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Abstract 

Background Quality surveillance data used to build tuberculosis (TB) transmission models are frequently unavailable 
and may overlook community intrinsic dynamics that impact TB transmission. Social network analysis (SNA) generates 
data on hyperlocal social-demographic structures that contribute to disease transmission.

Methods We collected social contact data in five villages and built SNA-informed village-specific stochastic TB trans-
mission models in remote Madagascar. A name-generator approach was used to elicit individual contact networks. 
Recruitment included confirmed TB patients, followed by snowball sampling of named contacts. Egocentric network 
data were aggregated into village-level networks. Network- and individual-level characteristics determining con-
tact formation and structure were identified by fitting an exponential random graph model (ERGM), which formed 
the basis of the contact structure and model dynamics. Models were calibrated and used to evaluate WHO-recom-
mended interventions and community resiliency to foreign TB introduction.

Results Inter- and intra-village SNA showed variable degrees of interconnectivity, with transitivity (individual clus-
tering) values of 0.16, 0.29, and 0.43. Active case finding and treatment yielded 67%–79% reduction in active TB 
disease prevalence and a 75% reduction in TB mortality in all village networks. Following hypothetical TB elimination 
and without specific interventions, networks A and B showed resilience to both active and latent TB reintroduction, 
while Network C, the village network with the highest transitivity, lacked resiliency to reintroduction and generated 
a TB prevalence of 2% and a TB mortality rate of 7.3% after introduction of one new contagious infection post hypo-
thetical elimination.

Conclusion In remote Madagascar, SNA-informed models suggest that WHO-recommended interventions reduce TB 
disease (active TB) prevalence and mortality while TB infection (latent TB) burden remains high. Communities’ resil-
iency to TB introduction decreases as their interconnectivity increases. “Top down” population level TB models would 
most likely miss this difference between small communities. SNA bridges large-scale population-based and hyper 
focused community-level TB modeling.
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Background
Tuberculosis transmission (TB) models indicate that 
interventions currently deployed in many countries 
are insufficient to meet the World Health Organization 
(WHO) 2035 elimination goals [1–3]. Determining 
which specific interventions are needed is contin-
gent on understanding context-specific transmis-
sion dynamics and drivers of this ongoing pandemic. 
Accurately describing M. tuberculosis epidemiology 
and understanding its within-population transmis-
sion patterns are challenging [4, 5]. Given its airborne 
route of transmission, index and contacts are dif-
ficult to identify with certainty. Also, its incubation 
period is dependent on host factors including, without 
being limited to, vaccination status, age, and  general 
immunity state, such that the period between initial 
infection and progression to active disease is highly 
variable. This is especially true in high-burden settings 
with reoccurring exposure to contagious people (TB 
disease / active TB), which in turn generates high rates 
of non-contagious but infected patients (TB infection / 
latent TB / LTBI).

TB transmission models are conventionally con-
structed as compartmental SEIR (standing for suscep-
tible, exposed (i.e., TB infection), infectious (i.e., TB 
disease), and recovered) models that include stochastic 
dynamics to account for time-dependent variance and 
transition of people between model categories [6–8]. The 
models are built and calibrated using population-level 
surveillance data, which can be inaccurate or absent for 
high-burden rural and remote areas in low-income coun-
ties. In such contexts, high-resolution understanding of 
highly variable local socio-demographic structures, com-
munity interconnectivity, and TB infection/disease dis-
tribution within those social structures could improve 
model realism and enhance prediction accuracy of the 
course of a TB epidemic and impact of control interven-
tions. Social network analysis (SNA) informed by eth-
nographic data on the nature and structure of contacts 
between people may offer insights and improve the real-
ism of compartmental models. Common SNA sampling 
approaches (i.e., snowball sampling from an interviewee’s 
(“ego”) contacts (“alters”) and cross-linking of places of 
social aggregation) were previously shown to identify 
additional TB disease patients and orient TB control 
workers toward subgroups with higher TB infection rates 
[9]. Coupled with molecular data, SNA also revealed the 
importance of ephemeral social contacts and behavioral 
patterns by showing that transmission occurred between 
people who could not necessarily name each other [10, 
11]. SNA-metrics were not previously used to calibrate 
and improve an agent-based stochastic TB transmission 
model.

