autocor-
relation, so in the 1990s, Hastie and Tibshirani extended 
the generalized linear model to the generalized additive 
model. This model was more flexible and can estimate the 
relative risk, so it had been widely used in recent years to 
analyze the harm of environmental pollutants to human 
health. Influenza incidence usually follows Poisson dis-
tribution, so Poisson regression was selected as the link 
function, and GAM was established with the influenza 
incidence of each city in China as the dependent variable 
and each environmental pollutant as the independent 
variable. The model used is shown as follows:

Where E(Y) represents the expected incidence of influ-
enza; s() stands for smoothing function; df is the degree 
of freedom of the function.

The minimum AIC value was used to select the optimal 
GAM. The establishment of the model, the calculation of 
relative risk and the plotting were completed by R soft-
ware 4.1.1 (mgcv, gamRR, nlme package).

Log[E(Y )] = s(PM2.5, df )+s(PM10, df )+s(CO, df )+s(SO2, df )+s(NO2, df )+s(O3, df )+Intercept

Results
Time series of influenza incidence in China
Figure  2 shows the time series of influenza incidence 
by province in China from 2007 to 2017. We normal-
ized the influenza incidence by province. According to 
the statistics of time series, influenza incidence in most 
areas of China had obvious seasonal changes, and influ-
enza occurred frequently in winter and spring. The 2009 
influenza pandemic lasted from September to January of 
the following year. In recent years, many cases of influ-
enza started from November to March of the next year, 
and the incidence was significantly higher than other 
months in summer and autumn. After March, the influ-
enza incidence decreased significantly, and only sporadic 
outbreaks occurred in some areas. From a year-on-year 
perspective, in the past 5 years, the influenza incidence 
in various regions of China had increased rapidly. In 
December 2017, China experienced a relatively severe 
influenza epidemic. Influenza seasonality was not obvi-
ous in some areas. For example, Shanghai saw a peak of 
influenza incidence in July and August, Jiangxi Province 
showed no significant difference in monthly influenza 
incidence, and Guangdong Province had a high influenza 
incidence in June and July.

Spatial and temporal patterns of influenza incidence 
at municipal level in China
Based on the fixed locations of 315 cities in 31 prov-
inces of China from 2007 to 2017, the STC of influenza 
incidence was established, and the blank cube piece 
was filled based on the spatio-temporal adjacent ele-
ments. Finally, 315 bin time series and 11 time slices were 
obtained. According to the Mann–Kendall trend analysis, 
the average Z-score was 2.316, and the p-value was 0.008. 
It can be concluded that the average influenza incidence 
in China showed an increasing trend over time. We real-
ized the visualization of the STC through the emerging 
hot spots analysis and time series clustering.

Figure  3 shows the spatio-temporal pattern evolution 
of influenza incidence in China based on STC. The influ-
enza incidence in China from 2007 to 2017 showed an 

increasing trend in 221 cities, accounting for 70% of the 
cities in China (Fig.  3a). Only Deyang in Sichuan Prov-
ince showed a downward trend. The increasing influ-
enza incidence was more obvious in the coastal areas of 
south China and central China. The influenza incidence 
fluctuated in most areas of northwest and southwest 
China, and some areas showed an upward trend. This 
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indicated that the disease burden of the influenza epi-
demic had gradually increased in the past 11 years, and 
the concentrated areas of influenza epidemic have gradu-
ally expanded, which has become a serious public health 
problem. We explored the spatio-temporal evolution pat-
tern of national influenza incidence through emerging 
hot spots analysis.

Figure  3b shows that the hot spots for high influenza 
incidence gradually expanded outward from three per-
sistent hot spots in Guangdong, southern Hebei, south-
ern Shanxi, and southern Anhui. Influenza epidemic hot 
spot areas had expanded from 21 consecutive hot spots 
(the nearest two consecutive adjacent time steps are hot 
spots) to 56 new hot spots (the last time step is a hot 
spot and has not previously been shown as a hot spot). 
A number of high-value aggregation regions had formed 
such as Beijing-Tianjin-Hebei, South China, and eastern 
Central China, with a “+” banded distribution. Cold or 
hot spot patterns were not identified in other regions.

