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Abstract 

The birth and death rates of a population are among the crucial vital statistics for socio-economic policy planning 
in any country. Since the under-five mortality rate is one of the indicators for monitoring the health of a population, it 
requires regular and accurate estimation. The national demographic and health survey data, that are readily available 
to the puplic, have become a means for answering most health-related questions among African populations, using 
relevant statistical methods. However, many of such applications tend to ignore survey design effect in the estima-
tions, despite the availability of statistical tools that support the analyses. Little is known about the amount of inac-
curate information that is generated when predicting under-five mortality rates. This study estimates and compares 
the bias encountered when applying unweighted and weighted logistic regression methods to predict under-five 
mortality rate in Malawi using nationwide survey data. The Malawi demographic and health survey data of 2004, 2010, 
and 2015-16 were used to determine the bias. The analyses were carried out in R software version 3.6.3 
and Stata version 12.0. A logistic regression model that included various bio- and socio-demographic factors 
concerning the child, mother and households was used to estimate the under-five mortality rate. The results showed 
that accuracy of predicting the national under-five mortality rate hinges on cluster-weighting of the overall predicted 
probability of child-deaths, regardless of whether the model was weighted or not. Weighting the model caused small 
positive and negative changes in various fixed-effect estimates, which diffused the result of weighting in the fitted 
probabilities of deaths. In turn, there was no difference between the overall predicted mortality rate obtained using 
the weighted model and that obtained in the unweighted model. We recommend considering survey cluster-weights 
during the computation of overall predicted probability of events for a binary health outcome. This can be done with-
out worrying about the weights during model fitting, whose aim is prediction of the population parameter.
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Introduction
The mortality rate of children aged zero to fifty nine 
months is a useful indicator for monitoring national and 
global health targets [1, 16, 32]. Therefore, estimation of 
the total number of deaths observed in the under-five 
age group requires robust and reliable techniques, to 
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obtain accurate approximation for policy decisions [13, 
16]. It has been reported that there is weak registration 
of vital systems and high rates of under-reporting deaths 
at health facilities in sub-Saharan African nations [23, 
28, 55]. Most estimations of under-five mortality rate 
in the region are based on information gathered from 
national surveys, such as the demographic and health 
survey (DHS) data [21, 22, 42, 46]. This is what neces-
sitates the use of survey design-based statistical analy-
ses, such as sampling weights, for accurate estimates 
[5, 19, 20, 40, 44, 53]. A sample weight is the inverse of 
the probability of a subject being included in the sam-
ple. This indicates the number of subjects in the popu-
lation that each sampled unit represents. During the 
regression analysis, the subject’s weight is introduced as 
a functional of covariates in the model that is applied 
on survey data, to compensate for the use of unequal 
sample inclusions, non-response, and under-coverage of 
sampling frame [7, 11, 36, 42, 50, 57].

However, the survey design effect is ignored in most 
applications of regression methods used to estimate the 
under-five mortality rate in sub-Saharan Africa, which 
potentially biases the estimates and predictions [18, 41, 
43, 52]. This problem was also found to be true for other 
studies that analysed binary health outcomes apart from 
mortality. For example, the presence or absence of dia-
betes [48], diarrhoea [33], schistosomiasis [14, 31], and 
malaria [29], among other diseases in patients. This trend 
could reflect the unavailability of studies that demon-
strate the technical use of survey designs, when applying 
regression methods to binary health data. It might also be 
due to the fact that most of the reviewed studies aimed 
to identify risk factors of the concerned health outcomes, 
rather than predicting the extent of the physical condi-
tion itself, which could be achieved in the population any 
way [9, 17, 54]. There is a dearth of literature on the bias 
one would commit should the national under-five mor-
tality rate or other binary response health data be pre-
dicted from a large nationwide survey without regard of 
the design effect. This present study therefore estimates 
the bias a researcher might commit when predicting 
the under-five mortality rate using survey weighted and 
unweighted logistic regression methods. A bias in the 
estimation of under-five mortality rate is the discrepancy 
between the rate estimated through random samples and 
the actual rate reported in routine observations. One 
would expect the difference between the two values to be 
zero, in which case the estimator applied on the survey 
data is said to be unbiased [39]. The present study uses 
three recent demographic and health survey (DHS) data-
sets in Malawi for the years 2004, 2010, and 2015-16 and 
official under-five mortality rates reported by the respec-
tive DHS to compute the bias. Various sample sizes of 

each DHS dataset are used, in order to account for sam-
ple size effect in the bias estimation.

It is important for health researchers to know about 
the worthiness of survey design information in the 
binary regression estimation methods, so they can make 
informed decisions. They need to determine the merits 
of and demerits of including survey weights when ana-
lysing binary health data using regression techniques 
[11]. Knowledge of the mortality estimate bias from this 
study will give evidence for considering survey design in 
health research that involves prediction of some binary 
ouctomes. The rest of the article is organised as follows: 
in Section “Methods” statistical methods and data used 
in this study are presented; Section “Results” shows 
results; while in Section “Discussion” the findings are dis-
cussed. Finally, Section “Conclusion” is the conclusion of 
the paper.

