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Abstract 

Background  Patients with type 2 diabetes (T2DM) have an increasing need for personalized and Precise manage-
ment as medical technology advances. Artificial intelligence (AI) technologies on mobile devices are being developed 
gradually in a variety of healthcare fields. As an AI field, knowledge graph (KG) is being developed to extract and store 
structured knowledge from massive data sets. It has great prospects for T2DM medical information retrieval, clinical 
decision-making, and individual intelligent question and answering (QA), but has yet to be thoroughly researched in 
T2DM intervention. Therefore, we designed an artificial intelligence-based health education accurately linking system 
(AI-HEALS) to evaluate if the AI-HEALS-based intervention could help patients with T2DM improve their self-manage-
ment abilities and blood glucose control in primary healthcare.

Methods  This is a nested mixed-method study that includes a community-based cluster-randomized control trial 
and personal in-depth interviews. Individuals with T2DM between the ages of 18 and 75 will be recruited from 40-45 
community health centers in Beijing, China. Participants will either receive standard diabetes primary care (SDPC) 
(control, 3 months) or SDPC plus AI-HEALS online health education program (intervention, 3 months). The AI-HEALS 
runs in the WeChat service platform, which includes a KBQA, a system of physiological indicators and lifestyle record-
ing and monitoring, medication and blood glucose monitoring reminders, and automated, personalized message 
sending. Data on sociodemography, medical examination, blood glucose, and self-management behavior will be 
collected at baseline, as well as 1,3,6,12, and 18 months later. The primary outcome is to reduce HbA1c levels. Second-
ary outcomes include changes in self-management behavior, social cognition, psychology, T2DM skills, and health 
literacy. Furthermore, the cost-effectiveness of the AI-HEALS-based intervention will be evaluated.

Discussion  KBQA system is an innovative and cost-effective technology for health education and promotion for 
T2DM patients, but it is not yet widely used in the T2DM interventions. This trial will provide evidence on the efficacy 
of AI and mHealth-based personalized interventions in primary care for improving T2DM outcomes and self-manage-
ment behaviors.
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Background
Diabetes mellitus is a common chronic disease with a 
high prevalence and mortality rate. The number of peo-
ple with diabetes aged 20–79 years is estimated to be at 
537 million in 2021, which is still rising and is expected 
to reach to 643 million by 2030, and 783 million by 2045. 
There are 140.9 million adults with diabetes in China, 
with a prevalence of 11.9%, causing a great health and 
economic burden [1]. However, diabetes control and 
treatment in China is inadequate, indicating the need 
for effective and innovative methods to improve diabetes 
prevention and treatment.

Diabetes self-management is one of the cornerstones 
of diabetes control, and it entails lifestyle changes such as 
diet and physical activity (PA), blood glucose monitoring, 
and medication administration on a regular basis. The 
body of evidence has shown the benefits of diabetes self-
management on metabolic control, outcome improve-
ments and reduced risk of all-cause mortality, which is 
recommended by international consensus [2]. Dietary 
management involves healthy dietary patterns to achieve 
and maintain optimal blood glucose, lipid, and blood 
pressure levels [3–6], such as Mediterranean diet [7, 8], 
the Dietary Approaches to Stop Hypertension (DASH) 
diet [9–11], the low calorie energy deficit diet [12–14], 
the low carbohydrate diet [15–17], vegan and vegetarian 
diets [18, 19], intermittent fasting and macrobiotic diets 
[20], and the low glycaemic index or glycaemic load die-
tary patterns [21–24]. In addition, a sedentary lifestyle, 
which parallels the global obesity epidemic, is also a cru-
cial risk factor of T2DM [25, 26]. Physical activity, such 
as various leisure time PA and occupational PA, has been 
shown to reduce the risk of T2DM, which may partly be 
mediated by reduced adiposity [27, 28]. Several studies 
have demonstrated that PA improves insulin sensitiv-
ity, glycaemic control, lipid profile, and blood pressure 
[29–31], with benefits lasting from 2 to 72  h after any 
PA [32]. Furthermore, regular self-monitoring of blood 
glucose (SMBG) and medication-taking are frequently 
considered in the context of diabetes self-management 
education and support [33]. Diabetes self-management 
education aims to improve diabetes-related health lit-
eracy, self-efficacy, and self-management abilities in a 
variety of contexts and forms for patients with diverse 