Madagascar is a high TB burden country where most of 
the population live in remote rural settings characterized 
by tight-knit communities and crowded housing. In these 
settings, healthcare access is limited, disease surveillance 
systems are underperforming, and only partial TB epi-
demiological information is available due to significant 
under diagnosis and under reporting of cases [12]. Also, 
limited understanding of population dynamics and social 
interactions, both within and between remote communi-
ties, contributes to our inability to understand TB trans-
mission and hence design effective control strategies.

We used SNA to describe five independent and inter-
connected social networks surrounding patients diag-
nosed with TB disease in remote Madagascar. We fit 
network data to exponential random graph models 
(ERGMs) to generate stochastic, agent-based epidemic 
simulations of multi-year TB burden within those com-
munities. With this contextualized model, we evaluated 
the long-term impact of WHO-recommended TB con-
trol interventions. We also modelled re-introduction of 
TB disease following hypothetical TB elimination to esti-
mate resiliency of these isolated communities and excess 
death due to post-eradication spread.

Methods
Overview
We selected 5 TB-affected villages that were representa-
tive of Madagascar’s remote context to collect preva-
lence data on TB infection (i.e., latent TB) and disease 
(i.e., active TB). We administered individual-level ques-
tionnaires to infected patients and their contacts. Con-
tact data were used to construct a social network. Local 
and global centrality measures were calculated for each 
village network. Exponential random graph models 
(ERGM) were fit to identify covariates of tie formation in 
these networks. We then simulated an SEIR transmission 
model over the ERGM-derived networks. We calibrated 
the models on TB infection and TB disease prevalence 
data. Final models were used to predict long-term TB 
burden within these communities with and without spe-
cific interventions.

Study villages and participants
The Androrangavola commune of the Ifanadiana district 
in southeastern Madagascar (Fig. 1) is an isolated moun-
tainous region that exemplifies Madagascar’s rural demo-
graphics and living conditions including young age, large 
families living in shared households, and high commu-
nity proximity. Access to healthcare facilities is limited 
because TB diagnosis occurs at a centralized facility serv-
ing approximately 200,000 people. Together with poor 
diagnostics infrastructure, this contributes to underdi-
agnosing and underreporting of TB and could partially 
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account for why the reported regional incidence of TB 
disease is less than one-third of what WHO models pre-
dict at country level [12–14]. In Madagascar, fokontanys 
(hamlets) regroup, on average, 5–6 villages of between 
100 and 200 people and represent the lowest administra-
tive and communal structures. To develop representative 
network-based TB transmission models, we selected five 
independent villages of the Androrangavola commune in 
which Madagascar National Tuberculosis Program had 
previously diagnosed TB patients. All individuals within 
those communities were eligible to participate in SNA 
questionnaire data collection and TB prevalence survey. 
All prevalent TB patients were systematically offered 
to participate in the study and a house-to-house preva-
lence survey was also performed to recruit additional 
participants (see below). Patients under 15  years old or 
those unable to provide informed consent or participate 
in the questionnaire due to cognitive impairment were 
excluded.

Tuberculosis prevalence survey
All participants recruited during house-to-house vis-
its were tested for TB infection by tuberculin skin 
test (TST) [15]. All participants presenting with 

pulmonary-TB-compatible symptoms were tested for TB 
disease using Xpert MTB/RIF PCR assay (Cepheid, Sun-
nyvale, CA, USA) on sputum samples [16]. Contacts who 
did not participate were not tested for TB infection.

