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Abstract
Background  Acute respiratory infections (ARI) in Cúcuta -Colombia, have a comparatively high burden of disease 
associated with high public health costs. However, little is known about the epidemiology of these diseases in the city 
and its distribution within suburban areas. This study addresses this gap by estimating and mapping the risk of ARI in 
Cúcuta and identifying the most relevant risk factors.

Methods  A spatial epidemiological analysis was designed to investigate the association of sociodemographic and 
environmental risk factors with the rate of ambulatory consultations of ARI in urban sections of Cúcuta, 2018. The ARI 
rate was calculated using a method for spatial estimation of disease rates. A Bayesian spatial model was implemented 
using the Integrated Nested Laplace Approximation approach and the Besag-York-Mollié specification. The risk of ARI 
per urban section and the hotspots of higher risk were also estimated and mapped.

Results  A higher risk of IRA was found in central, south, north and west areas of Cúcuta after adjusting for 
sociodemographic and environmental factors, and taking into consideration the spatial distribution of the city’s 
urban sections. An increase of one unit in the percentage of population younger than 15 years; the Index of 
Multidimensional Poverty and the rate of ARI in the migrant population was associated with a 1.08 (1.06—1.1); 1.04 
(1.01—1.08) and 1.25 (1.22—1.27) increase of the ARI rate, respectively. Twenty-four urban sections were identified as 
hotspots of risk in central, south, north and west areas in Cucuta.

Conclusion  Sociodemographic factors and their spatial patterns are determinants of acute respiratory infections in 
Cúcuta. Bayesian spatial hierarchical models can be used to estimate and map the risk of these infections in suburban 
areas of large cities in Colombia. The methods of this study can be used globally to identify suburban areas and or 
specific communities at risk to support the implementation of prevention strategies and decision-making in the 
public and private health sectors.

Keywords  Acute respiratory infections, Bayesian spatial hierarchical regression model, Besag-York-Mollie specification 
-BYM, Integrated Nested Laplace approximation -INLA, Cúcuta / Cucuta –North Santander, Colombia, Suburban areas, 
Sociodemographic and environmental risk factors, Hotspots or risk, Spatial epidemiological analysis
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Introduction
Acute Respiratory Infections (ARI), including both 
upper and lower respiratory infections, are major causes 
of morbidity and mortality in all age groups, especially 
in low- and middle-income countries [1, 2]. Extensive 
research exists on the physiopathology of these diseases 
and their overall association with individual risk factors. 
These factors include environmental conditions such as 
indoor and outdoor air-quality which are often affected 
by burning biofuels [3], wildfires [4] and traffic conges-
tion [5], and climatic factors such as temperature and 
precipitation [6, 7]. Social and demographic charac-
teristics have also been relevant, including poverty [8, 
9], immigration status [10], ethnicity [4, 9], and age for 
both the very young and the elderly being at higher risk 
[11]. Recent studies have further identified the role of 
geographic variability in the risk of ARI, and the need 
to understand the spatial distribution of risk at both the 
state [6, 12] and at finer census district levels [7, 10]. To 
use these findings in a practical public health decision 
making context, it is therefore important to understand 
how risk varies at a local level. The spatial heterogene-
ity of the infection risk can be considered in epidemio-
logical analyses to increase the accuracy of prediction of 
outbreaks and identifying potential underlying factors 
determinant of these infections [13].

In Colombia, the morbidity of ARI represents 5% of 
all ambulatory consultations and 7% of all hospitalisa-
tions, with the North Santander region and its capital 
city Cúcuta having a comparatively higher burden of dis-
ease [14]. Despite the health impacts and public health 
costs associated with ARI, few studies have investigated 
the epidemiology and risk factors of these diseases in the 
region. Previous studies have used surveys to identify the 
association of poor air quality with a higher incidence of 
ARI in specific areas or targeted communities such as 
childcare centres in Cúcuta [15, 16]. However, there is 
little research on the association of these diseases with 
social, demographic and environmental risk factors and 
for larger areas or communities in the region. This gap 
can be explained in part because of the absence of high-
quality morbidity data. The Department of Health pro-
vides statistics on ARI for each health centre and hospital 
in Cúcuta, but this does not include information such as 
specific disease groups and the patient’s residence. These 
data limitations can impact the effectiveness of decision-
making in public health since analyses of basic statistics 
might not be sufficient to identify the most at-risk pop-
ulations, and therefore exacerbate the role that external 
factors such as political trends have on shaping public 
health initiatives in place of an evidence-based approach 
[17].