backgrounds, experiences, and clinical information. To 
improve the effectiveness, accessibility, acceptability, and 
cost-effectiveness of diabetes education, a variety of new 
and innovative technologies need to be applied, and they 
are more effective when used together for better meta-
bolic control and outcomes [34–36].

Mobile health (mHealth) is increasingly being imple-
mented into health care practice, revealing special ben-
efits in providing rapid, abundant, and tailored medical 
information to various groups of individuals, with lower 
health care costs and removed time and place restrictions 
[36–38]. A number of randomized controlled trials have 
shown the efficacy of applying mHealth technologies for 
lifestyle change and HbA1c improvement in T2DM [39, 
40], such as the Norwegian Randomized Controlled Trial 
RENEWING HEALTH [41], MyPlan 2.0 intervention (a 
self-regulation–based electronic and mHealth project) 
in two randomized controlled trials [42], a digital medi-
cine offering (DMO) in a cluster-randomized pilot trial 
[43], and a fully automated Web-based program in the 
ANODE study [44]. However, despite the availability of 
a wide range of diabetes-specific mHealth apps available, 
more detailed evidence regarding their clinical usefulness 
is still required [45].

Artificial intelligence, defined as “a field of science and 
engineering concerned with the computational under-
standing of what is commonly called intelligent behavior 
and with the creation of artifacts that exhibit such behav-
ior” [46], is being developed and applied in a variety of 
healthcare fields, especially decision support and knowl-
edge acquisition. There are diverse intelligent algorithms 
and techniques in AI, such as machine learning (ML), 
natural language processing (NLP), robotics, fuzzy logic 
(FL), expert systems (ES), knowledge base (KB), and a 
combination of two or more methods [46]. To tackle clin-
ical difficulties in T2DM, a large amount of data collect-
ing, analysis, and application of knowledge is required. 
Therefore, an increasing number of AI-based projects 
for T2DM diagnosis [47–50], clinical decision-making 
[51–53], and disease probability or outcome prediction 
[46, 54–57] have been developed. knowledge graph is a 
research field of AI that is graph that includes entities, 
properties, and relations between entities, which is usu-
ally stored in the form of inter-connecter triples [58]. 
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KG-based technologies are being developed to extract 
structured knowledge from massive data, which is con-
sidered as a crucial component for the development of 
AI in conjunction with big data and deep learning [58], 
especially in the medical domain [59]. Potential applica-
tions of KG technology in T2DM include medical infor-
mation retrieval, medical knowledge intelligent question 
and answering (QA), diagnosis, and treatment. Knowl-
edge-based question answering (KBQA) is a type of QA 
processing that uses a knowledge database to provide 
fast and accurate answers to questions written in natural 
language expressions by users [60]. It has been applied 
in disease diagnosis and treatment recommendation 
[61–63]. However, KBQA in T2DM is a research area 
that has yet to be fully investigated. Chang, et al. devel-
oped DiaKG, the first high-quality Chinese dataset for 
the diabetes knowledge graph, with 22,050 entities and 
6,890 relations about clinical research, drug usage, clini-
cal cases, diagnosis, and treatment methods of T2DM 
[59]. Chen, et  al. created a KBQA-based personalized 
food recommendation framework based on FoodKG and 
American Diabetes Association (ADA) lifestyle guide-
lines that outperformed non-personalized counterparts 
in terms of recommending more relevant and healthier 
recipes [64]. Due to a lack of high-quality T2DM anno-
tated corpora and KG, few studies used KG as a T2DM 
intervention to assess its effectiveness on self-manage-
ment and clinical outcomes.

