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Abstract 

Background  Many interventions for widescale distribution of rapid antigen tests for COVID-19 have utilized online, 
direct-to-consumer (DTC) ordering systems; however, little is known about the sociodemographic characteristics 
of home-test users. We aimed to characterize the patterns of online orders for rapid antigen tests and determine 
geospatial and temporal associations with neighborhood characteristics and community incidence of COVID-19, 
respectively.

Methods  This observational study analyzed online, DTC orders for rapid antigen test kits from beneficiaries of the Say 
Yes! Covid Test program from March to November 2021 in five communities: Louisville, Kentucky; Indianapolis, Indi‑
ana; Fulton County, Georgia; O’ahu, Hawaii; and Ann Arbor/Ypsilanti, Michigan. Using spatial autoregressive models, 
we assessed the geospatial associations of test kit distribution with Census block-level education, income, age, popu‑
lation density, and racial distribution and Census tract-level Social Vulnerability Index. Lag association analyses were 
used to measure the association between online rapid antigen kit orders and community-level COVID-19 incidence.

Results  In total, 164,402 DTC test kits were ordered during the intervention. Distribution of tests at all sites were 
significantly geospatially clustered at the block-group level (Moran’s I: p < 0.001); however, education, income, age, 
population density, race, and social vulnerability index were inconsistently associated with test orders across sites. In 
Michigan, Georgia, and Kentucky, there were strong associations between same-day COVID-19 incidence and test 
kit orders (Michigan: r = 0.89, Georgia: r = 0.85, Kentucky: r = 0.75). The incidence of COVID-19 during the current day 
and the previous 6-days increased current DTC orders by 9.0 (95% CI = 1.7, 16.3), 3.0 (95% CI = 1.3, 4.6), and 6.8 (95% 
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Introduction
Widespread, accessible testing is important to detect 
infection and reduce the risk of transmission for COVID-
19 [1, 2]. However, throughout the COVID-19 pandemic, 
inequities in access and utilization of COVID-19 tests 
have been reported, and social vulnerability (e.g., racial 
and ethnic minorities, low income) has been associated 
with decreased geographic access to testing, reinforcing 
structural inequalities [3–7]. Rapid antigen tests (Ag-
RDT) for COVID-19 may expand testing access through-
out the United States due to their accessibility and ability 
to be used outside traditional healthcare settings.

With the shift to home-based testing, little is known 
about the sociodemographic characteristics of home-test 
users and if the distribution of Ag-RDT mimics preexist-
ing disparities in access to COVID-19 testing. Generally, 
Ag-RDT users are likely to exhibit other COVID-19 pro-
tective behaviors, including mask use and social distanc-
ing, which are behaviors less common among rural and 
lower-income populations, as well as those with less edu-
cation [8–10]. Therefore, it is important to understand 
the distribution of rapid home-testing to understand the 
current landscape of COVID-19 testing and promote 
health equity.

Further, little is known about factors that influence the 
uptake of home-tests, including the relationship between 
COVID-19 incidence or seasonality and home-testing 
usage. Previous studies have shown that incentiviza-
tion and other cost-saving measures increase uptake of 
home-tests; however, it is unclear how individuals’ test-
ing behavior reflect their personal risk of COVID-19 and 
lifestyle [11, 12].

Say Yes! Covid Test (SYCT!) was launched in the spring 
of 2021 by the Centers for Disease Control and Preven-
tion (CDC) and National Institutes of Health (NIH) with 
the goal of distributing large numbers of free Ag-RDT to 
communities across the United States with a high bur-
den of SARS-CoV-2 during 2021 [13]. This study aims 
to describe the sociodemographic, geographic, and tem-
poral distribution of digitally ordered Ag-RDT kits and 
ordering patterns with respect to changing local COVID-
19 prevalence and seasonality. We hypothesized that 
racial and socioeconomic disparities in access to test-
ing would be present among the recipients of home-test 

kits and increased community prevalence of COVID-19 
would be correlated with more home-test kit orders.

