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Abstract 

Background  High fasting plasma glucose (HFPG) is the fastest-growing risk factor for cancer deaths worldwide. We 
reported the cancer mortality attributable to HFPG at global, regional, and national levels over the past three decades 
and associations with age, period, and birth cohort.

Methods  Data for this study were retrieved from the Global Burden of Disease Study 2019, and we used age-period-
cohort modelling to estimate age, cohort and period effects, as well as net drift (overall annual percentage change) 
and local drift (annual percentage change in each age group).

Results  Over the past 30 years, the global age-standardized mortality rate (ASMR) attributable to HFPG has increased 
by 27.8%. The ASMR in 2019 was highest in the male population in high sociodemographic index (SDI) areas (8.70; 95% 
CI, 2.23–18.04). The net drift for mortality was highest in the female population in low SDI areas (2.33; 95% CI, 2.12–2.55). 
Unfavourable period and cohort effects were found across all SDI quintiles. Cancer subtypes such as "trachea, bronchus, 
and lung cancers", "colon and rectal cancers", "breast cancer" and "pancreatic cancer" exhibited similar trends.

Conclusions  The cancer mortality attributable to HFPG has surged during the past three decades. Unfavourable 
age-period-cohort effects on mortality were observed across all SDI quintiles, and the cancer mortality attributable 
to HFPG is expected to continue to increase rapidly in the future, particularly in lower SDI locations. This is a grim 
global public health issue that requires immediate attention.
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Introduction
High fasting plasma glucose (HFPG) is an abnormal 
metabolic state, and one of the most common manifes-
tations is diabetes. Studies have shown that HFPG and 
diabetes are correlated with a variety of malignancies, 
such as colorectal, breast, and pancreatic cancers, affect-
ing the progression of diseases and increasing mortality 
[1–7]. These malignancies might be associated with com-
mon risk factors, such as hyperglycaemia, insulin resist-
ance, and oxidative stress [8]. Therefore, HFPG is likely 
to increase the global burden of cancer-related diseases.

It has been described that the cancer burden was asso-
ciated with HFPG in a large number of studies [9, 10]. 
However, these reports do not identify the age, period 
and birth cohort impacts on mortality. Moreover, there 
are significant differences in disease characteristics and 
survival among cancer types of various origins. Further 
analysis of cancer subtypes was required to obtain rele-
vant information on the epidemic trend and to determine 
the priority direction of medical resource investment. 
Therefore, it is necessary to perform in-depth analysis of 
the cancer mortality attributable to HFPG. The effects of 
age, period, and birth cohort may contribute to the can-
cer mortality attributable to HFPG because of changes in 
physiological age, socioeconomic status, lifestyle factors, 
and treatment strategies [11, 12].

In this regard, analysing trends with particular atten-
tion to age, period, and birth cohort effects can promote 
a deeper understanding of the development of cancer 
mortality attributable to HFPG, leading to effective poli-
cies, improved quality of life, and reduced mortality in 
cancer patients. The Global Burden of Diseases, Inju-
ries, and Risk Factors Study (GBD 2019) uses a consist-
ent methodology and all available population-level data 
to generate population health metrics, which provides a 
novel opportunity for global-scale evaluation of disease 
trends. Based on the GBD data, we used age-period-
cohort (APC) models to explore the changes in cancer 
mortality attributable to HFPG at global, regional, and 
national levels from 1990 to 2019, The use of APC models 
provides insights into the contribution of age-related bio-
logical factors, as well as technological and social aspects, 
to disease trends, which is difficult to achieve through 
traditional methods of epidemiological analysis [13]. This 
study was performed as part of the GBD Collaborator 
Network and in accordance with GBD protocols.