In summary, given the great potential of patient-ori-
ented KBQA technology for diabetes prevention and 
control in primary healthcare, the primary goal of this 
study is to develop a personalized, sustainable and cost-
effective health education intervention program, AI-
HEALS, to improve the outcome and self-management 
skills of people with T2DM.

The specific objectives are:

1. Evaluate the impact of the AI-HEALS-based inter-
vention program on blood glucose control of T2DM 
patients.
2. Determine the efficacy of the AI-HEALS-based 
intervention program in improving self-management 
abilities among T2DM people:

2.1 The effectiveness of a healthy diet;
2.2 The effectiveness of moderate PA;
2.3 The effectiveness of regular medication admin-
istration;
2.4 The effectiveness of regular blood glucose 
monitoring.

3. Compare the acceptability and cost-effectiveness 
of AI-HEALS-based intervention program in T2DM 
primary healthcare.

Methods
Study design
This study will use a nested mixed-method study with 
a quantitative survey and a qualitative interview to gain 
a better understanding of the effect and acceptability of 
the AI and mHealth-based intervention program for 
T2DM. The research will take place from August 2023 to 
June 2025. The quantitative survey will be conducted as 
a community-based cluster randomized controlled trial 
with two parallel groups to compare the effectiveness 
of the AI-HEALS-based education program on T2DM 
control and self-management behaviors (such as medi-
cation use, dietary and physical activity modification). 
The intervention will last three months. Questionnaires, 
physical examinations, and personal in-depth interviews 
(the qualitative study) will be conducted to participants 
at baseline, 1, 3, 6, 12, and 18 months to examine changes 
in self-management behaviors and blood glucose control. 
Cost-effectiveness analysis will be conducted at 12 and 
18 months. The flow chart for the study shown in Figs. 1 
and 2.

Study setting and randomization
The study will be conducted in 40-45 community 
health centers (CHCs) in Beijing, China, as the unit of 
randomization. The community health center contains 
8-10 people with T2DM. A computer-generated list of 
random numbers will assign clusters (CHCs) in a 1:1 
ratio to an intervention group and a control group. 
All subjects in each cluster will receive the same inter-
vention (SDPC plus AI-HEALS) or control (SDPC). 
Blinding of the participants or researchers cannot be 
guaranteed considering the nature of the intervention. 
The proportion of sociodemographic characteristics 
(such as gender, age, and location) between two groups 
will be evaluated at baseline to verify that the data are 
balanced and comparable. Study designer will gener-
ate the allocation sequence, CHCs staff will enroll par-
ticipants, and study designer will assign participants to 
interventions.

Population
The study population for our program is residents aged 
18–75  years with T2DM in CHCs. The inclusion crite-
ria are as follows: meet T2DM diagnostic criteria [65] 
(fasting plasma glucose ≥ 7.0  mmol/L or 2  h plasma 
glucose ≥ 11.1  mmol/L or HbA1c ≥ 6.5%); permanent 
residence in Beijing; ability to use smartphones and the 
WeChat chatting app; have not taken any psychotropic 
drugs prior to enrolment; have not participated in other 
studies; agree and able to adhere to the study. A history 
of type 1 diabetes, gestational diabetes, or secondary dia-
betes; severe diabetes complications; having radiotherapy 
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or chemotherapy within the last six months; severe intel-
lectual disability, Alzheimer’s disease, or other men-
tal disorders are key exclusion criteria. We have not yet 
started recruiting study participants, and we expect to 
begin recruitment in July 2023. After completing the 
entire questionnaire, participants will receive a gift of 
about 20 CNY. Participants will be informed that their 
participation is voluntary and that they can always opt 
out and switch to the SDPC.