Social network data and sampling
Social networks were constructed from relational data-
sets comprised of participants with TB disease (“egos”) 
and their named contacts (“alters”). Egos and alters were 
connected to each other in the network by edges that 
represent different types of social contacts (e.g., house-
hold contact, regular non-household contact, etc.) and 
relationships (e.g., family members, close friends, pro-
fessional contacts, etc.). We first recruited TB disease 
patients who were labelled as “index cases” (index case 
here refers to patient initially included in the model and 
does not infer transmission directionality). Named con-
tacts of index cases were classified as follows: 1) “house-
hold contacts,” who sleep in the same house and eat 
meals together; 2) “close contacts,” who do not share a 
household but share meals together at least three times a 
week or spend time together every day; and 3) “other con-
tacts,” who have been named without fulfilling previously 
mentioned criteria. Using a snowball sampling method, 

Fig. 1 Study area and social network analysis: The Androrangavola commune and social networks created from each village (V1 to V5). Green 
nodes represent participants with TB disease or those in the “infected” model category, red nodes represent participants with TB infection 
or those in the “exposed” model category, and black either had negative tests or were untested and are hence confirmed or presumptively 
in the “susceptible” model category. Villages V1 and V2, represented in Network A, were combined due to geographical proximity and the small 
size of Village 2. Villages V3 and V4 are represented in Network B and make up a single network because questionnaires revealed they were socially 
interconnected. Village V5 is represented by Network C
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first-degree (i.e., ego’s contact) and second-degree (i.e. 
contact’s contact) contacts were located and recruited to 
participate in the same questionnaire and be tested for 
TB if not previously tested. Some named contacts could 
be found to complete a questionnaire and be tested for 
TB. Those who could not be tested for TB were neverthe-
less included in the network construction. All question-
naires were administered by a study investigator together 
with a Malagasy healthcare professional and oral transla-
tion was performed in real time (Supplementary material 
1). Entity resolution, which is the process of identifying 
when people appear multiple times in the dataset, was 
completed during the interview by confirming a named 
contact’s family and location. Because communities were 
small and close knit, it was feasible to ensure accurate 
contact information in the dataset.

The ‘igraph’ package for R (version 4.2.2; R Core 
Team, Vienna Austria) was used to construct social net-
works and calculate descriptive network statistics [17]. 
Demographic (e.g., age, sex, profession) and medical (e.g., 
TB disease, TB infection) data for each participant were 
incorporated into the network as nodal attributes (i.e., 
characteristics of network nodes, wherein each node rep-
resents a unique person (including egos and alters) in the 
dataset). Centrality measures and network characteristics 
for each village, including density (number edges within 
a network divided by the number of possible edges) and 
transitivity (clustering phenomenon whereby two alters 
of an ego also share an edge, which, structurally, forms a 
closed triad) were calculated.

Exponential random graph models
The ‘statnet’ package for R was used to generate 
exponential random graph models (ERGMs) for each 
network, wherein the coefficients estimated from the 
ERGMs represent the probability of a tie between two 
nodes, based on nodal characteristics, while also con-
trolling for network-level properties (e.g., transitivity, 
edgewise shared partners) [18, 19]. ERGM mathematical 
notation is defined in [19]; in brief, interpretation is simi-
lar to logistic regression, where the dependent variable is 
binary (tie/no tie), with an important difference: ERGMs 
allow for the violation of variable independence, which is 
inherent in relational datasets [19]. Significant nodal and 
network attributes from the best ERGM for each network 
served as the base input for TB transmission simulations 
(Supplementary material 2).

Network model assumptions and natural history of disease
Progression from infection to disease state was modelled 
according to fast-slow dynamics as typically used in TB 
transmission models using previously reported decreas-
ing rates of 38/1000, 3.4/1000, and 0.76/1000 (number 

of patients progressing to active disease per number of 
patients with latent infection), respectively, in the first 
year (rapid progression), two to five years, and the sixth 
year onward (slow progression) [20, 21]. We assumed that 
patients with TB disease are not being treated, as is typi-
cal for a majority of cases in rural Madagascar, and either 
recover spontaneously or die. Recovery (218/1000 people 
per year) and mortality (344/1000 people per year) rates 
are based on published estimates [22]. Recovered cases 
have an 80% protection against reinfection [23]. Since 
HIV prevalence in the study area was previously meas-
ured to be zero and since this is the most important risk 
factor for reinfection, we did not consider reinfections 
in the model [15]. The birth rate, corresponding to new 
people entering the model, was estimated as 34.8/1000 
per year, based on demographic and health survey data 
from the Malagasy study region [24]. The death rates of 
both susceptible and recovered people were estimated 
to be 4.8/1000 per year. These entry and exit data were 
calibrated to World Bank Data to achieve an overall 
population growth of around 2.5% per year [25]. Model 
parameters, assumptions, and references are presented in 
Table 1.