Methods
Data
This study used secondary data for children obtained 
from the kids’ records file of the Malawi Demographic 
and Health Survey (MDHS). These data sets were gotten 
from the surveys conducted between October 2004 and 
January 2005, then June to November 2010, and lastly, 
between October 2015 and February 2016. The MDHS 
uses two-stage stratified cluster random sampling, 
where 522, 849, and 850 clusters (that is, enumeration 
areas) were sampled from across the country respec-
tively, at the initial stage. At the second stage, 15,091, 
27,345, and 27,516 households were sampled respec-
tively from the initial selected clusters, using the rural 
and urban stratifications [30, 34, 35]. An enumeration 
area (cluster or village) is a geographic area that covers, 
for example, between 0 and 954 households or an aver-
age of 235 households [24]. Each cluster contains infor-
mation about its location, strata (urban or rural), an 
estimated number of residential households, as well as 
a sketch map showing the boundaries, location of build-
ings, and other landmarks. The clusters determined dur-
ing the 1998 population and housing census constituted 
a sampling frame for primary sampling units in the 2004 
MDHS, and those defined in the 2008 national census 
formed the frame for the 2010 and 2015-16 MDHSs [30, 
34, 35]. The children who were aged below five years in 
the sampled households formed the sample for this study. 
A total of 10,914, 19,967, and 17,286 under-five children 
were sampled for study in the 2004, 2010, and 2015-16 
MDHSs, respectively. The mothers or adult caregivers 
aged between 15 to 49 years provided birth histories of 
the children, including the mortality data.

The response variable for this study was whether or not 
a child under five years of age from any household had 
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died in the last five years preceding the survey. To com-
pute the probability of a child dying before the age of five 
years, various risk factors that concern the child, mother 
and household environment were used based on litera-
ture. These are: birth weight, birth order, sex, whether the 
birth was singleton or multiple, type of delivery (regu-
lar or caesarean), maternal age, education, and occupa-
tion, place of residence, including region of the country, 
place of delivery, preceding birth interval, contraceptive 
use, and antenatal clinic (ANC) visits during pregnancy 
[3, 8, 12, 17, 18, 26, 49]. However, the child birth weight 
and ANC visits variables had at least one-third missing 
values, hence they were not included in the fitted mod-
els. The data management and model fitting were done 
in STATA software version 12.0, while the cal-
culations of predicted national under-five mortality rate 
and standard errors were carried out using R software 
version 3.6.3. In addition, the raw data of under-
five mortality rates of 133, 112, and 63 deaths per 1000 
live births reported in the respective MDHS reports [30, 
34, 35] were used for comparisons with the model-based 
estimates in this study. The MDHS data that were used 
in this study can be accessed by users for free at   www. 
DHSpr ogram. com..

Unweighted logistic regression model and predicted 
mortality rate
Consider a binary outcome variable Y, that indicates 
whether or not a child died on or before attaining the age 
of 5 years in a household during the last five years of the 
survey. Let yic be the observed death outcome for the i-th 
child in c-th cluster, i = 1, 2, ..., n; c = 1, 2, ...,K  , where 
yic = 1 if the child died, and yic = 0 if the child was alive. 
Further, let πic = P(Y = 1) be the probability that the i-
th child dies in the household from the c-th cluster. Then, 
the total number of deaths in c-th cluster given the prob-
ability of death and sample size, i.e. (Y = 1|n,πic) is a 
Binomial(n,πic) random variable, with mass function 
f (yic; n,πic) = exp

[

yic log(
πic

1−πic
)+ n log(1− πic)+ log

( n
yic

)

]

 . In 
addition, let xTick = (1, xic1, xic2, ..., xicp) be a vector of 
explanatory variables observed on the i-th child, who is 
in cluster c, where xic0 = 1 and k = 1, 2, ..., p is the num-
ber of regression coefficients. Therefore, the unweighted 
conditional probability of a child dying given the covari-
ates x , i.e. πic(x) = P(Y = 1|x) , relates with the covari-
ates through a logistic function, given by:

where βT = (β0,β1, ...,βp) is a vector of regression coeffi-
cients and x = (1, xic1, xic2, ..., xicp)

T is a vector of covari-
ates observed on the i-th child from c-th cluster.

(1)πic(x) = P(Y = 1|x) = exp(βT
x)

1+ exp(βTx)
,

From the relation in Eq. (1), the unweighted logistic 
regression model with logit link is derived as follows:

The maximum likelihood (ML) estimates, β̂ for the model 
in Eq. (2) are obtained by multiplying values of probabili-
ties in the mass function f (yic) for all children, and then 
taking the logarithm of the result. Thereafter, the partial 
derivatives of the log-likelihood function with respect 
to β are derived, and then equated to zero, from which 
the ML estimates, β̂ are solved. Numerical techniques 
are used to process the solutions, because the equations 
for the derivatives of the log-likelihood function are not 
in closed forms [6]. The ML estimate β̂ for model (2) is 
interpreted as the change in logarithm of adjusted odds 
of death of a child as a result of the change in the level of 
the covariate X, while controlling for the other variables 
in the model. Alternatively, β̂ can be exponentiated to get 
exp(β̂) , which is interpreted as the ratio of adjusted odds 
of deaths of a child when comparing one level of X to the 
other.

Now, the overall unweighted predicted probability of 
death for all the under-five children in the country was 
estimated by taking the average of all the fitted prob-
abilities for the model in Eq. (2), as follows:

which is the usual point estimate of the rate of under-five 
deaths across all clusters, where π̂ic(x) = exp(β̂T

x)

1+exp(β̂T x)
 is the 

fitted probability of death of the i-th child in c-th cluster 
given the covariates information x for that child, and 
given the fitted model. From the probability theory of 
sampling distribution of sample proportions, the 
unweighted variance of π̂(x) was estimated by:

The unweighted measures in Eqs. (3) and (4) can be 
implemented following either the unweighted model in 
Eq. (2) or the weighted model that is presented in the 
next section, because computation of predicted mortality 
will have to be done separately once the fitted probabili-
ties from the logit model are obtained. The square root of 
the variance in Eq. (4) provided the standard error of the 
predicted under-five mortality rate in Eq. (3).

Upon obtaining the national estimate of under-five 
mortality rate in Eq. (3), the bias of the estimate was 
computed by:

(2)log

(

πic(x)

1− πic(x)

)

= βT
x = β0 + β1xic1 + ...+ βpxicp.