An important limitation of the statistics on ARI in 
Cúcuta is that these data are not linked to key information 

such as the place of residence which prevents the calcula-
tion of indicators for specific areas. However, previous 
research has introduced a method to estimate the cases 
of ARI in Cúcuta for high-spatial-resolution areas aligned 
with the census districts, using data from the Depart-
ment of Health [18]. In the context of limited health data, 
spatial analysis methods provide a robust tool for epi-
demiological studies to estimate and map disease risk. 
Spatial epidemiology is becoming a common approach 
to estimate the morbidity risk of infections in Colombia, 
especially for vector borne diseases such as Zika, dengue 
fever, malaria and chikungunya [19–23]. Although previ-
ous studies have mapped the risk of some infectious dis-
eases in North Santander [24], spatial analyses on the risk 
of respiratory infections have not been implemented in 
Cúcuta or other cities in the region.

Spatial statistics can be used to analyse health data in 
suburban areas to identify significant determinants of 
diseases such as ARI. Spatial regression models incor-
porate the spatial structure of the data (i.e., their inter-
relation between geographical areas) to increase the 
robustness of risk estimates [25, 26]. Bayesian models 
are especially effective for analyses of spatially distrib-
uted data due to their suitability to specify hierarchical 
structures in the data that need to be taken into account 
for statistical inference [27]. The Bayesian approach has 
been increasingly used due to the higher computation 
capabilities developed in the last three decades and the 
extended use of these methods in epidemiological studies 
[28]. An additional advantage of Bayesian analyses is they 
allow the development of risk maps which is of particular 
interest to study the morbidity in suburban areas of large 
cities such as Cúcuta. The present study aims to map the 
risk of ARI in Cúcuta and to identify the most relevant 
risk factors for these diseases. The objectives are to esti-
mate the association of socioenvironmental risk factors 
with ARI in Cúcuta, and to estimate the risk in specific 
suburban areas and identify hotspots of risk, using a hier-
archical Bayesian spatial model. This analysis would allow 
the identification of specific communities at risk to sup-
port directed and more effective surveillance and preven-
tion strategies.

Methods
The study followed an ecological design, using census 
districts as the ecological units. A Bayesian spatial regres-
sion was used to estimate the association of sociodemo-
graphic and environmental risk factors with the incidence 
rate of ARI in Cúcuta, in the 12-month period from 1st 
January to 31st December 2018. The risk of ARI was then 
mapped, and a cluster analysis was implemented to iden-
tify the hotspots of higher risk. This study was approved 
by the ethics committee of the University of Santander 
(VII-FT-025-UDES, 021 25/06/2019).
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Study area
Cúcuta is the capital city of the North Santander Depart-
ment located in the northeast of Colombia, sharing with 
Venezuela one of the most important international bor-
ders in Latin America in terms of social mobility and 
commerce [29] (Fig. 1). The city is generally flat with an 
average altitude of 320 m above the sea level, and an area 
of 1.176 km² which represents 5.65% of the Department 
area. It has an average temperature of 28 °C and average 
annual rainfall of 1,041 mm with small seasonal changes 
throughout the year. Cúcuta had an estimated population 
of 787,891, and in 2020 it was estimated that approxi-
mately 12% of the population were Venezuelan migrants 
[30]. The city’s geographic areas are categorised into 
460 Urban Sections (USEC) established by the National 
Department of Statistics -DANE with an average size of 
113,558 m2 (quartile-1: 83,216 m2; quartile-3: 175,929 
m2) [31].

