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Abstract 

Background Minerals have crucial biological functions in metabolism and are primarily obtained through diet. 
As a result, various dietary patterns can impact blood mineral levels. The aim of this study was to investigate 
the correlation between dietary patterns and the concentration of calcium, magnesium, iron, zinc, and copper 
in the bloodstream.

Methods Three hundred eighty healthy children (53.7% male) were recruited in a region of Hunan Province in Sep‑
tember 2019. We gathered basic information and measured physical proportions, along with completing a food 
frequency questionnaire (FFQ). Using principal component analysis (PCA), we determined dietary patterns. To analyze 
mineral levels in the blood, we used flame atomic absorption spectrometry (FAAS). We utilized linear regression mod‑
els to investigate if certain dietary patterns are related to mineral concentration.

Results Three dietary patterns were identified: ‘Vegetables/Nuts,’ ‘Snacks/Beverages,’ and ‘Cereal/Beans.’ Children 
from high‑income families (annual average income > 50,000 yuan) prefer the ‘Vegetables/Nuts’ dietary pattern 
(P = 0.004). In comparison, those from low‑income families (annual average income < 20,000 yuan) prefer the ‘Snacks/
Beverages’ dietary pattern (P = 0.03). Following adjustment for age, gender, guardian’s identity, education level, 
and annual household income. We found that an increase in the ‘Vegetables/Nuts’ pattern score (β = 0.153, CI: 
0.053 ~ 0.253; P = 0.003) and ‘Snacks/Beverages’ pattern score (β = 0.103, CI: 0.002 ~ 0.204; P = 0.033) were significantly 
associated blood copper concentration.

Conclusions Household income was found to be associated with dietary behavior. Furthermore, higher blood 
copper concentration was significantly correlated with the ‘Vegetables/Nuts’ dietary pattern and ‘Snacks/Beverages’ 
dietary pattern, but the correlation is extremely low.
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physiological functions in the human body despite 
their low requirements of them [1]. They are critical 
components of metalloenzymes and are involved in 
crucial biological processes, such as oxygen transport, 
free radical scavenging, and hormonal activity [2]. Ca 
is predominantly accumulated in bone tissue. Getting 
enough calcium as a child and teenager is crucial for 
strong bones [3]. Mg is abundant in human cells, plays 
an important role in 300 + metabolic reactions, and 
has been shown to be associated with Attention Deficit 
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Background
Essential elements like calcium (Ca), magnesium 
(Mg), iron (Fe), zinc (Zn), and copper (Cu) play cru-
cial roles in the regulation and maintenance of various 
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Hyperactivity Disorder (ADHD) [4–7]. Fe is a bivalent 
cation crucial for numerous physiological and cellular 
processes, and iron deficiency causes diverse health 
consequences [8]. Zn is the second most abundant 
metal in humans and is distributed unequally through-
out different organs and tissues. In infants and early 
childhood, zinc supplementation can increase specific 
growth outcomes [9]. Cu is a crucial cofactor for more 
than twenty proteins [10]. Research shows that the level 
of copper in the serum is linked to obesity and various 
chronic illnesses in children [11, 12].

Dietary pattern analysis is a promising approach to 
understanding the complex relationship between diet 
and health [13]. An analysis based on nutrients alone 
may be confounded by the type of dietary pattern a 
person follows. They use a dietary pattern approach 
to overcome these limitations by considering how 
foods are eaten in combination. Poor diet in early life 
is a major modifiable risk factor with many health out-
comes. Numerous studies have focused on the asso-
ciation between health outcomes and diet [14–16]. 
Research has revealed connections between the die-
tary patterns of children and adolescents with obesity 
[17–19]. Additionally, some studies have also found 
links between dietary patterns and cardiometabolic risk 
and depression [20, 21]. Studies in China examined the 
consumption of sugar-sweetened beverages and dairy 
by children and adolescents [22–24], but it did not 
specifically focus on dietary patterns. Recent studies 
conducted in China have revealed a strong correlation 
between a child’s mineral status and lipid metabolism, 
and mineral status also has a significant impact on the 
symptoms of autism. [25, 26]. Meanwhile, Islam MR 
et  al. proposed that alterations of serum mineral was 
associated with major depressive disorder [27]. Based 
on this information, we are considering the possibil-
ity that various dietary habits may indirectly impact 
the onset of specific illnesses by affecting the levels of 
essential minerals in the body.