(3)π̂(x) =
∑nc

i=1

∑K
c=1 π̂ic

∑K
c=1 nc

,

(4)var
(

π̂(x)
)

= π̂(x)(1− π̂(x))
∑K

c=1 nc
.
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where π̂(x) is the predicted mortality rate obtained in 
Eq. (3) and π is the raw under-five mortality rate given 
in the particular MDHS report. As alluded to earlier, the 
models and all other computations stated above were re-
done using the three recent MDHS data of 2004, 2010, 
and 2015-16 in order to confirm the findings. In addition, 
the usefulness of survey weights in a regression method 
may depend on a survey sample size [15]. Hence, the 
above processes were repeated using 75%, 50%, and 25% 
of the MDHS sample size. This was selected through the 
same cluster sampling method with the aid of the Stata 
software function bsample applied on the clus-
ter identification variable, in order to account for the 
effect of the sample size in the bias estimation [51]. The 
compuations for statistics in Eqs. (3-5) were implemented 
in using R software version 3.6.3, while model 
in Eq. (2) was fitted to the data using Stata software 
version 12.0.

Survey weighted logistic regression model and predicted 
mortality rate
Using the structure of the data presented in Section 
“Unweighted logistic regression model and predicted mor-
tality rate”, let wic = Nc

nc
 be the sampling weight for the i-th 

child in cluster c, who was in a rural or urban stratum, with 
Nc denoting the population of under-five children in cluster 
c as per proxy census, and nc the selected number of chil-
dren in cluster c. Based on the 2018 population and housing 
census, the country had 2, 552, 406 children aged below five 
years, who were located in 18, 772 enumeration areas (or 
clusters), that were equally sized [25]. This means that the 
population of children who were aged five years or below 
was estimated to be around Nc = 2,555,406

18,772 = 135.969 per 
cluster at the time of the 2015-16 MDHS. Now, consider-
ing the under-five children sampled nc in the cluster c, this 
implies that each selected child in the 2015-16 MDHS 
represented information for wic = 135.969

nc
 children in their 

area, depending on the cluster sample size. On the other 
hand, there were 2, 370, 011 under-five children in Malawi 
around 2008, who were distributed in 12, 631 equally sized 
enumeration areas (or clusters) [24]. Hence, the popula-
tion of under-five children at the time of the 2004 or 2010 
MDHS was around Nc = 2,370,011

12,631 = 187.634 per cluster. 
Therefore, each sampled child in the 2004 or 2010 MDHS 
represented wic = 187.634

nc
 children in their location. Then, 

the weighted conditional probability of death of i-th child 
given the covariates x is:

(5)bias(π̂(x)) = π̂(x)− π ,

(6)πic(x) = P(Y = 1|x) = exp(βT
xwic)

1+ exp(βTxwic)
,

with the rest of the quantities defined as in Eq. (1). 
Therefore, the counterpart weighted logit model [56] to 
model in Eq. (2) is given by:

where w00 = 1 and the rest of the computations 
depended on the cluster to which the child belonged. 
The likelihood function construction process is similar 
to the one given in Section “Unweighted logistic regres-
sion model and predicted mortality rate” for unweighted 
model. As stated before, this survey weighting ensured 
that each child’s contribution to the model’s likelihood 
function took into account the sampling weight for that 
child, so as to balance off the unequal sample selection, 
non-response, or under-coverage of the sampling frame 
between clusters in the computation of the ML estimates 
[7, 11, 36, 50].

The Stata package survey function svy 
was used to implement the weighting scheme during 
model fitting. The jackknife technique was applied to 
compute standard errors of the regression coefficients’ 
estimates for the weighted logit model in Eq. (7) [27]. In 
an ideal case, a hypergeometric probability distribution 
for the observed number of under-five deaths per cluster 
was supposed to be assumed instead of the binomial 
probability distribution, since the sampling of the chil-
dren was done without replacement and the population 
became finite as sampling continued. Therefore, the 
standard error of the binomial response variable, i.e. √
nπic(x)(1− πic(x)) was supposed to be multiplied with 

the finite population correction (FPC) factor, 
FPC =

√

N−n
N−1

 to make it equivalent to the standard error 
of the hypergeometric random variable. However, we 
ignored the FPC factor in the computations in this study, 
as its value was approximately 1 for each survey, i.e. 
FPC(2015) =

√

2,552,406−17,286
2,552,406−1 = 0.9966 based on 2015-16 

MDHS and 2018 national census, while 
FPC(2004) =

√

2,370,011−10,914
2,370,011−1 = 0.9976 based on 2004 

MDHS, and FPC(2010) =
√

2,370,011−19,967
2,370,011−1 = 0.9958 on 

2010 MDHS and 2008 census.
Now, upon obtaining the ML estimates and fitted prob-

abilities of deaths from the unweighted logit model in Eq. 
(2) or the weighted logit model in Eq. (7), one may wish 
to consider the weights at cluster level during the com-
putation of overall predicted mortality rate. This requires 
getting cluster-specific unweighted death rates π̂c(x) first 
through the method of Eq. (3). Thereafter, the national 
weighted under-five mortality rate can be estimated by 
considering each cluster’s weight as follows:

(7)

log

(

πic(x)

1− πic(x)

)

= βT
xwic =

[

β0 + β1xic1 + ...+ βpxicp
]

wic ,
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where m̄ =
∑K

c=1 nc
K  is the average number of sampled 

children per cluster, π̂c =
∑nc

i=1 π̂i
nc

 is the cluster-specific 
estimated under-five death rate, in which π̂i are fitted 
probabilities of death obtained from the fitted model, and 
nc
m̄ is the weighting term per cluster. The weighted vari-
ance of the overall mortality rate can be computed using 
the usual basic formula for variance of a random quan-
tity, but now with the weighting term squared, as follows:

where π̂c(x) is the estimated under-five death rate in 
cluster c, and π̂∗(x) the weighted estimated national 
under-five mortaility rate in Eq. (8). After obtaining the 
weighted overall mortality estimate, the computation 
of bias in the mortality estimate was done as in Section 
“Unweighted logistic regression model and predicted 
mortality rate” using R software version 3.6.3.