Methods
Epidemiological analysis of GBD data
Data source
The GBD study used deidentified data, and the informed 
consent form was approved by the Institutional Review 
Committee of the University of Washington. The GBD 

2019 edition provides the latest estimates of descriptive 
epidemiological data for a total of 369 diseases and inju-
ries in 204 countries and territories over 30  years from 
1990 to 2019 [14, 15]. The GBD network uses standard-
ized tools within the Bayesian framework and all avail-
able data across age, time, geography and health causes 
to generate disease estimates. This approach used the 
information from available data to estimate the burden 
of the disease in countries that did not have primary 
data sources, thereby allowing estimation of the burden 
of the disease for all regions of the world. In GBD, high 
fasting plasma glucose (HFPG) was defined as a level of 
fasting plasma glucose above the theoretical minimum-
risk exposure level (TMREL) (4.8–5.4  mmol/L). HFPG 
was measured as the mean FPG in a population which 
also include those with a history of diabetes treatment by 
statistical calculation, and the TMREL was calculated by 
taking the person-year weighted average of the levels of 
FPG that were associated with the lowest risk of mortality 
in the pooled analyses of prospective cohort studies [16]. 
Cancer death is defined as a death resulting from malig-
nant neoplasms. In GBD, data on cancer deaths were col-
lected from various sources, such as cancer registry data, 
vital registration (VR), and verbal autopsy (VA) data. The 
underlying cause of cancer death in GBD 2019 was deter-
mined based on the ICD codes and standardized clas-
sification rules [16]. The outcome of this research is the 
cancer mortality attributable to HFPG, and quantified 
by the comparative risk assessment (CRA) framework in 
GBD 2019 [16].

The sociodemographic index (SDI), a composite indi-
cator of per capita income, average years of schooling in 
the population older than 15 years, and the fertility rate 
for females under the age of 25 years, was utilized by the 
analysis [14]. The SDI ranged from 0 to 1, with increased 
values indicating elevated socioeconomic levels, and all 
countries were evenly divided into five categories accord-
ing to the quintile of SDI in 2019. The GBD database pro-
vided data on high-incidence tumour types in male and 
female populations.

Overall time trend analysis of cancer mortality attributable 
to HFPG
The time trend in mortality in the study was assessed 
by the age-standardized rate as well as the percentage 
change in the age-standardized mortality rate (ASMR) 
from 1990 to 2019. In GBD, age-standardized rate for 
death were computed using the  GBD  world popula-
tion age standard [14]. To predict the number of can-
cer deaths attributable to HFPG in the following years, 
we used a Bayesian age-period-cohort (BAPC) model. 
In the BAPC model, we assumed that the data were 
inverse gamma prior, adjusting for excessive dispersion 
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in terms of age, period, and cohort effects [17]. Moreo-
ver, To visualize the proportion of cancer deaths in dif-
ferent age groups, we used the age groupings of 25–49, 
50–59, 60–69, 70–79, and 80 + to create a bar chart.

Age‑period‑cohort model analysis
The age-period-cohort (APC) model was used to ana-
lyse potential trends in mortality by age, period, and 
birth cohort [18]. Net drift and local drift are impor-
tant parameters in the APC model. Net drift represents 
an overall log-linear trend by period and birth cohort, 
indicating an overall annual percentage change in the 
expected age adjustment rate over time. Local drift 
is a log-linear trend for each age group by period and 
birth group, indicating the expected annual percent-
age change in age-specific rates over time. Age effects 
are expressed as longitudinal age curves to represent 
the age-associated natural history of mortality attribut-
able to HFPG. Period effects are expressed as the rela-
tive risk of mortality by period and are used to track 
progress in different time periods. Cohort effects are 
expressed as the relative risk of mortality by cohort and 
are used to track changes in mortality for different birth 
cohorts. More APC-specific methods and details are 
available in existing publications [13].

The input data for the APC model in the study were 
the population data of each country/territory from 
1990 to 2019 and the estimated cancer mortality attrib-
utable to HFPG. In the APC model, all the age and 
period intervals must be equal. Therefore, the death 
population data in the study were divided into consecu-
tive five-year periods from 1990 to 2019 (1990–1994 
[1992], 1995–1999 [1997]…2015–2019 [2017]), with 
the survey years from 2000 to 2004 as the reference 
period group. As  the  number  of  deaths under 50 and 
over 90  years  was  too  small, the age intervals for five 
consecutive years were 50–54 years, 55–59 years…80–
84 years, and 85–89 years. The sample consisted of 13 
consecutive cohorts, comprising cohorts born during 
1903–1907 (median, 1905) and 1963–1967 (median, 
1965), with cohorts born during 1933–1937 (median, 
1935) serving as the reference group. The APC model 
analysis used the age-period-cohort Web Tool provided 
by the National Cancer Institute [19]. The significance 
of the annual change percentage trend was evaluated 
using the Wald chi-squared test, executed through R 
code on the age-period-cohort Web Tool. More infor-
mation about the web tool are available in the literature 
[19]. Statistical testing was conducted in both direc-
tions and considered significant when P < 0.05. All the 
figures related to the APC models were performed 
using R software(version 4.2.2).