Model calibration
Most TB transmission models are created from a “top 
down” approach using population data to simulate 
target patients, communities, populations, or coun-
tries. [7] Fictive individuals are randomly generated 
and assigned relevant epidemiological characteristics 
that influence contact rates and transitions to different 
infection states. Our models were constructed using a 
“bottom up” approach by fitting individual attributes 
and relational structures from SNA on primary TB 
prevalence data. We built a stochastic network-based 
model with four infection stages (i.e., SEIR) that reflect 
the natural history of TB: 1) “susceptible,” no prior his-
tory of TB disease, negative TST, and either no active 
symptoms or a negative Xpert test; 2) “exposed,” TB 
infection defined by a positive TST and negative Xpert 
test; 3) “infected,” TB disease defined by positive Xpert 
test; and 4) “recovered,” a documented history of bac-
teriologically confirmed TB disease followed by either 
treatment or recovery. Individuals move across catego-
ries according to rate parameters in Table 1. The prob-
ability of “susceptible” individuals becoming “exposed” 
(TB infection) is a function of infection probability 
and contact rate. The contact rate is dynamic and var-
ies according to tie likelihood between any two nodes 
with characteristics in the best-fit ERGM for each vil-
lage. Infection rate was estimated by calibrating the 
model to achieve the estimated TB infection (latent 
TB) burden in the same villages [14]. The highest risk of 
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progression from “exposed” (TB infection) to “infected” 
(TB disease) occurs in the first year and decreases over 
time. Individuals either remain in this category until 
the end of simulations, move to the “infected” (TB dis-
ease) category, or exit the model when they die of non-
TB-related causes [20]. Simulations were run in time 
steps of a week because contact classifications in our 
field surveys were based on weekly interactions. Pri-
mary model outcomes included prevalence of TB infec-
tion, TB disease, number of recovered individuals, and 
TB mortality. Models were calibrated independently 

for each village network. Calibration simulations were 
run for 40  years with the goal of achieving an equi-
librium state reflecting TB infection and TB disease 
prevalence as measured in the prevalence survey. The 
‘EpiModel’ package for R was used to simulate trans-
mission dynamics over a stochastic network derived 
from our ERGM simulations (Fig.  2). [26]. EpiModel 
includes all disease  structures (e.g., SI, SIS, SIR), with 
user-defined inputs for SEIR-structured transmission, 
such as fast-slow stochastic transition likelihoods from 
latent to infected states. Underlying algorithms for 

Table 1 Model parameters

Parameters Definition Value Data source

Primary data

 Act Rate: Number of interactions 
per week

Average number of transmissible 
contacts per partnership per week

Averaged from SNA data

 Network A 70 per week SNA Data

 Network B 76 per week SNA Data

 Network C 69 per week SNA Data

Calibrated Data

 Infection Rate (inf ) Probability of infection per transmis-
sible contact between an infected 
and susceptible individual

Calibrated to 167/1000 per year Estimated by model calibration

Literature data

 Latency Stage 1: First 12 months (Lf ) First stage of infection: Vector 
value that is the rate of progression 
from latent infection to active disease 
for the first year

38/1000 per year Menzies et al. [20]

 Latency Stage 2: Years 2–5 (Ls1) Second stage of infection: Vector 
value that is the rate of progression 
from latent infection to active disease 
for years 2—5 after exposure

3.4/1000 per year Menzies et al. [20]

 Latent Slow Progressors: Year 6—15 
(Ls2)

Third stage of infection: Vector 
value that is the rate of progression 
from latent infection to active disease 
for years 6—15 after exposure

0.76/1000 per year Menzies et al. [20]

 TB Mortality Rate (TbM) Rate of people dying from active infec-
tion every year

344/1000 per year Ragonnet et al. [22]