The Akaike information criterion (AIC) was used to 
select the best model with which to compute the pre-
dicted national under-five mortality rate [38]. This 
applied to the unweighted model, since the STATA 
software that was used to fit the models does not pro-
duce AIC values for weighted models. The initial model 
included all variables listed in Section “Data”. The second 
model dropped the variables whose coefficients had large 
p-values in the first model.

Results
The data summary in Table 1 shows that cases of deaths 
of children aged below five years have been lower than 
10% in Malawi during the 15 years prior to 2016. In 
addition, the proportions of under-five deaths showed a 
decreasing trend during this period, such that the per-
centage was almost halved between 2010 and 2016. Fur-
ther, the data showed that the percentages of under-five 
deaths were higher in male babies, birth order of 1 or 6 
and above, caesarean births, twin or multiple births, 
and in home-based deliveries, across all the three sur-
veys. Similarly, the majority of under-five deaths were 
observed in babies who were born to mothers aged either 
below 20 years or 35 years and above, to those whose 
preceding birth interval was less than 24 months, oth-
ers who were not using modern contraceptive methods, 
those who had no formal educational qualification, and 
others who were working. Furthermore, the percentage 
of under-five deaths was higher in children from rural 
areas, and children from central and southern regions 

(8)π̂∗(x) =
∑K

c=1 π̂c(x)(
nc
m̄ )

K
,

(9)var(π̂∗(x)) = 1

K

K
∑

c=1

(

π̂c(x)− π̂∗(x)
)2

K − 1

(nc

m̄

)2
,

of the study country. The Chi-square test of independ-
ence showed that all the studied explanatory variables 
had individual significant association with the under-
five child death variable, evidenced by at least two of the 
MDHS data sets.

The results in Table  2 provide the model estimates 
upon including all the available covariates from Table  1 
to describe under-five child death. It is shown, in both 
unweighted and weighted models and across all the sur-
veys, that the adjusted odds of death of the under-five 
child were lower in female children, preceding birth 
interval of 24 months and above, and in children born to 
mothers that used modern contraceptive methods. The 
adjusted odds of death were higher in caesarean births, 
twin or multiple delivery births, children born to working 
class mothers, those born to mothers aged 35 to 49 years, 
children from rural areas, and those born in central and 
southern regions. The effects of birth order, place of 
delivery, and place of residence on child death outcome 
were not statistically significant in a model that had the 
other variables mentioned above. Hence, these covariates 
were dropped in the final model that was used to predict 
the under-five mortality rate and estimate the bias. The 
AIC values in Table 2 were reserved for comparisons with 
those obtained upon excluding the mentioned variables.

Upon fitting the reduced logit models to the datasets, 
it is shown in Table 3 that the AIC values did not change 
much compared to those found before. Trying to drop 
each of the three covariates independently worsened the 
fit of the models, hence the results of the ML estimates 
in Table  3 for models without the three stated covari-
ates were used for computation of the bias in this study. 
The results in Table  3 showed that the p-values for the 
reduced models were lower compared to the ones given 
in Table 2. But the sizes and directions of the estimates 
did not change. The odds of death of the under-five child 
were significantly lower in female compared to male chil-
dren, those born to mothers who had preceding birth 
interval of 24 months and above, children born to moth-
ers who used modern contraceptive methods, and those 
whose mother’s highest level of education was secondary 
and above. Whereas the odds of child death were higher 
in caesarean births, twin or multiple births, children born 
to mothers aged 35 to 49 years, those born to mothers 
who were working, and those from central and southern 
regions. In addition, both the ML estimates and p-values 
adjusted slightly upwards or downwards in the weighted 
compared to unweighted models, which showed some 
bias in the estimates of the unweighted models.

The results for bias of under-five mortality rate esti-
mate are given in Table 4. It is shown that the bias was 
smaller in the weighted compared to the unweighted 
predicted under-five mortality rate, regardless of 
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whether the fitted model was weighted or not. Further, 
the results showed that the standard errors were also 
smaller for the weighted than the unweighted predicted 

mortality rate, irrespective of the weighting status of 
the model. In addition, it is shown that the bias estimate 
for the under-five mortality rate decreased in each year 

Table 1 Distribution of the sample and observed under-five death cases over socio-demographic variables and the association of 
each variable with the death outcome

2004 MDHS 2010 MDHS 2015 MDHS

 Variable n (%) Died (%) χ2  p-val n (%) Died (%) χ2  p-val n (%) Died (%) χ2  p-val

Overall sample 10,914 (100) 1,056 (9.7) 19,967 (100) 1,607 (8.1) 17,286 (100) 824 (4.8)

Child’s Sex < 0.0001 0.001 0.003

      Male 5,523 (50.6) 593 (10.7) 9,979 (50.0) 865 (8.7) 8,687 (50.3) 455 (5.2)

      Female 5,391 (49.4) 463 (8.6) 9,988 (50.0) 742 (7.4) 8,599 (49.8) 369 (4.3)

Birth order < 0.0001 < 0.0001 < 0.0001

      1 2,469 (22.6) 290 (11.8) 3,925 (19.7) 363 (9.3) 4,400 (25.5) 267 (6.1)

      2-5 6,403 (58.7) 566 (8.8) 12,049 (60.3) 876 (7.3) 10,370 (60.0) 414 (4.0)