Methods
SYCT! Intervention communities and procedures
SYCT! intervention communities were chosen strategi-
cally by the NIH and CDC to target communities with 
lower vaccination rates and lower socioeconomic status. 
Five communities that received the intervention between 
June and November 2021 were included in this analysis: 
Ann Arbor/Ypsilanti, Michigan; Fulton County, Geor-
gia; O’Ahu, Hawaii; Louisville, Kentucky; Indianapolis, 
IN. The interventions were restricted to residents of the 
indicated cities/counties. Free test kits were distributed 
either via online ordering and direct shipment to resi-
dent’s homes (direct-to-consumer, DTC) or local pick-up 
sites such as churches, schools, and community events. 
Each household was only allowed to order 1 test kit. 
More details about the SYCT intervention can be found 
elsewhere [12, 14–16]. The University of Massachusetts 
Institutional Review Board reviewed and determined this 
study was exempt because there was no collection or use 
of personal identifiable information.

Digital assistant data collection
All DTC orders were processed through an online plat-
form, developed by CareEvolution, and number of DTC 
orders per day for all eligible zip codes were recorded at 
the 9-digit zip-code level. All orders were deidentified 
using anonymous participant identifiers.

Geospatial analyses
Number of DTC orders were tabulated by 9-digit zip 
code, and zip codes were converted to census block 
and geocoded to generate the number of test kit orders 
per census block group. Geographic shapefiles for 2018 
Census block groups were obtained through the Census 
website (https://​www.​census.​gov/​cgi-​bin/​geo/​shape​files/​
index.​php). To examine whether any spatial correlation 
existed in the number of DTC orders, we used Moran’s 
I statistics based on the Queen’s definition, meaning 
neighbors are defined when two areas share any border 
[17, 18]. A contiguity or adjacency weighting matrix was 
constructed.

CI = 3.4, 10.2) in Michigan, Georgia, and Kentucky, respectively. There was no same-day or 6-day lagged correlation 
between test kit orders and COVID-19 incidence in Indiana.

Conclusions  Our findings suggest that online ordering is not associated with geospatial clustering based on soci‑
odemographic characteristics. Observed temporal preferences for DTC ordering can guide public health messaging 
around DTC testing programs.
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Demographic data were obtained from the 2018 
American Community Survey (ACS) and matched 
to appropriate 9-digit zip code regions using Census 
block identifiers, and the 2018 CDC Social Vulnerabil-
ity Index (SVI) was matched at the census tract levels. 
Social Vulnerability Index is a measure created by the 
CDC to quantify and compare the social vulnerabil-
ity of communities. The index includes 16 social fac-
tors derived from ACS data which are grouped into 
four themes: socioeconomic status (percent of popu-
lation below poverty level, unemployed, without a 
high school diploma, and median household income), 
household characteristics (percent of population aged 
65 and older, aged 17 or younger, with a disability, and 
single-parent households), racial and ethnic minority 
status (percent of population that are minorities (i.e., 
race other than non-Hispanic White) and speaks Eng-
lish “less than well”), and housing type/transportation 
(multi-unit strucures, mobile homes, crowding, no 
vehicle, and group quarters). Census tracts are com-
pared and ranked against other tracts at the state-wide 
level based on percentiles, with 0 indicating low vul-
nerability and 1 indicating the highest vulnerability. 
Additional information about the calculation of the 
CDC SVI measure and ACS tables used to formulate 
these variables can be found elsewhere [19].