 Recovery Rate (TbR) Rate of people recovering from Active 
TB every year

218/1000 per year Ragonnet et al. [22]

 Arrival Rate Birth rate for the region 34.8/1000 per year Instat-Madagascar 2010 [24]

 Death Rate: General Population Death rate for susceptible, latent 
infected, and recovered individuals

17/1000 per year Calibrated from The World Bank [25]

Fig. 2 Structure of tuberculosis SEIR transmission model: Primary data informing the model is shown in blue. This includes act rate, or the number 
of interactions between egos and alters per week, and prevalence of TB infection (latent TB) and TB disease (active TB). Metrics on the natural 
evolution of disease extracted from the literature are in green. Infection rate calibrated from community-specific social networks metrics 
is presented in red. Slow or rapid progression from infection to disease is based on time since initial exposure (see Table 1)
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network and transmission simulation are available in 
[26] and we included our model code as supplementary 
materials 4.

Achieving a steady state was challenging, particularly 
because the prevalence of exposed patients consistently 
decreased despite high infected rates. Our estimate from 
field data of 78% TB infection (latent TB) prevalence 
could be an overestimate due to our sampling strategy in 
which snowballing from TB disease patients might lead 
to oversampling of participants with TB infection in the 
dataset. We decreased the prevalence of latent TB infec-
tion at  t0 to 68% to account for this, which yielded a dif-
ference between model-generated prevalence at steady 
state and observed prevalence of around 10 to 15 fewer 
individuals with TB infection than expected when the 
infection rate was set to 167/1000 people per year (Sup-
plementary material 4). This calibration led to the closest 
estimates to our measured prevalence.

Model scenarios
Calibrated models were then used to simulate spe-
cific scenarios of public health and TB control inter-
est (Table 2). Scenario 1 (baseline model) simulates the 
natural history of TB in all villages with zero interven-
tions over the course of 15 years with 2035 as the end-
point i.e., the baseline model. Scenario 2 (intervention 
model) assesses the feasibility of achieving the WHO 
2035 elimination goals with currently recommended 
strategies. This is an intervention model representing 
active case finding and treatment within villages for a 
15 years period. In this scenario, we assumed that 98% 
of all TB disease cases were no longer infectious after 
six months. Scenario 3 (resiliency model) assesses how 
resilient communities would be to re-introduction of 
TB after hypothetical elimination. In this scenario, we 
assumed the population had previously been treated to 
the point of being TB naïve and initial parameters were 
set so that 98% of the population was susceptible and 
no one had active TB disease. This scenario assessed 
how TB can spread through communities under two 
different scenarios: introduction of a single case versus 

introduction of three cases of TB disease. Scenario 4 
(long-term model) represents the natural history of TB 
with no interventions over 65 years to show the natural 
course of TB throughout the villages and assesses the 
ability of the model to predict long-term TB dynam-
ics and estimate excess mortality due to untreated TB 
disease.

Results
Study population, setting, and TB prevalence
Participant sociodemographic characteristics and TB 
disease status are presented in Table  3. Mean partici-
pant age was 32.2  years old and the male:female ratio 
varied by village. A large majority of participants were 
subsistence farmers. All but two participants lived in 
one-room traditional mud houses where household 
members socialized, cooked, ate, and slept. Household 
size ranged from 3 to 10 people. TB disease (active TB) 
was diagnosed among seven patients across the five 
included villages. Prevalence of TB infection (latent TB) 
was 78%.

Social network analysis
The 83 egos generated 187 alters for a total of 270 net-
work nodes. Villages V1 and V2, represented in Network 
A, were combined due to geographical proximity and the 
small size of Village 2. Villages V3 and V4 are represented 
in Network B and make up a single network because 
questionnaires revealed they were socially intercon-
nected. Village V5 is represented by Network C (Fig.  1, 
Supplementary material 3). All three networks showed 
high levels of interconnectivity between participants, 
with network densities of 0.029, 0.029, and 0.15, respec-
tively, and transitivity (i.e., triad closure) values of 0.16, 
0.29, and 0.43, respectively (Table 3).

