
Fagbamigbe et al. BMC Public Health         (2023) 23:1197  
https://doi.org/10.1186/s12889-023-16155-z

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Public Health

Evaluating the performance of different 
Bayesian count models in modelling childhood 
vaccine uptake among children aged 12–
23 months in Nigeria
A. F. Fagbamigbe1, T. V. Lawal1*   and K. A. Atoloye1 

Abstract 

Background Choosing appropriate models for count health outcomes remains a challenge to public health 
researchers and the validity of the findings thereof. For count data, the mean–variance relationship and proportion 
of zeros is a major determinant of model choice. This study aims to compare and identify the best Bayesian count 
modelling technique for the number of childhood vaccine uptake in Nigeria.

Methods We explored the performances of Poisson, negative binomial and their zero-inflated forms in the Bayes-
ian framework using cross-sectional data pooled from the Nigeria Demographic and Health Survey conducted 
between 2003 and 2018. In multivariable analysis, these Bayesian models were used to identify factors associated 
with the number of vaccine uptake among children. Model selection was based on the -2 Log-Likelihood (-2 Log LL), 
Leave-One-Out Cross-Validation Information Criterion (LOOIC) and Watanabe-Akaike/Widely Applicable Information 
Criterion (WAIC).

Results Exploratory analysis showed the presence of excess zeros and overdispersion with a mean of 4.36 and a vari-
ance of 12.86. Observably, there was a significant increase in vaccine uptake over time. Significant factors included the 
mother’s age, level of education, religion, occupation, desire for last-child, place of delivery, exposure to media, birth 
order of the child, wealth status, number of antenatal care visits, postnatal attendance, healthcare decision maker, 
community poverty, community illiteracy, community unemployment, rural proportion and number of health facili-
ties per 100,000. The zero-inflated negative binomial model was best fit with -2Log LL of -27171.47, LOOIC of 54464.2, 
and WAIC of 54588.0.

Conclusion The Bayesian zero-inflated negative binomial model was most appropriate to identify factors associated 
with the number of childhood vaccines received in Nigeria due to the presence of excess zeros and overdispersion. 
Improving vaccine uptake by addressing the associated risk factors should be promptly embraced.

Keywords Poisson, Negative binomial, Zero-inflated Poisson, Zero-inflated negative binomial, Child Vaccination, 
Immunization, Nigeria

Introduction
The Generalized Linear Model (GLM) is a flexible mod-
elling framework to explore distributional forms other 
than the normal distribution through an arbitrary choice 
of link functions [1, 2]. The outcome variable, when 
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normally distributed, can be applied to classical mod-
els which include analysis of variance and ordinary least 
squares regression but other distributional forms in the 
exponential family, such as binomial, Poisson, negative 
binomial or gamma distribution can be applied otherwise 
[1, 3, 4]. Moreover, the parameter of interest cannot be 
modelled as a line, as it is certain to yield negative values 
for the outcome variable [3, 4].

Since vaccination coverage is a random count event, 
and typically independent, the use of traditional statisti-
cal techniques, particularly the ordinary least squares 
and the logistics regression will be inappropriate as their 
assumptions will be violated and thereby bias the result-
ing estimates. Therefore, the Poisson distribution is a very 
intuitive means to describe the randomness of count out-
comes [2, 4]. The Poisson regression, as the default count 
model, models the noisy output of a counting function, y, 
as a Poisson random variable, with a log-mean parameter 
that is presented as a linear function [3]. For count data, 
the mean–variance relationship and proportion of zeros 
are a major determinants of the choice of model to be 
used, which ranges from the Poisson and negative bino-
mial to the zero-inflated Poisson and zero-inflated nega-
tive binomial to the hurdle models [2, 5].

The Poisson regression has the advantage of fitting non-
linear models as against the conventional linear regres-
sion models, including situations that involve the number 
(count) of occurrences of an event. This regression model 
has been used and recommended earlier [3, 4, 6]. How-
ever, these studies focused on the frequentist approach 
without any consideration for the Bayesian techniques. 
More so, the Poisson model might be inappropriate for 
over-dispersed data[4, 5]. The Negative Binomial regres-
sion model is more flexible and is used to model count 
data with overdispersion, although the Negative Binomial 
can also be inappropriate when explaining overdispersion 
in that the mean also implies that the variability of the 
outcome variable having the values of the same covari-
ates is equal to the mean [1, 2, 4, 7].