By time series clustering, we divided regions with 
similar time series influenza incidence into five groups. 
Figure  3c and d show the spatial distribution and time 
change curve of the spatial and temporal clustering cat-
egory of influenza incidence in China. The curve shows 
that most parts of China experienced a relatively mild 
influenza epidemic in 2009. Class 1 mainly includes 
Northeast China, Southwest China, Shandong, Jiangsu, 
Shanxi, northern Henan, northern Jiangxi, and Fujian, 
which showed a low level of incidence rate or slight 
increase after the influenza epidemic in 2009. The regions 
included in Class 2 are significantly similar to the hot 

spots in Fig. 3b, mainly including Beijing-Tianjin-Hebei, 
South China, eastern Central China, Shaanxi, Gansu, and 
Ningxia. These regions showed a slow rise in influenza 
incidence in recent years. According to Fig.  3c, Class 2 
is roughly distributed around high value categories, so 
the rise of its influenza incidence may be because of the 
diffusion effect of influenza hot spots. Class 3 represents 
a small number of regions with a serious influenza epi-
demic in 2009, which was distributed sporadically. In the 
following year, the influenza incidence in these regions 
dropped rapidly, and had not increased significantly in 
recent years. Class 4 and Class 5 represent the regions 
where the influenza incidence had increased significantly 
in different degrees, mainly in Guangdong, parts of Bei-
jing-Tianjin-Hebei, and southern Anhui. In recent years, 
the influenza epidemic trend in Guangdong was the most 
severe. It had risen sharply since 2012, showing a rapidly 
increasing trend and a clustering effect. The high inci-
dence had spread to surrounding areas. The influenza 
incidence in central Guangdong, southern Anhui, Bei-
jing, and some regions were significantly different from 
other regions, showing a strong epidemic trend in recent 
years. Class 4 and Class 5 were the core of hot spots and 
may be the source regions of the influenza epidemic.

The correlation effect between environmental pollutants 
and influenza incidence
Based on the annual average data of six air pollutants 
and the influenza incidence data in 315 cities in China in 
2017, GAM was used to fit environmental pollutants and 
influenza incidence. The optimal degree of freedom of 

Fig. 2  Time series of influenza incidence in 31 provinces of China from 2007 to 2017
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each pollutant in the model and the model statistics are 
shown in Table 3.

The gamRR package was used to determine the rela-
tive risk (RR) of the inflection point. Figure 4 shows the 
non-linear correlation between environmental pollut-
ants and influenza incidence. The curve of the relation-
ship between PM2.5 and influenza incidence generally 
showed an upward trend. A concentration of 29.44 µg/m3 
and RR = 1 indicated that the correlation between PM2.5 
and influenza incidence was weakened after reaching this 

concentration range. When the concentration reached 
68.86 µg/m3, RR began to rise rapidly with the increase of 
PM2.5 concentration, indicating that high concentration 
of PM2.5 may have a strong influence on the increase of 
influenza incidence. The correlation of PM10 was roughly 
negative. RR reached its maximum at the PM10 concen-
tration of 113.56 µg/m3, suggesting that PM10 would have 
the strongest effect on influenza onset at this concen-
tration. Subsequently, the correlation between the two 
decreased with the increase of concentration and showed 

Fig. 3  Spatial and temporal patterns of influenza incidence in China
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a negative correlation when the concentration was 
higher. The low concentration of CO showed a weak neg-
ative correlation with influenza incidence, and the posi-
tive correlation effect gradually became prominent with 
increasing concentration, and reached the regional peak 
when the concentration of CO was 1.15 µg/m3. Then, it 
gradually showed no association. At higher concentra-
tions, the curve of association between CO and influenza 
incidence increased rapidly. SO2 was roughly negatively 
associated with influenza incidence. At low concentra-
tions, SO2 likely causes a slight increase in influenza inci-
dence, with a small excess risk. As the concentration of 
SO2 increased, the association with influenza incidence 
showed moderate protective effect, with the strong-
est protective effect at a concentration of 40.33  µg/m3. 
NO2 was strongly associated with influenza incidence 
at low concentrations, showing protective effects below 
23.9  µg/m3 and the lowest relative risk at 17.98  µg/m3. 
The positive correlation effect of NO2 became stronger 

when the concentration exceeded 23.9  µg/m3. The cor-
relation between O3 and influenza incidence is complex. 
The RR value fluctuates around 1, indicating that the 
correlation effect of O3 is not strong. It only shows weak 
protective effect at 88.12  µg/m3 and some small range 
concentrations.

Discussion
With the increase of the global population, the accelera-
tion of urbanization, the significant increase of popula-
tion density and mobility, the global influenza epidemic 
had been increasing year by year. After the severe 
COVID-19 epidemic had leveled off, the level of influ-
enza virus activity in China appeared to have a significant 
upward trend in early 2023. After experiencing the rela-
tively serious COVID-19 epidemic, residents had shown 
significant contempt for the risk of influenza epidemic. 
In recent years, serious influenza epidemic had almost 
swept the country, with influenza epidemic occurring 
more frequently and on an increasingly large scale. Stud-
ies had shown that most environmental pollutants can 
increase the risk of influenza [18]. Clarifying the spatial 
and temporal evolution pattern of influenza incidence 
and the correlation effect with environmental pollutants 
will effectively promote the prevention and control of 
influenza epidemic and had positive significance for the 
protection of people’s health.