Results
Rapidly increasing risk factors for cancer mortality 
worldwide, 1990–2019
The number of cancer deaths attributable to HFPG world-
wide in 2019 was 419,340 (95% CI 115,730–848,480). In 
the global range, tobacco consumption, dietary risks, and 
alcohol consumption (top three from high to low) were 
still risk factors that caused the most cancer deaths in 2019 
when compared with 1990. However, the number of cancer 
deaths attributable to HFPG rose from the eighth (1990) to 
the fifth rank (2019) (Fig. 1A), the largest increase among 
all risk factors (Fig. 1B), followed by high body-mass index.

Its percentage increase of ASMR attributable to HFPG 
in the whole population over the past 30  years was 
27.8%, 28.1% higher than that of the second risk factor 
(the increased percentage of ASMR attributable to high 
body-mass index in the past 30 years was 21.7%). For the 
female population, in particular, the percentage increase 
of ASMR was 175.3% higher than that of the second risk 
factor (Supplement Table S1, Figure S1-A). Based on the 
BAPC model, the number of cancer deaths attributable 
to HFPG was predicted to continue to rise to 636,166 by 
2029 (Fig.  1C). The top four cancer subtypes were "tra-
chea, bronchus and lung cancer", "colon and rectal can-
cer", "breast cancer" and "pancreatic cancer", accounting 
for 89.7% of the total number (Fig.  1D). It should be 
noted that the cancer types corresponding with the most 
deaths in females were different from those in males. The 
most common cancers in males were “trachea, bron-
chus, and lung cancers”, “colon and rectal cancer” and 
“pancreatic cancer”. Among females, the top three were 
“trachea, bronchus and lung cancer”, “breast cancer” and 
“colon and rectal cancer”. Among the cancer subtypes, 
breast cancer accounted for a large proportion (26.3%) in 
females (Supplement Figure S1-B).

Global and regional trends in cancer mortality attributable 
to HFPG, 1990–2019
The age-standardized rate of mortality in 2019 (total of 
204 countries), as well as the percent change from 1990 
to 2019, are shown in Fig. 2. Table 1 shows the popula-
tion, the total number of deaths, the all-age rate, the 
age-standardized rate, and the net drift for mortality. 
From 1990 to 2019, the global population increased from 
5.35 billion (95% CI, 5.24–5.46) to 7.74 billion (95% CI, 
7.48–7.99), representing an increase of 44.67%. How-
ever, the number of cancer deaths attributable to HFPG 
increased from 150.10 thousand (95% CI, 39.21–312.37) 
to 419.34 thousand (95% CI, 115.73–848.48), an increase 
of 179.37%, more than four times the global population 
growth rate. The mortality rate in all SDI areas showed an 
upward trend, especially in middle, low middle and low 
SDI areas. In 2019, the age-standardized mortality rate 
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in the total population ranged from 7.22 (95% CI, 2.04–
14.45) in the high SDI areas to 2.64 (95% CI, 0.72–5.49) 
in the low SDI areas (Table 1). The highest mortality for 
males was found in the high SDI areas, which was 8.70 
(95% CI, 2.23–18.04) (Supplement Table S2).

The net drift for mortality ranged from 0.52% (95% CI, 
0.47–0.56) per year in areas with high SDI to 1.75% (95% 
CI, 1.61–1.90) per year in areas with low SDI between 
1990 and 2019 (Table 1). The net drift of mortality in low 
SDI areas for females was the highest, reaching 2.33% 
(95% CI, 2.12–2.55) (Supplement Table S2). Meanwhile, 
the results of global and regional trend analyses of mor-
tality for specific cancer subtypes exhibited a similar 
trend, as shown in Supplemental Tables S3-S6.