To understand the underlying two types (structural/
true and random/false zeros) of zero inflation in count 
data, there approaches that a researcher employs to 
model such zero-inflation [1]. In particular, the Zero-
inflated Poisson and Zero-inflated Negative Binomial 
are applicable when Poisson and Negative Binomial are 
inappropriate in handling overdispersion due to a high 
number of zeros [4, 7]. The Poisson hurdle model is 
also an alternative that can model all zeros as one part 
and a zero-truncated part for all the non-zero observa-
tions [1–3]. Unlike the zero-inflated Poisson, the hurdle 
model assumes that all zero observations come from the 
same group. An advantage of the Zero-Inflated Negative 
Binomial model is that it is more robust in the face of 

overdispersion due to a high number of zeros, and incor-
porates an additional dispersion parameter that factors in 
over-dispersion that is generated from positive values [1, 
4], and reduce bias that results from non-normality of the 
outcome variable.

Bayesian inference (which focuses on infusing prior 
knowledge into models by applying probability theory) 
can be applied through the Markov Chain Monte Carlo 
(MCMC) simulation to generate random values with 
Hamiltonian Monte Carlo (HMC) algorithm. The Bayes-
ian specification is more flexible for parameter estima-
tion than the traditional models [4, 8].

Across the literature, researchers have also identified 
some factors that may affect vaccination uptake among 
children. Some of the factors included demographic and 
socio-economic factors including child-specific, paren-
tal and household characteristics have been identified as 
important predictors of child vaccination uptake [9–12]. 
Similarly, some child-specific characteristics such as 
birth order, place of birth of child, and age of the child 
have been found to influence vaccination uptake [10, 12].

While previous studies have extensively explored count 
models for analyzing childhood vaccine uptake, there is 
a lack of research that systematically compares the per-
formance of different count models, particularly from a 
Bayesian perspective, and identifies the most suitable 
model for modeling childhood vaccine uptake in Nige-
ria. Additionally, there is limited understanding of the 
factors that may influence childhood vaccine uptake 
in the Nigerian context. Therefore, there is a need for a 
comprehensive study that not only compares the perfor-
mance of count models but also investigates the key fac-
tors affecting childhood vaccine uptake in Nigeria. This 
research gap hinders the ability of public health research-
ers to make informed decisions regarding the selection 
of an appropriate count model for analyzing vaccine 
uptake and understanding the factors that contribute to 
it. The study, therefore, compared the performance of 
count models and identify the best Bayesian count model 
for the number of childhood vaccine uptake in Nigeria. 
This paper will be useful for public health researchers in 
the choice of an appropriate model of count health out-
comes, and also help identify some factors that may influ-
ence such.

Methods
Study design
This is a methodological paper that details the perfor-
mances of different Bayesian count models. We started 
with the review of the models, described the data we 
used and applied the models to the multi-year childhood 
vaccination data in Nigeria.
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The models
Four count regression modelling techniques were 
assessed and implemented in the Bayesian multilevel 
framework under the generalized linear mixed model 
(GLMM) with both fixed and random effects. The 3 levels 
were defined for children i, who took vaccination (at level 
1), from a community j (at level 2) and living in a state k 
(at level 3). The second and third levels were particularly 
useful to account for the inherent spatial and temporal 
autocorrelation in childhood vaccination uptake.

Models fitted to the data

Distribution Regression Notes *
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)
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ηijk = β0 + βiXi + (ei,j,k/ri,j,k) 1 2 3 4

where 1 – vector ei,j,k denotes the random effects compo-
nents for Poisson or NB; 2 – Xi has the full rank p and q 
for the logistic and the Poisson/NB components; 3 – ηijk 
is the link function with both log and logit; 4 – ri,j,k is the 
random effects component for the logistics part of the 
zero-inflated modelsFor each of the distributions speci-
fied above, their models can be written as:

(i) Poisson:

(ii) Negative Binomial:

where μ is the mean, and k represents the dispersion 
parameter. The variance of the distribution is 

(
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 , 
which implies that decreasing values of k will lead to 
increasing levels of dispersion; and as k increases towards 
the positive infinity, a Poisson distribution is obtained 
[1]. Therefore, unlike the Poisson model, the negative 
binomial model can capture the level of over-dispersion, 
but it did not solve the problem of overdispersion [1, 5].