To determine whether spatial autocorrelation of 
DTC orders was explained by demographic factors, we 
fitted unadjusted and adjusted spatially autoregressive 
models [20, 21]. Specifically, we used a spatial Dur-
bin model of the following form: Y = ρWY + Xβ + ǫ , 
where W  is the spatial weight matrix based on the 
Queen’s definition; the parameter ρ is the spatial cor-
relation; X  is a set of covariates with correspond-
ing regression coefficients β ; the residual error ǫ 
assumed to follow a normal distribution. Unadjusted 
model included only the intercept in X  . The adjusted 
model included variables at the census block group 
and census tract levels to characterize the recipients’ 
neighborhoods. The model included race (percent of 
population that is Black, White, and Asian), popula-
tion density, median income, median age, and percent 
of adults with a Bachelor’s degree at the block group 
level. The model also included the four SVI theme 
variables (socioeconomic status, household charac-
teristics, racial and ethnic minority status, and hous-
ing type/transportation) at the census tract level. As 
the SVI measures and demographic variables were at 
different geographic levels, we were not concerned 
about co-linearity, as the block group and census tract 
measures added unique details about the community 
landscape. Analyses were conducted using the “spdep” 
package in R [22].

Temporal association analyses
Temporal association analyses were conducted start-
ing after the initial spike of DTC orders, based on vis-
ual determination, through the end of the distribution 
period. Hawaii was excluded from lag association analy-
ses, as 94.5% of DTC orders occurred within a seven-day 
window, limiting the ability to analyze DTC orders over 
time. The Johns Hopkins COVID19 Tracker was used to 
abstract seven-day average COVID-19 incidence in each 
intervention community for the duration of the distri-
bution period [23]. Seven-day average COVID-19 inci-
dence, as opposed to daily incidence, was used to account 
for daily fluctuations in local public health reporting. 
While we hypothesized that testing behaviors may be 
influenced by COVID-19 incidence, there is a lag time in 
COVID-19 reporting which may influence when people 
adopt protective measures [24]. Therefore, to explore any 
potential temporal lagged association between the num-
ber of DTC orders ( Y  ) and the number of 7-day aver-
age positive cases ( X ), we created lagged covariates; Xl , 
l = 0, 1, 2, 3, . . . , L , for the l-day lagged (delayed) associa-
tion between the number of positive cases and number 
of DTC orders. The maximum lag L was determined as 
a half window length from the data analysis window. We 
then implemented a distributed lag model to estimate 
the lagged association between number of orders and 
number of positive cases [25–27]. Specifically, we used 
the following model: E[Y l] = α0 +

L
l=0βlXl , where βl , 

the coefficient of l-day lagged effect, is constrained due 
to collinearity. We followed an approach proposed by 
Zanobetti et al. to use a non-parametric function to con-
strain βl [27]. In this model, estimated β0 provides the 
association between Y  and concurrent cases of X , and 
estimated 

∑q

l=0
βl provides the q-day cumulative effect 

on the number of DTC orders. That is, the overall impact 
of a case increase over the next q days is given by 

∑q

l=0
βl.

We also examined the presence of weekly seasonality of 
DTC test orders. Weekly seasonality was modeled using a 
Poisson regression model on number of DTC orders with 
time, a quadratic term of time, and sin

(

2π t
T

)

 and 
cos

(

2π t
T

)

 , T = 7 days, t = 1 for Monday, t = 2 for Tuesday, 
etc., for weekly seasonality. All analyses were conducted 
in R 4.2.1 [28]. 

Results
Geospatial distribution of DTC orders
In total, 164,402 households ordered test kits through 
the digital assistant. DTC orders at all five sites were 
significantly spatially correlated (Moran’s I: p < 0.001) 
(Fig.  1). After adjusting for block group and cen-
sus tract-level sociodemographic variables, spatial 
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correlation of DTC orders remained high in Michi-
gan (β = 0.79), Georgia (β = 0.73), Kentucky (β = 0.44), 
and Indianapolis (β = 0.79). Correlation estimates 
decreased after adjustment for demographic and soci-
oeconomic variables in Hawaii, though DTC orders 
remained significantly spatially correlated (unad-
justed β = 0.49; adjusted β = 0.19) (Table  1). Sociode-
mographic factors were variably associated with DTC 
orders. In Ann Arbor/Ypsilanti, MI, median income 
and minority status social vulnerability were positively 
associated with test distribution, indicating that test 

distribution increased as block-group median income 
and minority status social vulnerability increased. In 
Georgia, test distribution increased as block-group 
population density decreased. Block-group percent-
age of Bachelor’s degrees was positively associated 
with test distribution in Georgia, Hawaii, and Indi-
ana; however, it was negatively associated with test 
distribution in Kentucky. Further, as block-group 
median age increased, test distribution increased in 
Georgia, Hawaii, Kentucky, and Indiana. In Hawaii, 
a substantial amount of clustering was associated to 