Impact of WHO‑recommended interventions
Active case finding and treatment (Scenario 2) over 
15 years led to significant decrease in TB disease prev-
alence compared with the baseline model (Table  4). 
At the end of the simulation, Network A had 0 disease 

Table 2 Model scenarios

Scenario Purpose Time Baseline Value Scenario specific parameters

Baseline model Simulate natural evolution of TB 15 years Baseline parameters None

Intervention model Simulate Active Case Finding and Treat-
ment Assess achievability of End TB goals

15 years Recovery rate 218/1000 per year Recovery Rate 980/1000 per 6 months

Resiliency model Assess resiliency of community to reintro-
duction of active disease

15 years SEIR distribution 30% of popula-
tion susceptible

SEIR distribution 98% of population 
susceptible

Long-term model Assess the natural history of TB over a Mal-
agasy life expectancy under baseline 
conditions

65 years Baseline parameters None
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(active TB) cases and 44 infection (latent TB) cases. 
Network B had 0 disease cases and 51 infection cases. 
Network C had 0 disease cases and 20 infection cases. 
There was a 79%, 75%, and 67% reduction in TB dis-
ease prevalence in Networks A, B, and C, respectively. 
Meanwhile, latent TB infection prevalence only slightly 
declined by 6.1%, 2.3%, and 4.4%, respectively, in Net-
works A, B, and C. TB mortality decreased in all three 
networks with active case finding and treatment, with 
Network B experiencing the largest reduction at 78%, 
Network C at 75%, and Network A at 73% (Table 4 and 
Fig. 3).

Community resilience to TB disease
TB disease prevalence in Networks A and B remained 
under 1% for all simulations, and the highest preva-
lence of latent TB infection reached was 8.7%. Mortal-
ity in those networks was around 1.3% after a single 
case introduction. Mortality increased to 4.1% and 3.5% 
in Networks A and B, respectively following three new 
case introductions. In Network C, TB disease prevalence 
was > 2% in both scenarios. Mortality was also higher 
than in the other networks at 7.3% and 15.6% follow-
ing one and three new case introductions, respectively. 
Latent TB infection prevalence increased to 27.2% and 
33.7%, returning to levels estimated in models in which 
no intervention was undertaken (Fig. 3).

Long‑term evolution of TB disease
The generation models were run for 65  years with no 
interventions to simulate long-term TB dynamics (sce-
nario 4). Initial parameters for each network matched 
baseline prevalence from our field-informed estimates 
with no new introductions of TB from outside sources. 
In all three networks, TB disease prevalence reduced to 
0.2% or lower and latent TB infection decreased to 1.5% 
or lower. Mortality was high in all three networks, 14.9%, 
14.5%, and 17.2% in Networks A, B, and C, respectively 
(Fig. 3).

Discussion
SNA methods were previously used in contact tracing 
campaigns or to descriptively understand TB transmis-
sion in specific settings. [7–11, 27, 28] We believe this 
is the first study that leverages SNA-metrics to calibrate 
and improve an agent-based stochastic TB transmission 
model. Our innovative approach allowed us to confirm 
and measure discrepancies in TB transmission dynam-
ics between networks and highlights the added value of 
the SNA approach to increase the accuracy of predic-
tion models and the resolution of outcomes at commu-
nity level. Although the study communities have many 
similarities, such as geography, demographics, and live-
lihoods, our SNA approach highlighted important social 
variations (e.g. density and transitivity) that drive differ-
ences in disease transmission and burden.

Although our models showed a considerable reduction 
in the burden of TB disease (active TB) and TB mortal-
ity rates following active case finding and treatment, the 
WHO’s End TB targets were not reached on a 15-year 
projection [1]. The prevalence of TB infection (latent 
TB) only slightly decreased over 15  years of interven-
tion confirming the persistence of TB reservoirs after 
systematic treatment of active cases. Although it is not 
currently part of Madagascar’s control protocol, models 

Table 3 Participants and networks characteristics

SD Standard deviation, TB tuberculosis, TST tuberculin skin test; Nodes: 
individuals, Edges: connections between individuals, Density: the number of 
actual ties in a network divided by the number of potential ties, Transitivity: the 
clustering phenomenon whereby two alters of an ego also share a tie, which, 
structurally, forms a closed triad