(iii) Zero-inflated Poisson:
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(iv) Zero-inflated Negative Binomial

Model selection
Model selection and comparison were done using -2 Log 
Likelihood (-2 Log LL), Leave-One Out Cross-Validation 
(LOOIC) and the Widely Applicable or Watanabe Akaike 
Information Criterion (WAIC). The modelling tech-
nique with the lowest of all these information criteria was 
selected as the most robust for our analysis.

Implementation of the models
All models considered in this study were executed using 
the Bayesian multilevel regression modelling technique 
in Stan (Sampling Through Adaptive Community), a 
probabilistic programming language, embedded in R. 
Stan, which was implemented in the ‘brms’ package, is a 
C +  + package designed for performing complex hierar-
chical Bayesian inference [13, 14].

Chain convergence was achieved using weakly inform-
ative priors – derived from the data. The number of ini-
tial iterations (including warmup) was set to 15000, chain 
at 4 and thin (how frequently the parameter estimates are 
refreshed during iterations) at 50.

Data
The data is from the multi-year cross-sectional nation-
ally representative population-based household Nigeria 
Demographic and Health Survey (NDHS). Data were 
pooled from the successive NDHS conducted in 2003, 
2008, 2013 and 20018 in Nigeria. The NDHS used a mul-
tistage stratified sampling design (from clusters known 
as primary sampling units (PSUs) to the selection of 
the households for all the years. We computed survey-
women weights (SWW) to the analysis to reflect the dif-
ferences in population sizes of the women in each survey. 
The SWW is the product of DHS-provided weights and 
survey-specific weights (SSW). SSW was computed as 
the number of sampled women aged 15–49 years divided 
by the population of women aged 15–49  years during 
each survey. However, since we were not interested in a 
pooled estimate, but rather individual survey estimates, 
we don’t need to apply further sampling besides the sam-
pling weights already provided via v005 in the original 
dataset.

Dependent variable
The outcome variable is the number of vaccines taken 
by the children. The mothers provided information on 
whether a child received a specific vaccine or not. The 

Pr
�
Yi = yi

�
=

⎧
⎪⎨⎪⎩

�i + (1 − �i)(1 + k�i)
−

1

k , foryi = 0

(1 − �i)
Γ

�
yi+

1

k

�
(k�i)

yi

Γ(yi+1)Γ
�

1

k

�
(1+k�i )

yi+
1

k

, foryi = 1, 2,…



Page 4 of 9Fagbamigbe et al. BMC Public Health         (2023) 23:1197 

data on each of the 9 vaccines were then merged to 
obtain the number of vaccines a child took. The vaccines 
are one dose of Bacillus-Calmette-Guérin (BCG); three 
doses of Diphtheria-Pertusis-Tetanus (DPT); three doses 
of Polio and one dose of Measles.

Independent variables
Explanatory Variables were selected based on findings 
in the literature [9, 10, 12, 15] and the availability of data 
at individual, community and state levels. Three levels 
of explanatory variables were used for the hierarchical 
nature of the study:

Individual variables include socio-demographic char-
acteristics of the child and mother’s age in years, mother’s 
educational level, mother’s religion, mother’s occupation, 
desire for the child, place of delivery, exposure to media, 
birth order, wealth status, number of antenatal care vis-
its and postnatal care attendance within 2  months of 
delivery, sex of the child, and healthcare decision-maker, 
were included in the analysis. Exposure to media, in this 
study, was defined as the mother’s access to information 
through any newspapers/magazines, radio or television 
(i.e., if the mother reads or watches any, at least once a 
week).

Community-level variables such as place of residence, 
community poverty rate, illiteracy rate and unemploy-
ment, and State level variables such as the proportion of 
the rural population, and health facilities per 10,000 pop-
ulation were included in the model.

Results
The distribution of the number of vaccine uptake among 
the children was presented in Fig.  1, and disaggregated 
by survey years. A consistently high number of zeros was 
observed in the data, across survey years – this confirms 
that the structure of the data on the number of vaccine 
uptake in Nigeria has a high number of zeros, and is sug-
gestive of overdispersion.

Table 1 presents the comparison of the model param-
eters and estimates. The mean number of vaccines taken 
was less than the variance; this suggests that the Poisson 
regression may be unsuitable. Nonetheless, further sta-
tistical tests were conducted to determine the optimal 
model.