Fig. 1  Direct-to-Consumer Order and Sociodemographic Distributions for Intervention Sites Geospatial distribution of direct-to-consumer test 
kits and Social Vulnerability Themes in intervention communities. Shading represents quintiles of the variables, with dark colors representing 
the highest quintile and white representing the lowest quintiles
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sociodemographic patterns, and test distribution was 
also positively associated with income and percent of 
Asian residents. Additionally, as socioeconomic and 
minority status social vulnerability increased, test dis-
tribution decreased in Hawaii. In Kentucky, test dis-
tribution was positively associated with population 
density, and test distribution decreased as housing and 
transportation social vulnerability increased. Lastly, in 
Indiana, test distribution was associated with decreas-
ing median income and higher socioeconomic social 
vulnerability.

Temporal analysis of test orders
DTC orders were variably associated with commu-
nity incidence of COVID-19 (eFigure  1). We observed 
strong linear correlations (r > 0.75, p-value < 0.001) 
between DTC orders and same-day COVID-19 inci-
dence in Kentucky, Georgia, and Michigan, with DTC 
orders increasing with increased community Covid-19 
incidence (Table  2, Fig.  2). There was no linear corre-
lation between same-day DTC orders and COVID-19 
incidence in Indiana (r = -0.01, p-value = 0.96). When 
we adjusted for previous COVID-19 incidence in the 
past two weeks, the DTC orders were positively linearly 

Table 1  Distribution dates and direct-to-consumer (dtc) orders by intervention community

a Hawaii was excluded from temporal analyses due to the rapid distribution of tests, precluding analyses of distribution over time

Community Distribution Start Date: Distribution End Date: Total Kits 
Distributed

Digital Direct-to-
Consumer Test Kit 
Orders, N (%)

Maximum correlation 
between DTC orders and 
Average SARS-CoV-2 
Incidence over past 
7 days

Ann Arbor/ Ypsilanti, 
Michigan

June 4, 2021 August 11, 2021 20,000 10,115 (50.6) 0.89

O’ahu, Hawaii September 19, 2021 September 29, 2021 125,000 79,536 (63.6) –a

Fulton County, Georgia September 20, 2021 November 1, 2021 51,000 32,537 (63.8) 0.85

Louisville, Kentucky October 11, 2021 November 13, 2021 40,500 19,204 (47.4) 0.75

Indianapolis, Indiana October 18, 2021 November 20, 2021 35,300 22,970 (65.1) -0.01

Total: 271,800 164,402 (60.5)

Table 2  Associations between Test Kit Distribution and Sociodemographic Characteristics

* p < .05; **p < 0.01; ***p < 0.001
a results based on spatially adjusted regression using Queen weighting
b adjusted for percent of adults with a bachelor’s degree, Median income, median age, population density, percent of the population that is Black, White, and Asian at 
the block group level, and CDC’s Social Vulnerability Index themes 1–4 (Socioeconomic status, household composition and disability, minority status and language, 
and housing type and transportation) at the census tract level

SVI Social Vulnerability Index

Ann Arbor/
Ypsilanti, MI

Fulton, GA Oahu, HI Louisville, KY Indianapolis, IN

Geospatial Analysis Estimatesa

Unadjusted Spatial correlation 0.85*** 0.79*** 0.49*** 0.46*** 0.83***

Adjusted Spatial correlationb 0.79*** 0.73*** 0.19*** 0.44*** 0.79***

American Commu‑
nity Survey (block-
group level)