National trends in cancer mortality attributable to HFPG, 
1990–2019
Among the 204 countries and territories world-
wide, China (90,655 deaths; 95% CI, 23,078–197,161), 
the United States of America (58,134 deaths; 95% 
CI, 16,747–114,100), India (30,220 deaths; 95% CI, 
8,320–62,897) and Germany (19,416 deaths; 95% CI, 

5,634–38,269) were the top four countries in terms of 
cancer deaths. The top four countries accounted for 
47.3% of global deaths. At the same time, 150 coun-
tries and territories showed annual net drift ≥ 1.0%. An 
annual net drift increase of 1% means that the number 
of deaths would increase by 10%, 18% and 26% in the 
next 10, 20 and 30 years, respectively [19]. Among 204 
countries and territories, Uzbekistan at 4.56% (95% 
CI: 3.79–5.33), Georgia at 4.52% (95% CI: 3.82–5.24), 
Lesotho at 4.36% (95% CI: 2.46–6.29), Cabo Verde at 
4.29% (95% CI: 0.02–8.73), and Egypt at 4.24% (95% CI: 
3.80–4.68) were the top five countries with the fastest 
increase (Supplement Table S7).

In general, these results suggest that the overall disease 
burden is increasing in most countries and territories of 
the world. Countries and territories with higher levels 
of SDI generally had higher mortality, yet the numbers 
increased relatively slowly. Although most of the coun-
tries and territories with low SDI levels had relatively low 
mortality, the numbers were rapidly increasing.

The age-standardized mortality rates and the per-
centage changes with SDI level in a total of 204 
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countries and territories are shown in Fig. 3. Countries 
with high SDI levels have higher age-standardized mor-
tality rates, while countries with low SDI levels have 
higher percent change values. The specific cancer sub-
types exhibited similar trends, as shown in Supplemen-
tal Figures S2-5.

Time trends of distribution in mortality attributable 
to HFPG among different age groups
Figure 4 shows the net drift and local drifts for global and 
SDI quintile regions. Higher net drift values were found 
in lower SDI regions. Globally, cancer mortality attrib-
utable to HFPG showed increasing trends across all age 
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Fig. 3  The age-standardized mortality rates in 2019 (A) and percent change (%) in the age-standardized rate during 1990–2019 (B) for 204 
countries and territories by sociodemographic index
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Fig. 4  Local drifts of cancer mortality attributable to HFPG by SDI quintiles, 1990–2019



Page 8 of 14Xie et al. BMC Public Health         (2023) 23:1361 

groups (p < 0.05), and the trend intensified with age. The 
largest mortality increase occurred in the 84–89  years 
group, and the local drift value was 1.60% (95% CI: 1.45–
1.75). The mortality rate of females increased faster than 
that of males  globally. In high-, high-middle-, and mid-
dle-SDI regions, older people experienced a faster mor-
tality increase, while in low-middle- and low-SDI regions, 
younger people experienced a faster mortality increase. 
Tracheal, bronchus, and lung, breast and pancreatic 
cancer had similar trends to neoplasm, while colon and 
rectal cancer in the 50–55 and 85–89 year groups had a 
relatively high death rate increase, as shown in Supple-
mental Figures S6-9.

Figure  5 shows the time trend of deaths with the age 
distribution, which represents the survival status for can-
cer. From a global perspective, the time trend of deaths 
in the elderly population (80 + years) gradually increased 
and did not differ by gender. This trend was clearer in 
countries with high and high-middle SDI levels. It was 
noted that the number of deaths below 80 years was still 
in the minority in countries with middle, low-middle 
and low SDI, which might be related to the short aver-
age lifespan in these countries. Death according to cancer 
subtypes also exhibited the same trend, as shown in Sup-
plemental Figures S10-13.

Age‑period‑cohort effects on mortality attributable 
to HFPG
The age, period and cohort effects estimated by the APC 
model for mortality across SDI quintiles are shown in 
Fig.  6. A similar age-effect pattern was found across 
countries and territories with different SDI levels. Elderly 
individuals aged 85 to 89 had the highest risk, which 
gradually increased with age from 50 to 89  years old. 
The mortality of all age groups was generally higher in 
countries with high SDI and high-middle SDI. In addi-
tion, the risk of death in males was higher than that in 
females across SDI quintiles. Although an increase in 
mortality was observed across SDI quintiles, the mortal-
ity of females in low-middle and low  SDI areas rapidly 
increased compared with that of males.