The -2 Log LL, LOOIC and WAIC were used as further 
tests of the goodness of fit for model comparison and 
selection. Although the Zero-Inflated Poisson had similar 
estimates and model fit statistics with the Zero-Inflated 
Negative Binomial, the Zero-Inflated Negative Binomial 

Fig. 1 Percentage distribution of number of vaccines taken between 2003 and 2018
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had the smallest values for all -2 Log LL, LOOIC and 
WAIC; which makes it a more applicable model to fit the 
data on the number of vaccines uptake better.

Furthermore, in Table  2, the estimates of each of the 
count models employed in this study were presented, 
alongside the standard error. It was observed that the 
estimates of the Poisson and Negative binomial regres-
sion were similar, although little differences were seen in 
the estimates. The same similarities were observed in the 
Zero-inflated Poisson and Zero-inflated Negative Bino-
mial estimates.

Overall, maternal age, education and household wealth 
status, number of antenatal care visits, employment sta-
tus, religion, delivery in the hospital/health centre, reli-
gion, birth order, whether the mothers wanted the child 
or to delay the pregnancy, postnatal care, who takes 
decisions about healthcare utilization were significantly 
associated with the number of vaccines taken – although 
these variables were not statistically significant for all 
the models compared. Similarly, community and state-
level characteristics were statistically significant for the 
models.

Discussion
The study was conducted using the multilevel Bayesian 
MCMC approach. It allowed the estimation and adjust-
ments of multiple predictors of the number of vaccine 
uptake by children aged 12–23  months. In particular, a 
Bayesian hierarchical regression model was employed 
to account for the inherent spatial (at community- and 
state- levels) and temporal autocorrelation within the 
data to estimate the parameters due to the cluster sam-
pling design. The MCMC techniques, which samples suc-
cessively from a target distribution, were used to draw 
the posterior samples; specifically, the Metropolis–Hast-
ings updating steps were used.

Comparing the -2 Log Likelihood, LOOIC and WAIC 
values of the four Bayesian count models, the Zero-
Inflated Negative Binomial model had the lowest value 
for all model fit comparators used, and we adjudged 
it to be the best Bayesian count model for the data. 
We found that Poisson, Negative Binomial and Zero-
Inflated Poisson models were less appropriate for mod-
elling in the presence of extra zero counts. The study 
also observed a disparity in mean and variance of the 
number of vaccine uptake.

Our findings validate the assumption that the Pois-
son model may not be appropriate to fit the data, as the 
Poisson regression model performed the worst among 
the four methods. The data, in the presence of many 
zeros, is very heavily skewed. Since one of the assump-
tions of the Poisson regression is that the mean and 
variance share the same parameter. The Zero-Inflated 
Poisson model performed better than the Negative 
Binomial because of the presence of excess zeros in the 
data. Notably, the Poisson regression model was the 
least appropriate in the presence of overdispersion and 
“zero inflation” recorded in this data.

Our finding aligns with existing literature. Studies 
have reported that the Negative Binomial model has 
the best performance of count models for count health 
outcomes, and by extension, the Zero-Inflated Negative 
Binomial model in the presence of overdispersion and 
excess zeros and high variability – one of which is vac-
cine uptake among Children in Nigeria [1–4].

On the factors associated with vaccine uptake, the 
study corroborates findings from previous literature 
that identified child-specific, parental and household 
characteristics as important predictors of child vaccine 
uptake [9–12]. The study also established that factors 
that may explain childhood vaccine uptake may vary by 
the geographical location of the mothers [10, 16].

Strength and limitations
A major strength of this study was that the study 
pooled data between 2003 and 2018 in Nigeria to select 
the best count approach for modelling the number of 
vaccine uptake among children aged 12–23  months in 
Nigeria, and applied the Bayesian framework against 
the traditional -frequentist approach. Nevertheless, 
Bayesian frameworks are more computationally inten-
sive and thereby impacted the speed of the model 
despite parallelization. A limitation is that there may 
have been under-reporting in the number of vaccine 
uptake; the data collection protocol assumed no vac-
cination if there is no record on vaccination by the 
respondent or if the mother cannot remember if the 
child took the vaccine.