According to the statistics of time series, this study 
found that influenza incidence in most areas of China 
had obvious seasonal changes, and influenza occurred 
frequently in winter and spring. In recent years, many 

Table 3  GAM model statistics

R2 = 0.526; Deviance explained = 60.3%; Intercept = 3.03304***; AIC = 71.329; 
***Significance level P < 0.001

Smooth Items df

s(PM2.5) 8.831***

s(PM10) 8.757***

s(CO) 8.82***

s(SO2) 8.519***

s(NO2) 8.906***

s(O3) 8.771***

Fig. 4  Correlation effect curve between environmental pollutants and influenza incidence in China
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cases of influenza begin from November to March of the 
next year. Other studies on mainland China also found 
the same time series results [19, 20]. A study on influ-
enza incidence in the United States based on weekly time 
series found that the influenza incidence peaked from the 
48th week of each year to the 8th week of the following 
year, and remained relatively stable until the middle of 
the year. The high incidence period was slightly shorter 
than that in China, but the seasonality was similar [4]. 
The spatial and temporal patterns of influenza in similar 
climate regions around the world also had similar charac-
teristics [21–23]. Influenza seasonality may vary in some 
areas depending on the type of virus circulating, and 
there may be an unobvious summer peak [24]. Low tem-
perature in winter and spring will increase the pressure 
of trachea and nasopharynx. Low temperature and dry 
air may lead to dehydration of the human nasal mucosa 
and facilitate easy adhesion of bacteria and viruses, thus 
increasing the risk of respiratory infectious diseases [25]. 
This study found that the influenza incidence in China 
was increasing year by year, but there were significant 
regional differences in the increment pattern. The influ-
enza incidence in different regions had spatiotemporal 
heterogeneity, which generally showed a high concentra-
tion area and a diffusion trend. Regional studies in recent 
years carried out more detailed identification of high-
prevalence areas of influenza and explored the influenc-
ing factors for each region [26–28]. The results showed 
that influenza, as a respiratory infectious disease, had a 
very strong clustering and long-term epidemic situa-
tion [29]. Moreover, there were complex differences in 
the types of epidemic strains, climate characteristics, 
population mobility, health conditions, and residents’ 
living habits among regions, which may be the reason 
for the heterogeneity of influenza incidence on a large 
scale [30]. These studies on spatial patterns of influenza 
incidence can quickly identify key areas and epidemic 
sources and provide effective reference for optimal allo-
cation of resources. In general, the influenza incidence in 
China not only followed seasonal development but also 
increased year by year since 2012. Our data revealed a 
very serious epidemic by 2017. According to reports in 
recent years, the influenza epidemic in China is still at 
a high level, despite the relatively strict prevention and 
control of COVID-19. Relevant authorities need to pay 
considerable attention to prevent the worsening of the 
influenza epidemic and take urgent measures (such as 
timely vaccination) to curb the epidemic situation.

Air pollution has always been a universal concern 
worldwide. The World Health Organization reported 
that air pollution exposure can cause 7  million pre-
mature deaths each year, and some diseases can even 
lead to severe disability, resulting in a huge burden on 

families and society. In the past decade, China made 
remarkable progress in the prevention and control of 
air pollution. However, even though some polluting 
enterprises had actively changed to cleaner models, the 
problems of industrial emissions and vehicle exhaust 
were still significant and posed a great threat to public 
health. Studies had shown that the correlation between 
air pollution and influenza incidence had become a con-
sensus, but there was no clear research result on the 
influencing mechanism, and its correlation effect was 
still unclear [31]. Some studies reported the short-term 
effects of air pollution on the onset of influenza based 
on time series. They found that air pollution had a lag 
in the risk of influenza among residents. After experi-
encing short-term exposure to high concentrations of 
air pollution, the increase in the risk of illness tended to 
lag for a week or even longer, but almost no more than 
a month, and different regions exhibited different lag 
effects [27, 32]. Most recent studies have focused on the 
short- and medium-term effects of time, and there is a 
general lack of studies on the spatial heterogeneity of 
long-term exposure of environmental pollutants in dif-
ferent regions. Some studies indicated that there were 
regional differences in the long-term exposure effect of 
spatial environmental pollutants (one year or longer), 
and its spatial impact was uneven, which may be related 
to the inconsistency of many studies [33, 34].