Data
Data on the number of new consultations with a diag-
nosis of ARI from each health service in Cúcuta for 
the study period were obtained from the Public Health 
Department. As these data did not include geographical 
identifiers (i.e., place of residence), the number of ARI 
consultations per USEC was calculated using a method 
for spatial estimation of disease rates described elsewhere 
[18]. In brief, the consultations per USEC were estimated 

by categorising each health service into their correspond-
ing USEC. Spatial zones were established for each health 
service considering the spatial extent of areas receiving 
their services and their level of complexity (i.e., primary, 
intermediate and high-complexity health services). A 
weight value was assigned to each spatial zone according 
to the proportion of the population in each USEC. The 
ARI consultations per zone were multiplied by the weight 
value to obtain the ARI cases per USEC. The rate of ARI 
(ARI-r) per USEC was then calculated as the total ARI 
cases divided by the USEC population.

Cúcuta has health services exclusive to the Venezuelan 
migrants, which are considered a particularly vulnerable 
population with higher risk of infectious diseases [32]. 
Data from these health services were included in the 
ARI-r calculations described above. In addition, an esti-
mate of the ARI in the Venezuelan migrant population 
was calculated as the proportional rate of ARI in Ven-
ezuelan migrant health services per total USEC popula-
tion, using the same method as the ARI-r. The total USEC 
population was used since no estimate of the Venezuelan 
migrant population in each USEC was available, noting 
there is high mobility in this population.

Data on air quality for Cúcuta are provided by the 
Institute of Hydrology, Meteorology and Environmental 
Studies -IDEAM, from monitoring stations strategically 
located which use the National Air Quality Monitor-
ing Protocol [33]. These data include daily measures of 

Fig. 1  Geographical location and satellite view of Cúcuta (inset)
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particulate matter (PM10) (other pollutants are not mea-
sured by all the stations), therefore PM10 levels were 
obtained and averaged for the year 2018. Since there are 
only 3 monitoring stations, to calculate the PM10 value 
in any unmeasured location of the city, an inverse dis-
tance weighting interpolation model was implemented in 
ArcMap (v.10.6). Then the average PM10 level was calcu-
lated (as quintiles) in each USEC.

The age profile of each USEC were summarised by the 
percentages of the population younger than 15 years and 
the population older than 65 years, according to the 2018 
census data. Other sociodemographic data included the 
Index of Multidimensional Poverty (IMP) that incorpo-
rates 15 indicators to estimate five dimensions of poverty, 
with higher values indicating poorer areas, and the Index 
of Population Economically Active (PEA) [34]. Climatic 
factors such as temperature and rainfall were not con-
sidered in this analysis as there is insufficient variance 
across the study area.

Analysis
A Bayesian hierarchical spatial model was used to esti-
mate the association of the ARI-r with the sociode-
mographic and environmental covariates in the study 
period. For the i -th USEC, the ARI consultations (ηi)  
were modelled as

	 yi ∼ Poisson (λi)

with the linear predictor defined on the logarithmic scale:

	ηi = log (λi) = α + βxXxi + log (popi) + ui + sti

where α  is the intercept; X  represents the vector of 
covariates (PM10, PEA, IMP, proportional ARI rate in 
migrants, population < 15 years and population > 65 
years) with their respective regression coefficients βx
; and log (popi)is the log of the population included as 
the offset. The parameters ui  and sti  are random effects 
representing the unstructured (non-spatial) and spa-
tially structured residuals in the model, according to the 
Besag-York-Mollie (BYM) specification [35]. The BYM is 
a standard model for estimation of associations when the 
output variable is broken down into a random Poisson 
component, a spatially structured area (random effect 
component), and an unstructured random component, 
across the spatial units [36]. With this specification, sti  
is modelled using an intrinsic conditional autoregressive 
structurewi

	
wi =

∑
j∈N (i) sti

#N (i)
ands2i =

δ2υ
#N (i)

which incorporates an adjacency matrix, where #N  is 
the number of USEC that share boundaries with the ith  
USEC.