      6+ 2,042 (18.7) 200 (9.8) 3,993 (20.0) 368 (9.2) 2,516 (14.6) 143 (5.7)

Caesarean birth 0.641 0.012 0.006

      No 10,575 (97.0) 1,021 (9.7) 19,002 (95.4) 1,507 (7.9) 16,122 (93.5) 749 (4.7)

      Yes 326 (3.0) 34 (10.4) 907 (4.6) 93 (10.3) 1,116 (6.5) 72 (6.5)

Delivery type < 0.0001 < 0.0001 < 0.0001

      Singleton 10,547 (96.6) 938 (8.9) 19,104 (95.7) 1,396 (7.3) 16,618 (96.1) 707 (4.3)

      Multiple 367 (3.4) 118 (32.2) 863 (4.3) 211 (24.5) 668 (3.9) 117 (17.5)

Birth place 0.013 0.482 0.007

      Home or other 3,205 (29.7) 343 (10.7) 4,934 (25.5) 400 (8.1) 1,354 (7.8) 85 (6.3)

      Health facility 7,576 (70.3) 694 (9.2) 14,446 (74.5) 1,126 (7.8) 15,932 (92.2) 739 (4.6)

Maternal age 0.161 < 0.0001 < 0.0001

      <20 713 (6.5) 80 (11.2) 1,179 (5.9) 102 (8.7) 1,246 (7.2) 85 (6.8)

      20-34 8,254 (75.6) 775 (9.4) 14,792 (74.1) 1,109 (7.5) 12,647 (73.2) 558 (4.4)

      35-49 1,947 (17.8) 201 (10.3) 3,996 (20.0) 396 (9.9) 3,393 (19.6) 181 (5.3)

Preceding birth-interval < 0.0001 < 0.0001 < 0.0001

      <24 months 1,538 (18.3) 218 (14.2) 2,281 (14.3) 306 (13.4) 1,446 (11.3) 113 (7.8)

      24 to 36 months 2,994 (35.6) 252 (8.4) 6,327 (39.5) 429 (6.8) 3,705 (28.9) 169 (4.6)

      > 36 months 3,890 (46.2) 291 (7.5) 7,400 (46.2) 503 (6.8) 7,690 (59.9) 264 (3.4)

Contraceptive use < 0.0001 < 0.0001 < 0.0001

      Not using 7,957 (72.9) 863 (10.9) 11,484 (57.5) 1,037 (9.0) 7,021 (40.6) 436 (6.2)

      Using 2,957 (27.1) 193 (6.5) 8,483 (42.5) 570 (6.7) 10,265 (59.4) 388 (3.8)

Maternal educ < 0.0001 0.002 0.076

      No education 2,870 (26.3) 308 (10.7) 3,372 (16.9) 289 (8.6) 2,161 (12.5) 101 (4.7)

      Primary 6,967 (63.8) 678 (9.7) 13,865 (69.4) 1,145 (8.3) 11,456 (66.3) 573 (5.0)

      Secondary or above 1,077 (9.9) 70 (6.5) 2,730 (13.7) 173 (6.3) 3,669 (21.2) 150 (4.1)

Maternal job status 0.767 0.026 0.013

      Not working 4,449 (40.8) 435 (9.8) 8,194 (41.1) 617 (7.5) 5,938 (34.4) 250 (4.2)

      Working 6,464 (59.2) 621 (9.6) 11,733 (58.9) 986 (8.4) 11,348 (65.7) 574 (5.1)

Residence < 0.0001 0.696 0.033

      Urban 1,137 (10.4) 76 (6.7) 1,896 (9.5) 157 (8.3) 2,766 (16.0) 110 (4.0)

      Rural 9,777 (89.6) 980 (10.0) 18,071 (90.5) 1,450 (8.0) 14,520 (84.0) 714 (4.9)

Region 0.049 < 0.0001 0.018

      Northern 1,349 (12.5) 106 (7.9) 3,560 (17.8) 232 (6.5) 3,208 (18.6) 126 (3.9)

      Central 4,141 (37.9) 418 (10.1) 6,866 (34.4) 544 (7.9) 6,023 (34.8) 316 (5.3)

      Southern 5,424 (49.7) 532 (9.8) 9,541 (47.8) 831 (8.7) 8,055 (46.6) 382 (4.7)
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Table 2 Effects of child characteristics on death outcome upon fitting full logit model to MDHS data

aOR = adjusted odds ratio; “∗′′ = reference level; “−′′ implied weighted model output did not include AIC nor log-likelihood value

Unweighted Full Logit Model Weighted Full Logit Model

2004 DHS 2010 DHS 2015 DHS 2004 DHS 2010 DHS 2015 DHS

Variable aOR (p-value) aOR (p-value) aOR (p-value) aOR (p-value) aOR (p-value) aOR (p-value)

Child’s Sex

      Male∗
      Female 0.75 ( < 0.0001) 0.85 (0.007) 0.81 (0.019) 0.82 (0.025) 0.86 (0.030) 0.80 (0.016)

Birth order

      1 ∗
      2-5 1.24 (0.076) 1.14 (0.189) 0.93 (0.582) 1.25 (0.067) 1.09 (0.325) 0.91 (0.492)

      6+ 0.80 (0.067) 0.92 (0.325) 1.09 (0.492) 0.81 (0.076) 0.88 (0.189) 1.08 (0.582)

Caesarean birth

      No∗
      Yes 1.32 (0.249) 1.46 (0.010) 1.65 (0.003) 1.18 (0.633) 1.35 (0.077) 1.64 (0.011)

Delivery type

      Singleton ∗
      Multiple 5.62 ( < 0.0001) 4.62 ( < 0.0001) 4.78 ( < 0.0001) 5.90 ( < 0.0001) 4.48 ( < 0.0001) 4.69 ( < 0.0001)