Table 1 Comparison and selection of the models

Mean Median Variance
Number of Vaccination
 2003 3.27 3 9.89

 2008 3.70 3 12.58

 2013 4.54 4 12.44

 2018 4.94 6 12.94

Overall 4.36 4 12.82

-2 Log Likelihood LOOIC WAIC
 Poisson -31384.02 63586.2 64503.7

 Negative Binomial -30274.49 60769.7 60995.8

 Zero Inflated Poisson -27235.46 54601.6 54735.4

 Zero Inflated Negative 
Binomial

-27171.47 54464.2 54588.0
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Table 2 Count modelling technique and estimate comparison

Poisson
[β (SE)]

Negative Binomial
[β (SE]

Zero-inflated Poisson
[β (SE)]

Zero-inflated 
Negative 
Binomial
[β (SE)]

CONTROL VARIABLE
 Year
  2003 Reference

  2008 22.63 (4.51) * 12.53 (3.86) * 12.20 (1.99) * 12.24 (8.86) *

  2013 22.41 (4.48) * 12.32 (3.79) * 12.35 (2.00) * 12.39 (8.85) *

  2018 22.32 (4.47) * 12.22 (3.82) * 12.38 (2.02) * 12.44 (8.86) *

FIXED EFFECTS
 Level 1 (Individual Level Characteristics)
  Age
   15 – 24 years Reference

   25 – 34 years 0.08 (0.01) * 0.06 (0.02) * 0.06 (0.01) * 0.04 (0.01) *

   35 – 49 years 0.09 (0.01) * 0.08 (0.02) * 0.09 (0.01) * 0.07 (0.02) *

  Level of Education
   No formal education Reference

   Primary education 0.17 (0.03) * 0.19 (0.00) * 0.10 (0.02) * 0.10 (0.01) *

   Secondary/Tertiary education 0.24 (0.04) * 0.28 (0.02) * 0.14 (0.02) * 0.14 (0.01) *

  Religion
   Christian Reference

   Islam -0.10 (0.01) * -0.14 (0.03) * -0.08 (0.02) * -0.07 (0.02) *

   Others -0.27 (0.05) * -0.31 (0.08) * -0.22 (0.04) * -0.16 (0.02) *

  Occupation
   Unemployed/Unskilled manual Reference

   Employed 0.10 (0.01) * 0.11 (0.05) * 0.04 (0.02) * 0.04 (0.02) *

   Self employed 0.10 (0.01) * 0.13 (0.02) * 0.05 (0.02) * 0.05 (0.01) *

   Others 0.08 (0.01) * 0.11 (0.05) * 0.03 (0.02) * 0.03 (0.02) *

  Wanted last child
   Wanted then Reference

   Wanted later -0.00 (0.03) -0.02 (0.02) -0.04 (0.02) * -0.03 (0.02) *

   Wanted no more -0.02 (0.04) -0.04 (0.06) -0.03 (0.02) * -0.01 (0.02)

  Place of delivery
   Home or elsewhere Reference

   Hospital/health center 0.07 (0.03) * 0.08 (0.01) * 0.03 (0.01) * 0.04 (0.01) *

  Exposure to media
   Not exposed to media Reference

   Exposed to media 0.05 (0.00) * 0.04 (0.02) * 0.01 (0.01) 0.02 (0.02) *

  Birth order of child
   First Reference

   Second -0.01 (0.01) 0.02 (0.02) -0.03 (0.01) * -0.02 (0.02)

   Third -0.00 (0.01) 0.03 (0.03) * -0.03 (0.01) * -0.02 (0.02) *

   Fourth and above -0.04 (0.02) * 0.01 (0.02) -0.05 (0.01) * -0.02 (0.03)

  Wealth Status
   Bottom 33% Reference

   Average 0.07 (0.01) * 0.09 (0.01) * 0.07 (0.01) * 0.07 (0.00) *

   Top 33% 0.17 (0.02) * 0.22 (0.02) * 0.14 (0.05) * 0.12 (0.02) *

  Number of ANC visits
   No visit Reference

   1 – 3 visits 0.42 (0.02) * 0.44 (0.03) * 0.28 (0.02) * 0.25 (0.01) *
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Table 2 (continued)

Poisson
[β (SE)]

Negative Binomial
[β (SE]

Zero-inflated Poisson
[β (SE)]

Zero-inflated 
Negative 
Binomial
[β (SE)]

   4 – 7 visits 0.52 (0.01) * 0.57 (0.01) * 0.34 (0.03) * 0.32 (0.01) *

   8 or more visits 0.50 (0.01) * 0.54 (0.02) * 0.31 (0.03) * 0.30 (0.00) *

  Sex of the child
   Male Reference

   Female 0.02 (0.01) * 0.02 (0.02) * -0.01 (0.01) 0.00 (0.01)