The model has two hierarchies given by the parameters 
of the prior distribution (i.e. hyper-parameters) and the 
distribution of hyper-parameters, for which the prior of 
the structured and unstructured components need to be 
specified. To set these, models using four non-informa-
tive priors were compared before the analysis, using the 
Deviance Information Criterion (DIC) to establish the 
prior that produced the best fit model (i.e., lowest DIC). 
In addition, as there are no previous studies assessing 
the effect of different adjacency matrices of the Cúcuta’s 
USEC, five adjacency matrices were compared to iden-
tify the best fit model, following the method introduced 
by Cortes-Ramirez, Vilcins [37]. These preliminary 
analyses identified a prior logτv ∼ logGamma (0.1, 0.1)
, log τυ ∼ logGamma (0.001, 0.001), and an adjacency 
matrix with a queen specification (i.e., including all 
neighbour USECs sharing a border per USEC) to produce 
the best fit in all models compared (details in the supple-
mentary material). The queen specification was also used 
to test for spatial autocorrelation (i.e., the degree of the 
spatial association of each variable between neighbour 
area) [38] using the Moran test in R [39]. The ARI-r and 
all the predictors had a positive and significant Moran’s 
I estimate which confirmed the occurrence of spatial 
dependency in the data (details in the supplementary 
material).

The variance explained by the structured spatial com-
ponent of the Bayesian model was obtained from a 
comparison between the posterior marginal variance of 
the structured and unstructured effects [27]. All Bayes-
ian models were done in R using the R-INLA package 
that uses the Integrated Nested Laplace Approximation 
(INLA) [40] which is a standard alternative to Markov 
Chain Monte Carlo methods to produce regression esti-
mates in analyses of spatially auto correlated data [25].

The occurrence of multicollinearity between the pre-
dictors was assessed as this can affect the interpretation 
of the regression coefficients. A Variance Inflation Factor 
(VIF) test was implemented where a V IF ≥ 5 was con-
sidered collinearity [41], with no collinearity found for 
any of the predictors.

Preliminary sensitivity analysis
To assess the independent effect of the predictors, the 
model with all covariates (full model) was compared 
with models that gradually eliminated variables without 
statistical credibility (credible intervals crossing the null 
value 1). To control for restricted selection of potential 
predictors and unstable covariates selection in this back-
ward approach, the base model was compared with mod-
els that incorporated all combinations of adding one or 
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more of the other covariates without statistical credibil-
ity. This process produced models with similar results to 
the model obtained by backwards elimination in terms of 
the statistical credibility of the predictors.

Specific risk of ARI per USEC and cluster analysis
The distribution of the USEC-specific relative risk of ARI 
(compared to the whole of Cúcuta) was mapped using 
the marginal random effects in the full model. Since the 
probability of increased risk calculated in spatial analy-
ses can be used as a decision rule threshold [42], the 
probability of a 1.5-fold higher risk of ARI (i.e. excess 
risk > 1.5) was calculated from the posterior distribu-
tion. For the identification of hotspots of risk, the USEC 
with increased risk, irrespective of magnitude, that were 
surrounded by USEC also having increased risk were 
labelled high-high risk USEC or hotspots of risk, follow-
ing similar approaches to identify clusters of risk in other 
spatial epidemiological analyses [43]. The same approach 
was used to identify cold spots (low-low risk USEC). All 
maps were produced with the R-package T-map [44].

Results
There were 118,469 cases of ARI in Cúcuta over the study 
period with an average ARI-r of 25.8 cases per 100 peo-
ple. Table  1 shows the summary statistics of the ARI-r 
and the predictors.

The spatial distribution of the ARI-r and the predictors 
is shown in Fig. 2.