Birth place

      Home or other ∗
      Health facility 0.99 (0.951) 1.05 (0.482) 0.81 (0.129) 1.07 (0.507) 1.02 (0.809) 0.82 (0.205)

Maternal age

      <20 ∗
      20-34 1.04 (0.903) 1.50 (0.277) 1.18 (0.751) 0.99 (0.975) 1.35 (0.418) 1.21 (0.729)

      35-49 1.42 (0.345) 2.24 (0.033) 1.56 (0.406) 1.39 (0.406) 1.97 (0.070) 1.54 (0.453)

Preceding birth-interval

      <24 months ∗
      24 to 36 months 0.54 ( < 0.0001) 0.46 ( < 0.0001) 0.55 ( < 0.0001) 0.55 ( < 0.0001) 0.47 ( < 0.0001) 0.54 ( < 0.0001)

      > 36 months 0.44 ( < 0.0001) 0.43 ( < 0.0001) 0.40 ( < 0.0001) 0.43 ( < 0.0001) 0.47 ( < 0.0001) 0.39 ( < 0.0001)

Contraceptive use

      Not using ∗
      Using 0.65 ( < 0.0001) 0.71 ( < 0.0001) 0.61 ( < 0.0001) 0.63 (0.0001) 0.71 ( < 0.0001) 0.58 ( < 0.0001)

Maternal educ

      No education ∗
      Primary 0.93 (0.435) 1.06 (0.452) 1.16 (0.258) 0.91 (0.323) 1.02 (0.835) 1.18 (0.249)

      Secondary or above 0.60 (0.815) 0.91 (0.447) 1.08 (0.663) 0.71 (0.189) 0.80 (0.145) 1.10 (0.621)

Maternal job status

      Not working ∗
      Working 1.02 (0.815) 1.10 (0.139) 1.4117 (0.001) 1.02 (0.857) 1.10 (0.203) 1.39 (0.004)

Residence

      Urban ∗
      Rural 1.24 (0.171) 0.87 (0.226) 1.28 (0.101) 1.32 (0.165) 0.91 (0.448) 1.26 (0.173)

Region

      Northern ∗
      Central 1.12 (0.419) 1.23 (0.039) 1.1974 (0.177) 1.15 (0.374) 1.33 (0.008) 1.17 (0.265)

      Southern 1.16 (0.290) 1.44 ( < 0.0001) 1.08 (0.535) 1.29 (0.101) 1.55 ( < 0.0001) 1.11 (0.430)

AIC 4786.21 7904.79 4285.79 - - -
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Table 3 Effects of child characteristics on death outcome upon fitting reduced logit model to MDHS data

aOR = adjusted odds ratio; “∗′′ = reference level; “−′′ in AIC row implied weighted model output did not include AIC nor log-likelihood value; “Reduced” Logit Model 
implied a model with some covariates that formed part of the initial model dropped in this second model

Unweighted Reduced Logit Model Weighted Reduced Logit Model

2004 DHS 2010 DHS 2015 DHS 2004 DHS 2010 DHS 2015 DHS

Variable aOR (p-value) aOR (p-value) aOR (p-value) aOR (p-value) aOR (p-value) aOR (p-value)

Child’s Sex

      Male∗
      Female 0.74 ( < 0.0001) 0.84 (0.004) 0.81 (0.021) 0.80 (0.014) 0.86 (0.022) 0.80 (0.017)

Birth order

      1 ∗
      2-5 - - - - - -

      6+ - - - - - -

Caesarean birth

      No∗
      Yes 1.30 (0.282) 1.47 (0.009) 1.56 (0.008) 1.18 (0.631) 1.35 (0.076) 1.56 (0.022)

Delivery type

      Singleton ∗
      Multiple 5.51 ( < 0.0001) 4.58 ( < 0.0001) 4.83 ( < 0.0001) 5.82 ( < 0.0001) 4.43 ( < 0.0001) 4.73 ( < 0.0001)

Birth place

      Home or other ∗
      Health facility - - - - - -

Maternal age

      <20 ∗
      20-34 1.03 (0.932) 1.52 (0.258) 1.20 (0.725) 0.98 (0.953) 1.38 (0.390) 1.23 (0.704)

      35-49 1.21 (0.593) 2.22 (0.033) 1.66 (0.334) 1.18 (0.667) 1.93 (0.076) 1.63 (0.380)

Preceding birth-interval

      <24 months ∗
      24 to 36 months 0.54 ( < 0.0001) 0.46 ( < 0.0001) 0.55 ( < 0.0001) 0.57 ( < 0.0001) 0.47 ( < 0.0001) 0.54 ( < 0.0001)

      > 36 months 0.45 ( < 0.0001) 0.42 ( < 0.0001) 0.39 ( < 0.0001) 0.45 ( < 0.0001) 0.46 ( < 0.0001) 0.38 ( < 0.0001)

Contraceptive use

      Not using ∗
      Using 0.64 ( < 0.0001) 0.72 ( < 0.0001) 0.60 ( < 0.0001) 0.63 ( < 0.0001) 0.72 ( < 0.0001) 0.58 ( < 0.0001)

Maternal educ

      No education ∗
      Primary 0.94 (0.441) 1.11 (0.177) 1.12 (0.369) 0.92 (0.391) 1.08 (0.419) 1.14 (0.337)

      Secondary or above 0.58 (0.007) 0.95 (0.671) 1.43 ( < 0.0001) 0.69 (0.139) 0.85 (0.250) 0.98 (0.922)

Maternal job status

      Not working ∗
      Working 1.02 (0.773) 1.08 (0.199) 1.43 ( < 0.0001) 1.03 (0.754) 1.08 (0.279) 1.41 (0.003)