% Bachelor’s degree 0.08 0.40** 2.08*** -0.79*** 0.51***

Median Income 0.22*** -0.05 0.46*** -0.07 -0.14**

Median Age 0.00 0.04* 0.11* 0.03* 0.05***

Population Density 0.02 -0.06** -0.02 0.03* 0.01

% Black 0.18 0.12 -0.07 0.84*** 0.10

% White 0.20 -0.09 0.41 0.97*** 0.18

% Asian -0.02 -0.17 0.62** 0.80** -0.16

Social Vulnerability 
Index Themes (cen‑
sus tract level)

Socioeconomic 0.16 -0.11 -0.03*** 0.63 1.38**

Household Composition and Disability -0.47 0.23 0.10 0.19 -0.03

Minority Status and Language 1.13** 0.00 -0.03*** 0.36 -0.65

Housing type and transportation 0.00 -0.12 -0.07 -1.29*** -0.05
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associated with same-day COVID-19 incidence, even 
in Indiana (effect size = 6.42, 95% CI = 1.32 to 11.52). 
Distributed lag modeling also indicated a positive 
6-day cumulative linear association in Michigan, Geor-
gia, and Kentucky, such that the incidence of COVID-
19 during the current day and previous 6-days would 
increase current DTC orders by 9.0 (95% CI = 1.7, 16.3), 
3.0 (95% CI = 1.3, 4.6), and 6.8 (95% CI = 3.4, 10.2) in 
Michigan, Georgia, and Kentucky, respectively, while 

an increase of COVID-19 during the current day and 
previous 6-days rarely increased current DTC orders 
(1.1 with 95% CI = -4.1, 6.4) in Indiana (eFigure 2, eFig-
ure  3). Also, in Kentucky, the strongest linear correla-
tion occurred with no lag time.

The weekly seasonality factor was statistically sig-
nificant (p < 0.001) in all sites. Except Michigan, DTC 
orders peaked shortly after the weekend, with the high-
est orders occurring on Mondays and Tuesdays (Fig. 3). 

Fig. 2  Correlation between Direct-to-Consumer Orders and 7-Day Average SARS-CoV-2 Cases Black dots represent SARS-CoV-2 cases and test kits 
distributed on each day of the test distribution period. Blue line models the correlation between daily tests distributed and SARS-CoV-2 cases. Grey 
shaded band represents 95% confidence interval. DTC: direct-to-consumer



Page 7 of 10Herbert et al. BMC Public Health         (2023) 23:1848 	

In Michigan, however, orders peaked shortly before the 
weekend, on Thursdays and Fridays.

Discussion
This is the first study to document the DTC distribution 
and geospatial correlations of Ag-RDT kits. This study 
revealed three important findings: 1) DTC orders were 
spatially clustered in all communities; however, with the 
exception of Hawaii, selected sociodemographic factors 
did not explain the clustering observed; 2) DTC orders 
were associated with community incidence of COVID-
19; and 3) Except for Michigan, DTC orders were more 
common shortly after the weekend, on Monday and 
Tuesdays. These findings may inform future strategies for 
Ag-RDT distribution.

In terms of spatial clustering, sociodemographic fac-
tors contributed substantially in Hawaii, but not so else-
where. The remaining clustering may be explained by 
different DTC implementation, marketing approaches, 
and internet access, as well as differing local health 
department involvement [15]. Each community was 
given autonomy to share information about the pro-
gram in whatever approach they preferred (i.e., Facebook 
posts, television, radio advertisements, or community 
testing events). Additionally, other community-level 
demographic factors, including age, race, and educa-
tional attainment, were inconsistently associated with 
DTC orders, with no clear trends across sites. While 
higher levels of social vulnerability were associated with 
increased test distribution in Michigan and Indiana, test 