The background level of minerals in children’s bodies is 
of great significance for monitoring the environment and 
evaluating children’s nutritional status [28–31]. While 
studies have shown a connection between mineral intake 
and various diseases [32–35], research on the correlation 
between dietary patterns and mineral levels is still lack-
ing. Thus, this study aimed to investigate the correlation 
between the levels of calcium, magnesium, iron, zinc, and 
copper with different dietary patterns.

Methods
Study population
Participants were children enrolled in a cross-sectional 
study of blood minerals and eating behavior; this study is 

the first analysis of the recruitment visit, which occurred 
in Hunan Province, China, in September 2019. This study 
was approved by the Ethics Committee of Hunan Provin-
cial Center for Disease Control and Prevention. Informed 
consent for the use of these children’s detection results 
and personal information in this study was obtained 
from their parents/legal guardians. Inclusion criteria 
were that the child was enrolled in local primary schools 
(either in the first or second year), aged 5 – 7 years, men-
tally competent, and had no serious medical problems 
affecting growth or appetite. All questionnaires were 
interviewer-administered.

Of the full sample of 392 children, 12 were excluded 
either due to missing or implausible dietary data.

Dietary assessment and identification of dietary pattern
A validated 61-item food frequency questionnaire (FFQ) 
developed was employed to assess dietary intake. A com-
mon unit or portion size for each food was specified, and 
the participants’ parents were asked to recall how often, 
on average, the child had consumed that item during the 
previous year. The selected frequency category for each 
food item was converted to a daily intake.

All data in the questionnaire were input using the soft-
ware EpiData (version 3.1). According to the nutrient 
profile, the 61 items of the FFQ were allocated to 13 pre-
defined food groups to identify eating patterns through 
Principal Component Analysis (PCA) (Table  2). The 
applicability of the PCA method was evaluated by the 
Kaiser–Meyer–Olkin coefficient (KMO) and Bartlett’s 
test of sphericity (BTS). In this study, the KMO value was 
0.738, and the BTS test P-value was P < 0.0001, indicating 
the adequacy of the data for the factor analysis. The fac-
tors were rotated by an orthogonal transformation (vari-
max rotation function in SPSS software). Three dietary 
patterns were identified using multiple criteria: the dia-
gram of eigenvalues, the scree plot, the interpretability 
of the factors, and the percentage of variance explained 
by the factors. The factor score for each pattern was cal-
culated by summing intakes of all food groups weighted 
by their factor loadings. The food groups with the high-
est component loadings enabled interpretation of the 
pattern; groups with component loadings ≥|0.3| are 
shown in Table 2. To determine how closely each child’s 
diet aligned with the dietary pattern, scores were cal-
culated by multiplying the component loadings of each 
food group by the child’s frequency of intake in that food 
group and the summing. Then scores were categorized 
into tertiles to differentiate children with lower scores 
(i.e., tertile 1, lower intake) from higher scores (i.e., ter-
tile 3, higher intake). Finally, each score was converted to 
Z-scores with a mean of 0 and standard deviation of 1 to 
facilitate comparisons between 3 dietary patterns.
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Elemental analysis
After obtaining consent to participate in the study from 
each patient, 3 mL of blood was taken from the child to 
determine the concentration of the following minerals 
in blood: calcium, magnesium, iron, zinc, and copper. 
Before element detection, all the blood samples were 
stored at 0—4℃ for no more than 48 h.

Whole blood concentrations of calcium, iron, copper, 
magnesium, and zinc were determined by flame atomic 
absorption spectrometry (FAAS) instrument. Standard 
curves of these elements were conducted by serial dilu-
tion of the stock standard solutions before analyzing the 
metal on the instrument. Sample digestion was prepared 
by simply mixing 0.5 mL of blood sample and 4.5 mL of 
0.5% Triton X-100 solution containing 1%  HNO3 in a 
digestive tube. Then 0.5  mL sample dilution was added 
to 2  mL of 0.5% Triton X-100 dilution containing 1% 
HNO3 for mixing. They were detected immediately on 
the instrument after homogenizing.