  Postnatal Care attendance within 2months7

   No Reference

   Yes 0.19 (0.00) * 0.23 (0.02) * 0.08 (0.01) * 0.07 (0.01) *

  Healthcare decision maker
   Self Reference

   Husband alone 0.01 (0.02) -0.05 (0.01) * -0.00 (0.00) 0.00 (0.01)

   Joint 0.03 (0.01) * -0.02 (0.01) * 0.01 (0.02) 0.01 (0.00) *

   Other -0.18 (0.03) * -0.24 (0.13) * -0.15 (0.01) * -0.10 (0.08) *

 Level 2 (Community Level Characteristics)
  Place of residence
   Urban Reference

   Rural 0.02 (0.02) 0.03 (0.03) * 0.00 (0.03) -0.00 (0.01)

  Community poverty rate
   Low Reference

   Average 0.09 (0.01) * 0.09 (0.02) * 0.03 (0.00) * 0.04 (0.01) *

   High 0.05 (0.02) * 0.06 (0.01) * 0.01 (0.00) 0.01 (0.01) *

  Community illiteracy rate
   Low Reference

   Average -0.07 (0.02) * -0.06 (0.03) * -0.00 (0.02) -0.04 (0.00) *

   High -0.05 (0.02) * -0.04 (0.03) * -0.03 (0.02) * -0.07 (0.01) *

  Community unemployment
   Low Reference

   Average 0.02 (0.02) 0.04 (0.03) * 0.01 (0.02) 0.01 (0.00) *

   High -0.06 (0.01) * -0.03 (0.01) * -0.02 (0.01) * -0.02 (0.01) *

 Level 3 (State Level Characteristics)
  Rural proportion
   Low rural proportion Reference

   Average rural proportion -0.10 (0.09) -0.09 (0.02) * -0.03 (0.01) * -0.06 (0.06) *

   High rural proportion -0.07 (0.13) -0.03 (0.01) * -0.11 (0.05) * -0.07 (0.02) *

  Health facility per 100,000
    < 15 Reference

   15 – 25 -0.04 (0.06) -0.00 (0.01) 0.00 (0.03) 0.06 (0.06) *

    > 25 0.04 (0.06) 0.01 (0.02) 0.01 (0.10) 0.11 (0.05) *

RANDOM EFFECTS
 Community Level
  Standard Deviation (S. E.) 0.23 (0.00) 0.18 (0.02) 0.06 (0.00) 0.07 (0.00)

  Variance Partitioning Coefficient 0.10 0.05 0.03 0.01

 State Level
  Standard Deviation (S. E.) 0.17 (0.00) 0.14 (0.00) 0.12 (0.02) 0.13 (0.01)

  Variance Partitioning Coefficient 0.12 0.06 0.04 0.03

SAMPLE SIZE
 Individual-level 12,761 12,761 12,761 12,761
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Conclusion
This study aimed to evaluate the fit and performance of 
different Bayesian count models. Of the four Bayesian 
count regression models compared in terms of -2 Log 
Likelihood, LOOIC and WAIC for modelling the factors 
associated with the number of vaccine uptake among 
children aged 12 – 23  months in Nigeria, the Zero-
Inflated Negative Binomial model performed most. Data 
with many zeros are often encountered in public health 
outcomes. Failure to account for “zero inflation” in the 
data while analyzing such data may result in inferences 
that are not true.

Vaccine uptake among children aged 12–23  months 
also varied across individual-, community-, and state-
level characteristics. Specifically, the study observed 
significant improvements in uptake recorded across the 
survey years. In summary, this study has enhanced the 
understanding of the complexities surrounding vaccine 
uptake among children and provides valuable insights for 
public health interventions and policies in Nigeria.

Recommendation
This study characterized the robustness of different 
count-modelling predictive models to assess their suit-
ability for vaccination uptake in Nigeria. Future research 
needs to adopt the zero-inflated negative binomial model 
for studies with high variability and overdispersion to 
maximize model robustness, hence, enhancing model 
accuracy and ultimately providing better recommenda-
tions for policy and decision-making. We would also 
recommend that further research be done to explore 
extensively the factors associated with vaccine uptake 
among children in Nigeria.
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