There were differences in the period effects across dif-
ferent SDI quintiles. In terms of global trends, the risk 
of mortality declined in the last decade, especially in 
high-middle and high SDI regions. However, a sustained 
upward trend was observed in the middle, low-middle 
and low SDI regions.

Globally, the mortality risk of successive younger birth 
cohorts also showed a trend of differences among SDI 
quintiles. Similar to the period effect, the global risk of 
mortality increased with the birth cohort, especially in 
middle, low-middle and low SDI regions. However, it 
was noteworthy that the mortality risk of males in high 

and high-middle SDI regions declined (birth cohort 
after 1935).

The effects of age, period, and birth cohort on death in 
cancer subtypes are shown in Supplemental Figures S14-
17. Trends in disease burden for “tracheal, bronchial, lung 
cancer”, “colon, rectal cancer”, and “breast cancer” were 
generally consistent with the overall trend. For “pancre-
atic cancer”, there was a more pronounced upward trend 
in period and birth cohort effects for all SDI areas.

Age‑period‑cohort effects in representative countries
Unfavourable age-period-cohort effects were observed 
across SDI quintiles. We selected representative coun-
tries from the five SDI levels (Fig.  7) to better describe 
the main trend in mortality through age-period-cohort 
effects across the world. The net drifts from six countries 
increased during the past 30 years. Notably, the net drift 
value for males was higher than that for females in China, 
where the drift (95% CI) values for males and females 
were 1.65 (1.52, 1.78) and 0.74 (0.60, 0.88), respectively. 
However, the net drift (95% CI) values for males in the 
United Kingdom and Italy populations were 0.03 (-0.14, 
0.20) and 0.11 (-0.06, 0.27), respectively, which indicated 
that there was no significant increase in mortality (Sup-
plement Table S8). Regarding the age effect, increased 
mortality was observed in all age groups for the six coun-
tries, which was more significant in males. In terms of 
the period effect, Italy was different from other coun-
tries and showed a clear downward trend. In terms of the 
birth cohort effect, the increasing trend slowed after 1935 
for populations in the United States of America, United 
Kingdom, Italy, and China. However, increasing trends 
were observed in India and Pakistan. The age-period-
cohort effects of cancer subtypes in representative coun-
tries are shown in Supplemental Figures S18-21 and 
Table S9-12.

Discussion
Cancer is a major public health problem that all man-
kind is facing [20], and abnormal  glucose  metabolism 
increases the risk of death. In the past 30 years, the global 
population has increased by 44.67%, yet cancer deaths 
attributable to HFPG have increased by 179.37%, approx-
imately four times the rate of population increase. This 
is a grim public health issue globally that requires our 
immediate attention.

In this study, the APC model was first applied to analyse 
the time trends of cancer mortality attributable to HFPG. 
Our results indicated that age, period, and birth cohort 
are influential factors underlying the increasing mortality 
trend. The local drift curves indicated that mortality attrib-
utable to HFPG increased with age in higher SDI locations, 
with older people experiencing a more rapid increase. This 
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Fig. 5  Age distribution of cancer deaths attributable to HFPG by SDI quintiles, 1990–2019
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Fig. 6  Age, period and cohort effects on cancer mortality attributable to HFPG by SDI quintiles
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Fig. 7  Age, period and cohort effects on neoplasm mortality attributable to HFPG for representative countries
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may be due to population ageing in these locations [21, 
22]. In lower SDI locations, younger people had a greater 
mortality increase, showing a trend towards younger age 
of cancer mortality attributable to HFPG. The longitudi-
nal age curves showed that mortality increased with age, 
which may be related to  the  degeneration  of  body func-
tions. The period relative risk curves showed an upward 
trend, which may be associated with dietary and lifestyle 
changes over time. In higher SDI locations, mortality 
decreased or slowed in the last decade, possibly due to 
improved medical technology and health awareness. Con-
versely, lower SDI locations experienced a rapid mortality 
increase over the past 30  years. This could be related to 
limited access to health care and lack of awareness, result-
ing in many cancer patients being unable to afford better 
treatment [23–25]. These findings highlight the urgent 
need to increase awareness of blood glucose screening 
and control in cancer patients in lower SDI locations, as 
well as to improve the effectiveness of relevant therapies 
in the future. Globally, recent birth cohorts have a higher 
risk of cancer mortality attributable to high fasting plasma 
glucose, particularly in lower SDI locations. This increase 
is likely linked to rapid urbanization and industrializa-
tion over the past few decades, resulting in major lifestyle 
changes such as sedentary behaviour and unhealthy diets, 
which have led to a rapid increase in blood glucose levels 
[26–30]. Hyperglycaemia can facilitate tumourigenesis and 
enhance cancer development by promoting tumour cell 
proliferation, invasion, and migration, as well as inducing 
apoptosis resistance and chemoresistance [31–33]. With 
global population ageing [34] and recent birth cohorts 
continuing to exhibit increasing high-risk behaviours, the 
risk of cancer mortality attributable to HFPG is expected 
to continue to rise. Without timely prevention and control, 
this trend will result in significant disease and economic 
burdens, especially in lower SDI locations.