Covariates
Parents or other guardians provided relevant sociode-
mographic information, including the child’s age, gender, 
and the identity relationship between the actual guardian 
and the participants. The guardian relationship is divided 
into parents and others (others include grandparents, 
uncles/ aunts, brothers/ sisters). Meanwhile, guardians 
are required to provide their highest level of education 
attained and household income from all sources. Guard-
ians’ education level was classified into three categories: 
incomplete high school education, high school diploma, 
and completion of post-high school education. Simi-
larly, participants’ annual per capita household income 
was divided into three categories: less than 20,000 yuan, 
20,000–50000 yuan, and more than 50,000 yuan. We 
used these categories to gain a better understanding of 
the group’s demographics and to identify any potential 
correlations with other variables.

Statistical analysis
All analyses were conducted using SPSS software (ver-
sion 19.0 for Windows). The levels of calcium, magne-
sium, iron, zinc, and copper elements were analyzed 
using quantitative variables and assessed for normal 
distribution using the Kolmogorov–Smirnov test (K-S 
test). When representing normal distribution, we use 
mean ± standard deviation, while non-normal distribu-
tion is represented by median (IQR). Household income 
per capita was calculated as the total reported household 
income divided by the number of family members.

In bivariate analysis, the relationships between dietary 
patterns and potential confounders were initially explored 
by comparing the distributions of mean ± standard 

deviation (SD) of the potential confounders between the 
lowest and highest tertiles of dietary pattern categories 
(split at the tertile of dietary pattern scores). They were 
using dietary pattern scores as the continuous inde-
pendent variable and minerals level as the continuous 
dependent variable, linear regression models were used 
to evaluate the primary study questions about diet and 

Table 1 Sociodemographic of a sample of 380 children and the 
guardian’s identity, education level, and household income per 
capita

a Includes Grandparents, Uncles, Aunts, and brothers & sisters
b GED General Equivalency Diploma

Variable Mean (SD) or %

Age (years) 6.17 (0.68)

Gender
 Male 53.7%

 Female 46.3%

Guardian
 Parents 59.2%

  Othersa 40.8%

Guardian’s education level
  < High school 63.7%

 High school diploma or  GEDb 27.3%

 Some education beyond high school 9.0%

Per-capita annual income (CNY)
  < 20,000 24.5%

 20,000 – 50,000 45.0%

  > 50,000 30.5%

Table 2 Factor loadings of the 13 food groups in the four 
principal components extracted from the PCA of frequency of 
food intake data of 380 children

Food groups Pattern 1 Pattern 2 Pattern 3
Vegetables/Nuts Snacks/

Beverages
Cereals/Beans

Cereals 0.020 0.039 0.711
Beans 0.176 0.012 0.647
Red meat 0.385 0.348 ‑0.012

Poultry 0.390 0.522 ‑0.100

Eggs 0.049 ‑0.070 0.109

Aquatic foods 0.515 0.010 0.091

Milk ‑0.052 0.217 0.353
Vegetables 0.651 ‑0.083 0.041

Homonemeae 0.606 ‑0.015 0.080

Fruits 0.402 0.182 0.440
Beverages ‑0.079 0.701 0.114

Nuts 0.633 0.324 0.007

Snacks 0.041 0.673 0.187
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blood minerals. In multivariable models, the child’s gen-
der, guardian’s educational level and income, and kinship 
to the child were added to each model. These variables 
were selected as confounders based on the results of the 
bivariate confounder analysis and prior research [36].

Results
General characteristics of study population
The sample comprised 176 (46.3%) girls and 204 (53.7%) 
boys. The mean age of the selection was 6.17  years (SD 
0.68  years). Other descriptive statistics are shown in 
Table 1.