Network A Network B Network C

Village 1 & 2 Village 3 & 4 Village 5

(n = 107) (n = 118) (n = 45)

Participants characteristics

 Demographics

  Mean age in years (SD) 33 ± 16 32.6 ± 15.3 31.1 ± 13.7

  Male 54 (50.5%) 67 (56.8%) 17 (37.8%)

  Female 53 (49.6%) 51 (43.2%) 28 (62.2%)

 Occupation

  Farmer 92 (86.0%) 100 (84.7%) 38 (84.4%)

  Student 6 (5.6%) 6 (5.1%) 5 (11.1%)

  Community health 
worker

1 (0.9%) 1 (0.8%) 0 (0.0%)

  Teacher 4 (3.7%) 4 (3.4%) 0 (0.0%)

  Blacksmith 1 (0.9%) 0 (0.0%) 0 (0.0%)

  Business owner 1 (0.9%) 3 (2.5%) 0 (0.0%)

  Local midwife 1 (0.9%) 0 (0.0%) 0 (0.0%)

  Cattle keeper 1 (0.9%) 0 (0.0%) 1 (2.2%)

  Elder 0 (0.0%) 1 (0.8%) 0 (0.0%)

  King of the village 0 (0.0%) 1 (0.8%) 1 (2.2%)

  President of the foko-
tany

0 (0.0%) 1 (0.8%) 0 (0.0%)

 Tuberculosis status

  Active cases 3 3 1

  Latent TB cases 23 35 19

  TST tested 30 48 20

  TST positivity rate 76.6 72.9 95.0

 Network characteristics

  Nodes 107 118 45

  Edges 165 197 151

  Density 0.029 0.029 0.15

  Transitivity 0.16 0.29 0.43

  Mean Degree 6.2 6.7 13.4
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suggest a potential role for TB preventive therapy (TPT) 
as has been previously suggested in other settings [29, 
30]. Although elimination is not yet achieved, we used 
the models to assess community “resilience,” or how eas-
ily TB disease could re-establish in TB-naïve communi-
ties. This is of particular importance given the vertical 
nature of TB-specific programs, which often consists of 
temporally and geographically focused TB elimination 
campaigns for communities that are served by poorly 
developed universal health systems. We tested this in 
our 15-year resiliency simulations. In networks A and B, 
when three new active cases of TB were introduced at  T0, 
the burden of TB disease remained below 200/100,000 
with a mortality rate of 4,100/100,000. However, latent 
TB infection remained at 8,700/100,000, which is con-
cerning, because although this is a decrease from current 
estimates, it nevertheless indicates a remnant disease res-
ervoir was not eliminated. Network C showed lower resil-
ience against active TB disease, reaching 2,700/100,000. 
TB infection prevalence and mortality were also higher 
than in Networks A or B. Network C exhibits higher 
structural centrality as shown in density and transitivity 
values, indicating that people in that community, overall, 
have larger social networks. Density refers to the num-
ber of ties within a network divided by the number of 
potential ties. Transitivity is the clustering phenomenon 

whereby two alters of an ego also share a tie, which, 
structurally, forms a closed triad. This is also reflected in 
the higher mean degree, which is the mean number of 
connections each person in the network has. Therefore, 
there are more opportunities in Network C to be exposed 
to TB compared with the other networks, indicating that 
intensity of social contacts might foster greater exposure 
to TB. Such inter-community differences would not be 
captured by conventional transmission models.