Residence

      Urban ∗
      Rural - - - - - -

Region

      Northern ∗
      Central 1.12 (0.420) 1.25 (0.023) 1.19 (0.190) 1.14 (0.419) 1.37 (0.003) 1.16 (0.271)

      Southern 1.13 (0.356) 1.47 ( < 0.0001) 1.08 (0.552) 1.24 (0.172) 1.59 ( < 0.0001) 1.11 (0.438)

AIC 4870.06 8268.38 4285.64 - - -
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of survey, such that it was smallest in 2015-16 MDHS. 
Furthermore, the results showed that the bias estimates 
of weighted predicted mortality from the 2010 MDHS 
data increased slightly with a decreasing sample size, 
but this was not always the case with the 2004 and 2015 
surveys, as there were smaller bias estimates even with 
smallest sample sizes for the MDHS data in the stated 
years. With the unweighted predicted mortality rate, 
the bias estimates were insensitive of sample size, for 
all the three surveys. Finally, the standard errors of the 
weighted predicted mortality rate remained the same 
upon reducing sample size, but they increased slightly 
in the case of unweighted predicted mortality.

Discussion
In this paper, the usefulness of survey weights in the pre-
diction of under-five mortality through regression meth-
ods was investigated. The results showed that weighting 
of the model causes some positive and negative changes 
in the maximum likelihood (ML) estimates that were 
originally obtained from the unweighted model. This 
confirms the presence of some bias in ML estimates for 
unweighted models [11, 36]. However, the study has 
found that ignoring the sampling weights during model 
fitting has little impact on the accuracy of estimation of 
the overall predicted under-five mortality rate. It is the 
survey design weighting that is applied on the predicted 

Table 4 Bias in under-five mortality estimate using unweighted and weighted logit model, as well as unweighted and weighted 
predicted mortality estimate

π̂(x) = overall predicted under-five mortality rate; S.E. = standard error of π̂(x);

π = raw under-five mortality rate from MDHS report; bias(π̂(x))=π̂(x)− π

n π̂(x)(S.E.)   π   bias(π̂(x))   π̂(x)(S.E.)   π   bias(π̂(x))  

2004 unweighted model, unweighted π̂(x) 2004 weighted model, weighted π̂(x)

10,914 0.004 (0.001) 0.133 -0.129 0.086 (0.000) 0.133 -0.047
8,292 0.004 (0.001) 0.133 -0.129 0.091 (0.000) 0.133 -0.042
5,624 0.004 (0.001) 0.133 -0.129 0.087 (0.000) 0.133 -0.046
2,878 0.004 (0.001) 0.133 -0.129 0.089 (0.000) 0.133 -0.044

2004 unweighted model, weighted π̂(x) 2004 weighted model, unweighted π̂(x)

10,914 0.090 (0.000) 0.133 -0.043 0.004 (0.001) 0.133 -0.129
8,292 0.091 (0.000) 0.133 -0.042 0.004 (0.001) 0.133 -0.129
5,624 0.089 (0.000) 0.133 -0.044 0.004 (0.001) 0.133 -0.129
2,878 0.090 (0.000) 0.133 -0.043 0.004 (0.001) 0.133 -0.129

2010 unweighted model, unweighted π̂(x) 2010 weighted model, weighted π̂(x)

19,967 0.003 (0.000) 0.112 -0.109 0.077 (0.000) 0.112 -0.035
15,064 0.003 (0.001) 0.112 -0.109 0.076 (0.000) 0.112 -0.036
10,153 0.003 (0.001) 0.112 -0.109 0.074 (0.000) 0.112 -0.038
5,030 0.003 (0.001) 0.112 -0.109 0.070 (0.000) 0.112 -0.042

2010 unweighted model, weighted π̂(x) 2010 weighted model, unweighted π̂(x)

19,967 0.077 (0.000) 0.112 -0.035 0.003 (0.000) 0.112 -0.109
15,064 0.077 (0.000) 0.112 -0.035 0.003 (0.001) 0.112 -0.109
10,153 0.075 (0.000) 0.112 -0.037 0.003 (0.001) 0.112 -0.109
5,030 0.072 (0.000) 0.112 -0.040 0.003 (0.001) 0.112 -0.109

2015 unweighted model, unweighted π̂(x) 2015 weighted model, weighted π̂(x)

17,286 0.002 (0.000) 0.063 -0.061 0.040 (0.000) 0.063 -0.023
13,099 0.002 (0.000) 0.063 -0.061 0.038 (0.000) 0.063 -0.025
8,644 0.002 (0.001) 0.063 -0.061 0.038 (0.000) 0.063 -0.025
4,314 0.002 (0.001) 0.063 -0.061 0.045 (0.000) 0.063 -0.018

2015 unweighted model, weighted π̂(x) 2015 weighted model, unweighted π̂(x)

17,286 0.042 (0.000) 0.063 -0.021 0.002 (0.000) 0.063 -0.061
13,099 0.039 (0.000) 0.063 -0.024 0.002 (0.000) 0.063 -0.061
8,644 0.040 (0.000) 0.063 -0.023 0.002 (0.001) 0.063 -0.061
4,314 0.046 (0.000) 0.063 -0.017 0.002 (0.001) 0.063 -0.061
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mortality estimates from each cluster that has a signifi-
cant effect on the bias of the overall predicted under-five 
mortality rate. This implies that the up and down shifts in 
the ML estimates for various explanatory variables cancel 
the weighting effect during the computations of the fit-
ted probabilities of events for individuals, which are used 
when calculating the overall predicted mortality rate. 
Hence, the need for additional cluster-strata weights on 
the cluster predicted mortality rates in order to achieve 
a low-biased overall predicted under-five mortality 
estimate.