distribution was decreased within socially vulnerable 
areas in Kentucky and Hawaii. This is an intriguing find-
ing because it suggests no consistent, clear gaps in DTC 
orders among Black populations, rural populations, or 
those with low socioeconomic status, populations that 
have previously been reported to have decreased access 
to COVID-19 testing [3, 4, 7, 29]. However, these findings 
should be interpreted with caution, as we limited our 
analysis to census track and not self-reported sociode-
mographic factors of the people who placed DTC orders, 
which could bias the results. It is also important to note 
that this study only reports Ag-RDT kit orders, and it is 
unknown how recipients used their tests. A study of over 
400,000 individuals throughout the United States from 
August 2021 to March 2022 found that White individu-
als were nearly twice as likely to use Ag-RDT, and use of 
Ag-RDT increased with increasing income and education 
[6]. Therefore, while DTC orders may increase access to 
Ag-RDT, to understand how Ag-RDT testing behaviors 
and attitudes may vary across sociodemographic groups, 
resulting in disparities in test completions.

This study also highlights the relationship between 
DTC orders and the community incidence of COVID-
19. We most clearly observed this pattern in Michigan, 
where the intervention took place during the surge of the 
Delta variant in the summer of 2021. As the community 
incidence of COVID-19 increased throughout the inter-
vention period, DTC test kit orders also increased. The 
observed lag between increasing community incidence 
and increase in DTC orders, ranging from 6–10  days 

Fig. 3  Weekly Seasonality of Direct-to-Consumer Orders Left images portray direct-to-consumer test kit orders by day. Right images portray 
modeled results. Black line represents predicted direct-toconsumer orders assuming weekly seasonality. Dashed black line indicates predicted 
direct-to-consumer orders assuming no weekly seasonality. DTC: direct-to-consumer
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in Michigan and Georgia, likely represents consequent 
transmission, symptom recognition, and accompany-
ing increase in testing demand. Further, the weekly sea-
sonality of orders indicates that people often frame their 
orders around the weekend, a time of socialization and 
COVID-19 exposure. Future testing interventions should 
use this information to account for increased demand in 
the days during or immediately following the weekend.

In the United States, Ag-RDTs for COVID-19 are an 
important part of the Federal Government’s approach 
to manage the ongoing COVID-19 pandemic. The U.S. 
government aimed to distribute over 1 billion free Ag-
RDTs across the United States in 2022, using similar 
online DTC distribution methods [30]. As the distribu-
tion of Ag-RDTs is scaled up, it is important to maintain 
a focus on equity, to ensure test distribution is accessible 
and available to those who need them most. This requires 
ongoing monitoring of testing, including access, comple-
tion, and reporting activities, at the neighborhood level.

Strengths and limitations
This study offers a unique look at socio-demographics 
of DTC ordering in a large, community-wide COVID-
19 testing program across multiple U.S states. Currently, 
very little is known about the ordering of Ag-RDTs, and 
this knowledge is critical for the design of future pub-
lic health interventions and programs. However, there 
are limitations in this study. First, some individual and 
community level variables of interest, including inter-
net access, phone/computer behavior, and census block-
group-level COVID-19 vaccination rates, were not 
available for inclusion in analyses. Second, we are assum-
ing that the population who ordered DTC tests reflects 
the Census demographics of the district; however, we 
do not have demographic data for individual test users. 
This data should be interpreted with this in mind to avoid 
ecological fallacy. This may contribute to error with our 
ability to detect demographic patterns with DTC orders. 
Demographic disparities in test completion could not be 
evaluated, though this could contribute to disparities in 
COVID-19 outcomes. Lastly, while the five communities 
included represent a geographically diverse collection 
of U.S. communities, the nationwide generalizability of 
these findings may be limited, and additional research is 
necessary to understand rapid antigen distribution pat-
terns throughout the country.

Conclusion
As Ag-RDTs become increasingly widespread, it is 
important to understand ordering and uptake of Ag-
RDT to ensure equitable access to testing. We did 
not find sociodemographic characteristics related to 
DTC ordering behavior. Test ordering was geospatially 

correlated based on census track data and largely irre-
spective of sociodemographic characteristics, sug-
gesting that digital distribution alongside community 
engagement may be an effective strategy for equitable 
large-scale distribution.
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