Our study had several limitations. Sample size was lim-
ited, and inclusions were opportunistic, meaning that we 
prioritized contacts according to willingness to partici-
pate and potential TB symptoms. Many contacts lived in 
barely accessible field houses. Individuals under 15 years 
old were not included and could have equally contributed 
to disease transmission. This might have biased individu-
als’ representation in our models. Estimating time and 
frequency of contacts was sometimes challenging, espe-
cially in the context of close and frequent contacts. This 
may have influenced the density metrics of community 
networks. We did not collect sputum from asymptomatic 
participants, so we may have underestimated TB disease 
prevalence. In parameterizing our models, we did not 
incorporate the possibility for reinfection. This clinical 
scenario is mostly encountered among immunocom-
promised patients, such as those with HIV or diabetes 

Table 4 Tuberculosis transmission models and interventions predictions

LTBI latent tuberculosis infection, TB tuberculosis

Active TB proportion Recovered proportion TB Mortality proportion LTBI proportion

Network A

 Starting prevalence 1.9 - - 67.0

 Original 2.9 ± 1.4 7.9 ± 2.4 14.0 ± 3.6 39 ± 4.0

 Intervention 0.6 ± 0.6 17.7 ± 3.5 3.4 ± 1.8 33.5 ± 3.3

 65 Years 0.2 ± 0.3 4.7 ± 1.4 14.9 ± 2.0 1.5 ± 0.7

 1 reintroduction 0.2 ± 0.5 1.9 ± 0.9 1.3 ± 1.2 3.5 ± 2.7

 3 reintroduction 0.7 ± 0.8 3.3 ± 1.4 4.1 ± 2.1 8.7 ± 4.5

Network B

 Starting prevalence 1.7 - - 68.0

 Original 2.4 ± 1.6 7.6 ± 2.5 13.7 ± 4.1 38.7 ± 3.2

 Intervention 0.6 ± 0.7 16.2 ± 3.4 2.8 ± 1.3 35.3 ± 3.4

 65 Years 0.1 ± 0.2 4.6 ± 1.0 14.5 ± 1.8 1.4 ± 0.6

 1 reintroduction 0.4 ± 0.6 2.0 ± 1.2 1.4 ± 1.7 4.6 ± 5.1

 3 reintroduction 0.6 ± 0.7 3.1 ± 1.3 3.5 ± 2.3 8.7 ± 4.4

Network C

 Starting prevalence 2.2 - - 67.0

 Original 3.0 ± 2.9 10.6 ± 4.4 19.7 ± 7.6 40.9 ± 6.9

 Intervention 0.9 ± 1.2 22.2 ± 6.9 4.6 ± 3.4 35.3 ± 6.3

 65 years 0.2 ± 0.4 5.2 ± 2.1 17.2 ± 3.2 1.3 ± 1.1

 1 reintroduction 2.1 ± 2.4 7.5 ± 3.4 7.3 ± 5.2 27.2 ± 11.9

 3 reintroduction 2.7 ± 2.4 12.8 ± 5.2 15.6 ± 7.0 33.7 ± 7.0
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mellitus, and data from the study area showed 0% HIV 
prevalence and type-II diabetes mellitus prevalence was 
unknown [15].

Latent TB infection in scenario 4 (i.e., 65 years projec-
tion) decreased to very low prevalences and we were not 
able to simulate the prevalences we estimated from our 
field study. In the models, our starting prevalences, rep-
resented by the initial conditions, were meant to reflect 
the community baselines given that there has been no 
TPT administration or other treatment strategies to diag-
nose and treat latent TB infection. Without any LTBI 
treatment, we would expect the TB burden to remain rel-
atively steady across a generation. However, we could not 
replicate this in our models and, rather, LTBI declined 
over time and never reached a steady state, even after 
a 65-year simulation. This could be because we did not 
take into consideration individual mobility and outside 
sources of transmission. In the survey data, 88% of the 
population reported traveling to the commune center for 
market day at least once a week. Some participants also 
reported traveling to outside villages at least once a year. 
These frequent or socially intense mobilities could be 

important for TB transmission and importation into vil-
lage communities and could be particularly important for 
maintaining high levels of LTBI that we could not capture 
in our models without incorporating spatial dynamics.

Conclusion
SNA highlights community-specific differences in social 
structures. SNA-informed stochastic models enable 
higher resolution and community-specific modeling 
of TB control interventions. More comprehensive and 
longitudinal characterization of setting-specific social 
dynamics and better data on regional mobility and 
contact patterns when traveling (e.g., frequency and 
intensity of close contacts) are needed. These insights 
would improve models further and would highlight the 
expected community-specific impact of recommended 
approaches to TB elimination.
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