Dietary patterns
Using PCA and varimax rotation, three distinct dietary 
patterns were identified for the overall population, which 
explained 33.220% of the total variance in food intake. 
The factor loadings of the food groups contributing to 
the three dietary patterns are reported in Table 2 (groups 
with component loadings ≥|0.3| are bolded). Dietary pat-
tern one, named ‘Vegetables/Nuts,’ explained 15.094% 
of the variance in food intake. High factor loadings on 
vegetables, homonemeae, nuts, aquatic foods, and fruits 
characterized this pattern. Pattern two, labeled ‘Snacks/
Beverages,’ explained 9.725% of the variance in food 
intake and was characterized by high loadings on bever-
ages, snacks, poultry, red meat, and nuts. Pattern three 
explained 8.401% of the variance in food intake and was 
named ‘Cereals/Beans.’ This pattern had high factor load-
ings on cereals, beans, fruits, and milk.

Concentrations of calcium, magnesium, iron, zinc, 
and copper in whole blood
The measurements of blood minerals for selected partici-
pants are summarized in Table 3. Based on the results of 
the K-W test, it appears that the concentration of the five 
minerals did not follow a normal distribution (P < 0.05). 
The median (IQR) for calcium, magnesium, iron, zinc, 
and copper were 69.63 (10.13), 41.09 (7.71), 434.70 
(114.53), 4.55 (1.13), and 0.89 (0.19) mg/ L, respectively. 
The range of five minerals is consistent with previous 
studies [37, 38].

Correlational analyses
Guardian’s income was associated with all three dietary 
patterns, such that children with higher scores on the 
Healthy pattern and lower scores on the Unhealthy pat-
tern were more likely to have parents/legal guardians 
who have a higher income (Table  4) compared to chil-
dren with lower scores on the corresponding pattern.

In regression analysis (Table 5), blood copper concen-
tration was related to a 0.14 higher Healthy dietary pat-
tern SD after adjustment for potential confounders (95% 

Confidence Interval (CI) 0.038 to 0.242, P = 0.004), and 
copper concentration was also associated with a 0.103 SD 
higher Unhealthy dietary pattern score (95% CI 0.002 to 
0.204, P = 0.045), and neither dietary pattern resulted in a 
copper concentration exceeding/below the normal range. 
Concentrations of calcium, iron, magnesium, and zinc 
were not associated with dietary pattern scores.

Discussion
This is the first study to explore the association between 
dietary patterns and blood minerals level. In the past 
20  years, the nutritional status of children in China has 
greatly improved, but there are still unhealthy diets and 
insufficient intake of micronutrients [39]. Dietary pat-
terns directly affect children’s nutritional and health sta-
tus. Therefore, studying the current situation of dietary 
patterns and evaluating the association between dietary 
patterns and micronutrients will provide a practical solu-
tion to improve the nutritional intake of children.

This study aimed to identify dietary patterns within 
school-age children and to explore the correlation with 
blood minerals (calcium, iron, copper, magnesium, and 
zinc) concentration. In this sample of school-age chil-
dren, three dietary patterns were identified – ‘Vegetables/
Nuts’ dietary pattern, ‘Snacks/Beverages’ dietary pattern, 
‘Cereals/Beans’ dietary pattern. One of the primary find-
ings was that household income was associated with dif-
ferences in pattern behavior. Children with higher family 
incomes tend to the ‘Healthy-conscious’ dietary pattern, 
and middle-income families tend to prefer the traditional 
‘Cereals/Beans’ dietary pattern.

Income and food cost are the two most important 
determinants of dietary convergence in developing 
nations [40]. While globalization presents a chance for a 
greater intake of healthy and diverse foods in economies 
in transition, it also permits an increase in the consump-
tion of inexpensive, energy-dense foods [41]. Several 
studies described the positive association between house-
hold income and ‘Healthy’ dietary patterns [42, 43]. And 
cross-sectional studies found that the ‘Unhealthy’ dietary 
pattern was inversely associated with income [44, 45]. 
The inverse relationship could be due to the high cost of 
healthy diets. [46–48]. A study based on the China Health 

Table 3 95% Confidence Interval of 5 Minerals

Minerals Median (IQR) (mg/ L) 95% CI (mg/ L)