The backward elimination modelling approach identi-
fied only three covariates with coefficients with statisti-
cal credibility: the proportional ARI rate in migrants, 
the IMP and the proportion of population < 15 years. 
The model with only these three variables did not have 
a better fit than the full model as the DIC difference was 
< 2 —i.e., it does not account for a better model fit [45]. 
Table 2 shows the exponentiated posterior mean for the 
fixed effects (regression coefficients) of the full model. A 
positive association was found for the proportional ARI 
rate in migrants, the population < 15 years and the IMP 
with the ARI-r. Both hyperparameters were associated 
with an increased ARI-r risk. The exponentiated regres-
sion coefficients can be interpreted as relative risks (i.e., 

an increase of 1 unit in the proportional ARI rate in 
migrants, the population < 15 years and the IMP is associ-
ated with a 1.25-, 1.08- and 1.04 increase of the ARI-r in 
Cúcuta, respectively). The proportion of population > 65 
years had a positive effect on the ARI-r although the CI 
crossed the null value. The positive association of both 
hyperparameters indicates the impact of the incorpo-
ration of the BYM (spatial) specification in the model. 
Some of the variability was explained by the spatial struc-
ture of the USEC incorporated in the model (proportion 
of spatial variance = 1.8%).

Figure 3 (A) shows the relative risk of ARI in each USEC 
(compared to the whole of Cúcuta) once sociodemo-
graphic and environmental factors are taken into account 
in the full model. Sixteen USEC had a 1.5 or higher rela-
tive risk of ARI, of which 4 had a relative risk greater than 
2-fold in the north, central and south regions of Cúcuta. 
Multiple USEC with a risk > 1.5 appeared clustered in 
the central region. Figure  3 (B) shows the distribution 
of the probability of risk to be greater than 1.5 (excess of 
risk > 1.5). All 16 USEC with a 1.5-fold relative risk had an 
80% or more probability of increased risk.

Figure  4 (A) shows the cluster analysis of USEC with 
higher relative risk. There were 217 USEC with a higher 
risk of ARI compared with the whole of Cúcuta. Of these, 
24 USEC surrounded by USEC with higher risk (high-
high risk USEC, or hotspots) were identified (Fig.  4B). 
More than one hotspot clustered together in central, 
north, west and south regions while some isolated 
hotspots were found in north and west regions. There 
were no low-low risk USEC identified. Several of the 
hotspots occurred on the northern and southern edges of 
the city. As only data from Cúcuta’s USEC was included, 
it should be noted that the number of neighbours for 
each USEC on the city perimeter is artificially reduced, 
which results in a less restrictive specification when 
determining hotspots compared with USEC far from the 
city edges.

Discussion
In this study we calculated and mapped the predicted 
risk of ARI by USEC in Cúcuta, Colombia, after adjust-
ing for the effect of socioenvironmental risk factors. The 

Table 1  Summary of the acute respiratory infections rate and socio-environmental variables in Cucuta, 2018
Variable Mean St. Dev. Min Q1 Q3 Max
ARI rate* 25.77 22.63 14.29 19.04 25.03 372.86

Proportional ARI rate - migrants 3.24 2.60 0.00 1.56 4.04 25.71

Average PM10 (µg/m3) 45.00 2.90 39.13 42.60 47.42 49.58

Index of Population Economically Active (PEA) 51.53 3.57 35.42 49.40 53.30 70.49

Index Multidimensional Poverty (IMP) 23.64 15.32 0.24 12.43 31.91 85.62

Population < 15 years (%) 25.52 23.04 10.00 18.65 26.49 29.71

Population > 65 years (%) 48.86 43.16 0.00 21.97 59.54 68.97
Notes. ARI: Acute Respiratory Infections; Q1 and Q3: first and third quartile respectively. *Per 100 people
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regions with higher risks were found in central, south, 
north and western Cúcuta. The most important factors 
associated with the risk of ARI in the whole of the city 
were the rate of ARI in migrants, the percentage of popu-
lation < 15 years and the Index of Multidimensional Pov-
erty. The analysis implemented a Bayesian hierarchical 

model that allowed further identification of the USEC 
with higher probability of increased risk and the hotspots 
risk. To the best of our knowledge, this is the first study 
to map the risk of ARI in census districts in a capital city 
in Colombia.