Compared to previous publications, our research makes 
significant contributions to better understanding the rea-
sons underlying the rapid increase in cancer mortality 
attributable to HFPG over the past 30 years. In addition, 
we found that males in high SDI regions had higher age-
standardized mortality rates, while females in lower SDI 
regions showed a rapid increase, indicating a potential 
increase in disease burden for females in countries with 
lower SDI levels. The reasons for the differences may be 
related to lifestyle, health education, health care resources, 
and cancer atlases of gender [35, 36]. The most common 
cancers in males were “trachea, bronchus, and lung can-
cer”, “colon and rectal cancer” and “pancreatic cancer”, 
which may be related to the cancer incidence and the asso-
ciation between high fasting plasma glucose and cancer. 
According to the World Cancer Research Fund (WCRF) 
[37],The top three common cancers in males worldwide 

were lung, prostate and colorectal cancers, accounting for 
41.9% of all cancers (excluding nonmelanoma skin can-
cer). Previous studies have shown that prostate cancer may 
have an inverse association with diabetes or hyperglycae-
mia [8, 38, 39]. Therefore, despite its high incidence, there 
was no data about the burden of prostate cancer attribut-
able to HFPG in the GBD 2019. While pancreatic cancer 
has a relatively low incidence (2.8% of all cancers), the high 
mortality rate of the disease [40, 41] combined with the 
strong association with diabetes or hyperglycaemia [42] 
contributes to a relatively high number of pancreatic can-
cer deaths attributable to HFPG. These factors may explain 
why "trachea, bronchus, and lung cancers", "colon and rec-
tal cancer", and "pancreatic cancer" were the most com-
mon cancers in males. Among females, breast, colorectal 
and lung cancer are the three most common cancers, com-
prising a total of 44.5% of all cancers [37]. In previous stud-
ies, these types of cancers have also been reported to have 
a positive association with diabetes or hyperglycaemia [8]. 
These findings may explain why the most common can-
cers in females are "trachea, bronchus, and lung cancers", 
"breast cancer", and "colon and rectal cancer". Our study 
also revealed a lower increase in cancer mortality attribut-
able to HFPG in Italy, which could be attributable to their 
traditional Mediterranean diet. The Mediterranean diet 
has the potential to prevent hyperglycaemia and cancer 
due to its antioxidant and anti-inflammatory properties 
[43, 44]. Additionally, our findings indicate a trend towards 
younger age at cancer mortality attributable to HFPG, par-
ticularly among females in India, highlighting the need for 
special attention to this issue.

This study has several limitations. First, the limitation 
derived from the GBD model is that the raw data for 
low- and middle-income countries were limited. Second, 
the APC model analysed in our study was based on the 
estimated cross-sectional data of GBD. Cohort studies 
are needed in the future to establish location- and time-
specific relative risks. Third, this study analyses mortality 
data at the national level and does not present local dif-
ferences. As the level of development of different regions 
in countries is often unbalanced, more sophisticated 
analysis using local data can identify each region trend.

Conclusions
In summary, the management of glucose levels in cancer 
survivors should be emphasized in clinical practice, par-
ticularly in lower SDI locations. Cancer survivors with 
HFPG can be identified through glucose monitoring and 
screening and appropriately treated as early as possible 
to improve survival. Furthermore, our study provides 
important evidence for health authorities to achieve bet-
ter resource allocation and to decrease the cancer burden 
attributable to HFPG.
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