Calcium 69.63 (10.13) 55.55–89.72

Magnesium 41.09 (7.71) 32.93–54.46

Iron 434.70 (114.53) 310.28–648.73

Zinc 4.55 (1.13) 3.23–6.55

Copper 0.89 (0.19) 0.65–1.22
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Table 4 Cross‑sectional associations between sociodemographic characteristics and dietary patterns among 380 children enrolled in 
a study on blood trace elements concentration and eating behavior

a Includes Grandparents, Uncles/ Aunts, and brothers/ sisters
b GED General Equivalency Diploma
**  P < 0.01, * P < 0.05

‘Vegetables/Nuts’ ‘Snacks/ Beverages’ ‘Cereals/ Beans’

Sociodemographic variables n Highest scores Lowest scores Highest scores Lowest scores Highest scores Lowest scores

Gender
 Male 204 70 64 70 71 74 59

 Female 176 57 62 57 55 53 67

 P value 0.491 0.844 0.068

Guardian
 Parents 225 77 64 78 75 75 79

  Othersa 155 50 62 49 51 52 47

 P value 0.115 0.758 0.553

Guardian education level
 Incomplete high school education 242 83 79 84 76 81 79

 High school diploma or  GEDb 104 32 36 32 37 35 37

 Some education beyond high school 34 12 11 11 13 11 10

 P value 0.830 0.630 0.940

Household income per capita (CNY)
  < 20,000 93 21 37 41 19 21 37

 20,000–50000 171 54 60 51 71 65 49

  > 50,000 116 52 29 34 37 40 41

 P value 0.004** 0.003** 0.036*

Table 5 Cross‑sectional associations between trace elements concentration and dietary patterns among 380 children enrolled in a 
study on mineral status and eating behavior

a All estimates are from linear regression models with the dietary pattern as the independent variable and elements concentration as the dependent variable
b Adjusted for child sex, guardian’s education level and income, and their kinship to the child
** P < 0.01; *P < 0.05

Dietary Pattern Trace Elements Unadjusted β (95% CI) a Adjusted β (95% CI) b

Vegetables/Nuts Ca ‑0.051 (‑0.152, 0.050) ‑0.047 (‑0.149, 0.056)

Fe 0.052 (‑0.049, 0.153) 0.050 (‑0.053, 0.152)

Cu 0.153 (0.053, 0.253) ** 0.140 (0.038, 0.242) **
Mg 0.051 (‑0.050, 0.152) 0.056 (‑0.047, 0.159)

Zn 0.060 (‑0.041, 0.161) 0.062 (‑0.041, 0.166)

Snacks/ Beverages Ca 0.042 (‑0.059, 0.143) 0.045 (‑0.057, 0.146)

Fe ‑0.004 (‑0.105, 0.098) ‑0.001 (‑0.103, 0.100)

Cu 0.109 (0.009, 0.210) * 0.103 (0.002, 0.204) *
Mg 0.061 (‑0.039, 0.162) 0.061 (‑0.041, 0.163)

Zn ‑0.033 (‑0.134, 0.068) ‑0.030 (‑0.132, 0.072)

Cereals/ Beans Ca ‑0.071 (‑0.172, 0.030) ‑0.067 (‑0.170, 0.037)

Fe ‑0.057 (‑0.158, 0.044) ‑0.063 (0.167, 0.040)

Cu 0.019 (‑0.082, 0.120) ‑0.001 (‑0.105, 0.103)

Mg ‑0.006 (‑0.108, 0.095) ‑0.004 (‑0.108, 0.101)

Zn ‑0.092 (‑0.192, 0.009) ‑0.094 (‑0.197, 0.010)



Page 6 of 8Yin et al. BMC Public Health         (2023) 23:1518 

and Nutrition Survey revealed that an increase in family 
income boosts protein and fat intake but has a negative 
correlation with carbohydrate consumption [49]. And 
individuals with higher salaries tend to consume a wider 
variety of foods. As expected, a significant positive cor-
relation exists between income and dietary knowledge, 
as higher-income persons are more health-conscious and 
have greater access to health information [50–52].