Fig. 2  Distribution of the ARI rate and sociodemographic predictors in the 460 Cúcuta’s Urban Sections. The population < 15 years and population > 65 
year are expressed per 100 people
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The analysis shows an increased risk of ARI associated 
with two well-established factors as important determi-
nants of respiratory infections in Colombia and globally: 
younger age and poverty. Previous research has found 
a mortality proportion due to ARI in people under 19 
years up to 27% in Colombia with the North Santander 
region having a comparative higher mortality [46], while 
children under five years have the highest incidence and 
DALY rates of upper respiratory tract infections glob-
ally [47]. Higher socioeconomic inequality has been 
associated with an increased risk of ARI, according to 

the global burden of disease study 2019 [48], which con-
curs with previous studies showing higher ARI mortality 
rates in poor Colombian municipalities nationally and in 
large cities such as Bogota and Manizales [49, 50]. These 
prior analyses have been undertaken at the national or 
regional level without regard to the risk variation within 
big urban settings such as Cúcuta. The current study also 
identifies these risk factors, but at a much smaller spatial 
scale. These results demonstrate how the patterns of risk 
of ARI in a city with significant international mobility in 
Latin America can be determined, and would support the 
understanding of the variation in the risk of ARI at a sub-
urban level in large cities in Colombia and the region.

Another factor associated with the risk of ARI in 
Cúcuta was the proportional rate of ARI in migrants 
from Venezuela. While this association is expected 
(as it is proportional to the ARI rate), we could verify 
the important effect that the ARI rate in this particular 
population has on the overall risk of ARI, considering 
its spatial distribution. These findings support previous 
estimations of increasing risk of infectious diseases in 
Venezuelan migrants in Colombia and other countries in 
the vicinity including Brazil and Peru [32, 51, 52]. This is 
an especially vulnerable population as the political and 
economic instability in Venezuela in the last 10 years 
has created increasing and sometimes massive migra-
tions to Latin American countries, mostly to Colombia 
and its departments close to the international border 
[53]. These conditions have exposed the migrant popula-
tion to unfavourable environmental and or social condi-
tions that facilitate the emergence of infectious diseases 

Table 2  Exponentiated posterior mean with 95% credible 
intervals (CI) of the spatial regression model
Predictor Exp 

(Posterior 
mean)

95% CI

ARI rate -migrants 1.25 1.22–
1.27

Average PM10 0.97 0.91–1.03

Index of Population Economically Active 0.99 0.97–1.01

Percentage population < 15 years 1.08 1.06–1.1
Percentage population > 65 years 1.01 0.97–1.04

Index Multidimensional Poverty 1.04 1.01–
1.08

Hyperparameters:

Precision for unstructured component 62.16 42.48–
86.57

Precision for structured component (spatial) 18.51 11.7–
28.51

Variance for the spatial structured effect 0.018

Deviance Information Criterion (DIC) 4245.51

Fig. 3  A. Distribution of the Urban Section (USEC) specific relative risk of ARI | B. USEC-specific probability of risk greater than 1.5
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[54]. Similar trends of increased morbidity in immi-
grants in other regions such as North America have been 
observed, mostly associated with unequal poverty levels 
or reduced access to appropriate health care [10]. The 
increased morbidity in Venezuelan immigrants increases 
the demand of health services, reinforcing the need for 
more health care providers for this group or better access 
to public health facilities. These findings can support the 
identification of specific areas and or communities in 
Cúcuta for targeted public health strategies.