The findings showed that the biases in mortality esti-
mate decreased with each survey year, where the bias was 
smallest when using the 2015-16 MDHS data to predict 
the prevailing under-five mortality compared to previ-
ous surveys. This reflected improvements in data quality 
assurance measures that the Measure DHS programme 
and National Statistics Office have been making over the 
years. For example, the 2015-16 MDHS data were col-
lected using the computer-assisted personal interviews 
(CAPI) tool, unlike in the 2004 MDHS where question-
naires were administered physically and data entered 
manually. This manual process of managing data could 
be the reason why some variables like birth weight, had 
more missing values in the 2004 MDHS compared to 
the 2015-16 MDHS data. Missing data have potential for 
disturbing the randomness and representativeness of the 
sample, while increasing the bias in the overall mortal-
ity estimates. In addition, the household geo-coordinates 
data were pre-recorded ahead of the survey and used to 
guide the enumerators so they could reach the right sam-
pled households and avoid unauthorised swapping of 
interviewees during the 2015-16 MDHS. Furthermore, 
the households in semi-urban locations were re-classi-
fied into right rural or urban strata during the 2015-16 
MDHS, so that a child’s data could be gathered correctly. 
This was unlike the previous surveys where such house-
holds could wrongly be assigned to urban strata. There-
fore, these initiatives led to a high response rate and good 
data quality in the 2015-16 MDHS compared to 2010 and 
2004 MDHSs. In turn, this led to reduced bias of pre-
dicted under-five mortality rate for the 2015-16 MDHS, 
as observed in the present study [30].

The study has also shown that reducing the sample size 
of the MDHS only led to a slight increase in standard 
errors of the unweighted predicted mortality rates, and 
not in the sizes of the estimates themselves, as they stayed 
constant despite the lowering of the sample size. It has 
been observed that a sample size of as low as 2% of the 
population of all children in the country could still yield 
low-biased mortality estimates, provided that the sample 
was randomly selected and representative of the popu-
lation, and that the overall predicted mortality rate was 

weighted. This was expected as the unweighted variance 
measure for sample proportion such as unweighted mor-
tality rate involved a total sample size in the denomina-
tor, which inflated the variance in lower sample sizes. But 
this could not affect the value of mortality estimate due 
to the effects of sample randomness and representative-
ness. When a researcher has no access to primary survey 
data but aggregated data from two or more surveys for 
a country or region to which they wish to make similar 
predictions, then methods of pooled and weighted sur-
vey estimation using mixed-effects hierarchical models 
or meta-analysis could give reliable estimates provided all 
the pooled surveys were conducted within the same time 
of inference [4, 10].

The model’s ML estimates showed that the risk of 
under-five mortality was lower in female compared to 
male children, in children whose mothers had preceding 
birth interval of 24 months and above, children whose 
mothers used modern contraceptive methods, and those 
whose mothers attended up to secondary education and 
above. The risk was higher in caesarean births, twin or 
multiple births, in children whose mothers were aged 
35 to 49 years, children born to working class mothers, 
and children residing in central and southern regions of 
Malawi. These results are consistent with previous find-
ings, and there are also clear biological and social expla-
nations in literature for these observations [18, 26, 37, 
45, 47]. For example, the well-educated mothers have 
an upper hand in terms of knowledge and skills about 
healthcare, which benefits the baby’s health compared to 
the less-educated mothers [26]. The high risk of death in 
twin births largely reflects an increased risk of intrapar-
tum anoxia in the second twin born at term that reduce 
their chances of survival [47]. With the caesarean births, 
the high risk of death stems from increased chances of 
iatrogenic prematurity or respiratory disease [45]. While 
the lower death rates in female babies is attributed to 
their genetic and biological make-up together with pre-
conception environments that lowers their risk against 
most diseases compared to male babies [37]. Further-
more, the high risk of under-five deaths in children from 
working class mothers is attributed to inadequate breast-
feeding that their babies are subject to [2].

Conclusion
This paper investigated the impact of survey sampling 
design on the predicted under-five mortality rate using 
regression methods applied on three recent demo-
graphic and health survey data in Malawi. The findings 
showed that the risk factors for under-five mortal-
ity have not changed from those observed in previous 
studies in the sub-Saharan African region and other 
Low and Middle Income Countries (LMIC). The study 
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has found that the model’s probability weights have 
very little effect on the bias of the predicted mortality 
rate, so that ignoring the weighting during the model 
fitting does not change the predicted mortality value. 
However, it has been observed that weighting the clus-
ter-specific predicted mortality rates has significant 
effects in minimising the bias of the overall predicted 
under-five mortality rate. The study has also found 
that the bias estimates for prevailaing under-five mor-
tality rates decreased with each survey year, resulting 
in much lower-biased estimates seen in the 2015-16 
MDHS than in previous surveys. Furthermore, it has 
been observed that a random and representative sam-
ple size of at least 2% of the population is enough to 
obtain low-biased under-five mortality estimates, pro-
vided the computation of overall mortality estimate 
considers cluster weights. A small sample size only 
affects the standard errors of an estimated mortality, 
which become large and widen confidence intervals for 
the estimates.

This study therefore recommends applying cluster sam-
pling weights in cluster-specific predicted probabilities of 
event for calculating overall predicted probability of the 
event, when analysing binary health outcomes through 
regression methods, without regard of weighting the 
model fitting process. Although this study focused on 
models for binary response variable, the findings apply 
to other models for categorical variables with more 
than two levels. Since the reliability of regression meth-
ods rely on appropriateness of the data for the included 
covariates in the models, further improvements in DHS 
data quality control techniques will help in yielding more 
accurate predictions of under-five mortality rate through 
regression-based methods proposed in this study. Future 
research could incorporate methods for addressing miss-
ing data in explanatory variables such as birth weight 
and antenatal care visits, so that the models use as many 
covariates as possible while observing the effect of sam-
pling design in predicting under-five mortality rate.
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