Another finding was that blood copper concentration 
was positively correlated with ‘Healthy-conscious’ die-
tary pattern scores and ‘Snacks/Beverages’ dietary pat-
tern scores after accounting for confounders, although 
the regression coefficient is low (P < 0.05, β < 0.3). Cop-
per metabolism is regulated by physiologic demand, but 
the mechanisms involved have not been elucidated. And 
copper deficiency does not occur frequently, and it most 
often occurs in patients with Menkes disease (MD), a 
genetic disorder of impaired copper homeostasis. Excess 
copper has also been reported in humans, most often 
being associated with another rare genetic disorder, Wil-
son’s disease (WD).

It is well known that none of the five minerals can be 
synthesized in the human body and can only be con-
sumed through foods. The best dietary sources of copper 
are shellfish, seeds, nuts, organ meats, and bran cereal. 
High-loading nuts and homonemeae in the ‘Healthy-con-
scious’ pattern are rich in copper (> 2.4 μg/g). In addition, 
about 55%—75% of dietary copper is absorbed, which 
is considerably higher than other minerals [53]. There-
fore, we speculate that elevated blood copper levels are 
a short-term effect caused by high copper dietary intake. 
Moreover, mRNA levels for many proteins involved in 
copper homeostasis in mammals (e.g., CTR1, ATP7A, 
and ATP7B) do not change in response to dietary cop-
per intake levels, demonstrating a lack of control at the 
level of gene transcription or transcript stability. Regula-
tion of copper intake and efflux may instead be controlled 
at a posttranscriptional level, predominantly by protein 
trafficking, as exemplified by the copper-transporting 
ATPases moving from the TGN to either the enterocyte 
BLM (APT7A) or the canalicular membrane of hepato-
cytes (ATP7B) when copper is in excess [54]. Copper 
metabolism is best known to be influenced by iron. It 
has been suggested that iron can interfere with cop-
per utilization, and high iron consumption can interfere 
with copper absorption in infants and adults [55]. Plant 
components in vegetables and tea (e.g., polyphenols, 
phytates) and soft drinks inhibit iron absorption, which 
may also contribute to an indirect increase in blood cop-
per levels [56].

Therefore, we propose that dietary patterns cannot 
reflect children’s long-term mineral needs. Firstly, the 
proportion of mineral elements in the blood is extremely 

low, making the blood concentration highly susceptible 
to a short-term diet. Meanwhile, the interaction of min-
eral elements also makes their concentration unpredict-
able. In August 2021, the National Health Commission 
of China issued a notice that trace elements testing of 
children shall not be carried out as a medical examina-
tion item unless the diagnosis and treatment needs. The 
blood concentration of trace elements in healthy indi-
viduals remains relatively stable because they are strictly 
regulated [57–64]. Evaluating the trace elements status in 
healthy children through blood concentration still needs 
further study.

There are several limitations to our study. Firstly, the 
research may be limited in its ability to generalize con-
clusions due to a small sample size and narrow age range 
among participants. Secondly, the research was carried 
out only in one specific city, which may restrict the gen-
eralization of the results to other areas. Thirdly, the study 
participants were healthy individuals, but low blood lev-
els due to element deficiency are usually accompanied by 
obvious clinical symptoms. Finally, we cannot exclude the 
possibility of residual confounding in the analysis due to 
unmeasured or imprecisely measured factors. It is possi-
ble, for example, that dietary intake is only one compo-
nent of an overall lifestyle that affect the content of blood 
minerals. Such passive smoking [65, 66] and high-inten-
sity exercise [67, 68] can lead to significant changes in 
blood minerals.

Mineral homeostasis is a complex and highly regulated 
process involving acquisition, utilization, storage, and efflux. 
Although some limitations may apply, blood mineral con-
centration is still used as the standard for evaluating trace 
elements status in patients. To comprehensively evaluate 
minerals status, both laboratory tests and the clinical assess-
ment of trace elements deficit symptoms might be required.

Conclusions
This study demonstrated that dietary patterns had no 
effect on blood mineral levels and found an association 
between household income and dietary patterns. Ade-
quate minerals are essential for children’s growth and 
development. Therefore, the food intake pattern of chil-
dren should receive greater attention from public health 
policies, and the complex relationship between dietary 
patterns and mineral still needs further study.
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