The Bayesian spatial approach of the analysis allowed 
the identification of substantial geographic variation 
in the risk of ARI within Cúcuta, with 16 USEC esti-
mated to have a 1.5 or higher risk. Although somewhat 
clustered, these USEC were dispersed throughout the 
city rather than in one specific region and were gener-
ally surrounded by other areas of heightened risk. This 
is consistent with spatial analyses in other cities such as 
Edmonton, Canada [10] and Ho Chi Minh City in Viet-
nam [7] that identified spatial heterogeneity in the risk 
of ARI at the suburban level. Our findings support the 
importance of studying the spatial heterogeneity of the 
risk of infections in epidemiological analyses to increase 
the accuracy of prediction of outbreaks and to identify 
potential underlying factors determinant of infectious 
diseases [13]. The analysis also identified the USEC with 
80% or more probability of a 1.5-fold risk. These estimates 
can be of great value in public health decision-making as 
these can be used as rules to establish priorities in health 

strategies and or interventions, an approach already used 
in other contexts [55, 56]. Although we used ARI records 
of 2018 only due to data limitations of the health depart-
ment, the risk of these diseases identified in this study 
is an important reference for future analyses, especially 
considering the potential rebound of respiratory infec-
tions after the relieve in the control measures imposed 
during the Covid-19 period [57]. The results have impli-
cations for both targeted prevention measures and plan-
ning for adequate care facilities in Cúcuta, while the 
method used in this study can be applied in other urban 
contexts in Colombia and globally.

There are important limitations in this study, espe-
cially regarding the analysis of data of ARI at an aggregate 
level (per USEC) and the subsequent risk of ecological 
bias (i.e., analysis of data at the USEC level can produce 
spurious associations). To address this issue, the analysis 
used a BYM model which incorporates random effects 
on the USEC, in addition to the adjustment for socioen-
vironmental covariates. Although the use of both these 
approaches is deemed to help reduce the risk of eco-
logical bias [58, 59], further analyses at the individual 
level are required to provide supplementary evidence 
on the causality of ARI in the city. In addition, the spa-
tial estimation method to calculate the cases of ARI per 
USEC makes assumptions about the populations access-
ing health services across the city [18] which might not 
produce an accurate count of cases and increase the 
risk of dispersion of the ARI rates. We used a multiple 

Fig. 4  A. Distribution of USEC with higher risk, irrespective of magnitude (relative risk of ARI > 1). | B. Hotspots of risk (in red) —i.e., high-risk USEC (in red) 
surrounded by USEC with also high-risk (in grey)
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regression with a spatial component in a Bayesian hier-
archical model that can reduce the impact of overdisper-
sion. However, further research that incorporates specific 
residential location data and risk factors at the individual 
level are needed to identify patterns of causality.

Another limitation of the ARI data was the lack of indi-
vidual characteristics such as age and gender, meaning 
that the rates could not be sex-adjusted or age-adjusted. 
While this can affect the comparability of the ARI rate 
between the USEC due to underlying differences in the 
age and gender structure of their population, the study 
aimed to identify areas with increased risk of ARI for 
targeting health resources, therefore regardless of this, 
the areas with higher proportions of young people and 
increased ARI risk would need more public health sup-
port. Nevertheless we used a spatial model that reduces 
the potential effect of differences in the age structure 
because it smooths the estimates across the USEC and 
mitigates the impact of outliers [27]. Standardisation of 
rates by age and or sex should be considered in future 
analyses using morbidity data on ARI in Cúcuta, look-
ing at the causes of ARI other than age such as poverty or 
living conditions to remove the increased risk associated 
with age and identify areas with unexplained risk of ARI.

Conclusions
A spatial statistical approach can be used to explain the 
distribution of the risk of respiratory infections in subur-
ban areas of large cities such as Cúcuta, Colombia. The 
Bayesian spatial model used identified areas with higher 
risk of morbidity due to these diseases in central, south, 
north and west of the city, and 24 specific urban sec-
tions identified as statistical hotspots of risk. The most 
relevant risk factors for these diseases were the propor-
tion of population younger than 15 years, the index of 
multidimensional poverty and the high rate of respira-
tory infections in migrants from a neighbouring country. 
The methods used in this study can be implemented in 
disease mapping analysis in other regions in Colombia 
and globally to identify communities at risk and support 
decision making in the public and private health sectors. 
Whereas this analysis estimated and mapped the risk for 
small geographical areas, further research with individ-
ual-level data is needed to address the causality of respi-
ratory infections in Cúcuta.
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