Based on GAM, this study explored the nonlinear 
spatial correlation between environmental pollutants 
and influenza incidence. It was found that all environ-
mental pollutants and influenza incidence showed a 
nonlinear correlation, and their relationship curves 
were not always in the same direction. At low concen-
trations, PM2.5 was not strongly associated with influ-
enza incidence and may even have a slight protective 
effect; whereas, its positive correlation developed rap-
idly at high concentrations. Unlike PM10, PM2.5 can 
enter the alveoli and be deposited for several years, 
which may lead to respiratory system damage and make 
the human body more susceptible to influenza virus 
infection or aggravation of illness [35, 36]. At high con-
centrations, PM10 showed negative correlation, and 
the same characteristics were observed in some other 
studies [37, 38]. They believed that high concentration 
of PM10 may reduce UV radiation and thus reduce res-
piratory system damage. PM10 has a large particle size 
and cannot easily cross the human barrier, rather it can 
be easily eliminated by the human body. At high con-
centrations, it may increase enzyme activity and reduce 
symptoms. The influencing mechanism of PM10 is not 
clear at present, and it may also interact with other 
pollution factors [39]. In general, CO showed a posi-
tive correlation, but at low concentration, there may be 
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a negative correlation, which is consistent with some 
studies on the pathogenesis of CO [40]. Inhalation of 
CO will cause damage to human respiratory epithe-
lial cells, which is the first barrier against viruses [41]. 
However, low concentrations of CO may have anti-
bacterial properties, which may be beneficial to build 
resistance to influenza infection [42]. The correlation of 
NO2 was similar to that of CO. Although some stud-
ies believed that NO2 had no correlation with influenza 
[43], others reported that NO2 had a positive effect 
[44]. One study estimated that about 14% of influenza 
cases could be attributed to excessive NO2 exposure 
(over 40 µg/m3) [45], which was partly consistent with 
the results of this study. This study found that the cor-
relation between SO2 and influenza incidence was 
negative, which was different from other studies. How-
ever, some studies also reported this phenomenon. 
They believe that acidic environments are not condu-
cive to virus survival and may reduce viral transmis-
sion [37]. Considerable research has been carried out 
on the influence of SO2 on the respiratory system, most 
of which believe that the effect of SO2 should be posi-
tive. The results of this study found that O3 may have 
no correlation with influenza incidence or only have 
a slightly negative correlation. Some studies believed 
that it may be related to the bactericidal properties 
of O3 [18], while others observed a positive correla-
tion [46]. Many research results showed inconsistency. 
Epidemiological analysis suggests that the correlation 
between environmental pollutants and infectious dis-
eases may not be able to determine their mutual influ-
ence and response. Furthermore, there was a time lag 
effect between the two, and different regions and differ-
ent types of environmental factors had great differences 
in the effect of time. Although we had greatly removed 
the effects of short-term effects by taking an annual 
average, environmental pollutants may still cause dam-
age by accumulating in the human body for many years. 
Environmental pollutants also have seasonality, and the 
pathogenic mechanism of influenza is complex, which 
is not only affected by environmental pollutants. At 
present, there are still large gaps in knowledge regard-
ing environmental toxicology and its harmful effects on 
the human body.

Herein, we studied the influenza incidence in differ-
ent time and space, determined the areas that need to 
be focused, and clarified the nonlinear spatial correla-
tion effect between environmental pollutants and influ-
enza incidence. However, our study has some limitations. 
First, because of the nature of data acquisition, we used 
the influenza incidence data of 315 cities in 11 years when 
establishing the STC, and did not carry out research on a 

smaller time scale. The year-scale data may cause some key 
areas with obvious seasonal differences in influenza inci-
dence but low overall incidence to be incorrectly identified. 
Second, we explored the correlation effect of environmen-
tal pollutants, without considering the confounding effects 
of climate, population, and economic factors, and without 
considering the hysteresis effect. Last, we did not have 
data on influenza virus subtypes; therefore, the results may 
not be entirely accurate. In the future, we will aim to use a 
smaller scale and more detailed influenza data, combined 
with more detailed environmental-influence mechanism 
studies to further explore the development trend of influ-
enza and the environmental response mechanism.

Conclusions
Based on STC and GAM, this study explored the spa-
tio-temporal evolution patterns of influenza incidence 
in China during 2007–2017, and identified the cor-
relation effect of environmental pollutants. The study 
found that the influenza epidemic in China was in a 
rapidly rising stage, and several regions had a multi-
year outbreak trend and the hot spots continue to 
expand outward. The association between environmen-
tal pollutants and influenza incidence was nonlinear 
and had spatially heterogeneous. Relevant departments 
should improve the monitoring of influenza epidemic, 
optimize the allocation of resources, reduce environ-
mental pollution, and strengthen vaccination to effec-
tively prevent the aggravation and spread of influenza 
epidemic in the high incidence season and areas.
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