Effect size
Based on our previous study, assuming an alpha risk 
of 0.05, a beta risk of 0.10, an intraclass correlation 
(ICC) of 0.002, a mean level of HbA1c in patients 
with type 2 diabetes of 7.13%, and a standard devia-
tion (SD) of 1.60%, at least 2 clusters, and 166 subjects 
(138 total before considering a dropout rate of 20%) in 

each cluster are expected to be recruited according to 
the sample size formula for unmatched studies [66] to 
detect a decrease in HbA1c to 6.50% after the interven-
tion. As a result, a total of 664 patients in 4 communi-
ties are required to be recruited for this program.

Intervention
Control arm: SDPC for patients with T2DM
Participants in the control group will receive standard 
health care from community doctors, including medi-
cal counselling, regular follow-up, assessment, health 
education, referral advice and medical examination. 

Intervention arm: SDPC plus AI‑HEALS‑based T2DM online 
health education program
Participants will receive SDPC plus AI-HEALS-based 
intervention through the WeChat service platform "PKU 

Fig. 1  Flow chart of patient recruitment and study implementation
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Diabetes Butler" on their mobile phones, which consists 
of four components:

1. KBQA for T2DM knowledge. Participants will 
be encouraged to interact with a FAQRobot (Fre-
quently Asked Questions Robot) to accurately and 
efficiently gain detailed knowledge about T2DM 
diet (recommended or not recommended foods, 
food nutrients, calories, glycemic index, and gly-
cemic load), exercise (recommended or not rec-
ommended exercise, the metabolic equivalent of 
physical activities), and medication management 

(types of medicines and how to take them), remov-
ing time and distance limitations to health care 
consultations and increasing health care accessi-
bility. In addition, the FAQRobot has an entertain-
ment function, which can tell jokes and play games 
with patients to calm them down. After reviewing 
guidelines, professional literature, and consult-
ing experts, we identified the source material and 
knowledge for the T2DM self-management KQBA. 
Subsequently, we uploaded the underlying data to 
the Bot Factory22 Dialogue AI Platform produced 
by Emotibot [67], which formed an automated 

Fig. 2  The schedule of enrolment, interventions, and assessments
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Q&A bot with semantic understanding and auto-
matic knowledge mining. The Q&A bot was linked 
to the WeChat platform "PKU Diabetes Butler". 
The backend stores the questions that participants 
asked as well as their usage behaviors (such as time 
and frequency) so that we can improve the knowl-
edge graph regularly and assess the usage patterns 
of participants.
2. Recording and monitoring of physiological indi-
cators as well as lifestyle behaviors. Participants will 
be encouraged to record information on physiologi-
cal indicators (blood glucose, blood pressure), diet, 
physical activity, and medication-taking regularly on 
the platform, which stores and uploads the records 
electronically and enables long-term monitoring of 
blood glucose control and changes in self-manage-
ment behaviors.
3. A reminder service for taking medications and 
monitoring blood glucose levels. Participants will 
be encouraged to enter the time they want to be 
reminded in the system, and the platform can remind 
them to take their medication or monitor blood glu-
cose levels at specified time.
4. Automated and personalized messaging about dia-
betes self-management. Participants will receive 1–3 
automated messages about T2DM control and man-
agement per week, the content of which will be based 
on multi-theory model (MTM) of health behavior 
change, and will contain knowledge of T2DM diet, 
exercise, and medication taking to increase health lit-
eracy and to encourage behavioral change. Further-
more, based on the questions users ask the FAQRo-
bot, the system will accurately push additional, 
tailored articles. Researchers will also regularly log 
into the backend to check the number, type and time 
of articles read by the participants in order to tailor 
the content and frequency of messages to their read-
ing patterns.

All user data will be kept confidential. Participants 
have the option to withdraw from the study at any 
time. Adverse events related to the intervention will 
be recorded and reported in accordance with local 
procedures.

Outcomes
Primary outcome: Change of HbA1c from baseline to 1, 
3, 6, 12, and 18-month follow-up.

Secondary outcomes:

1. Modifications of self-management behaviors: 
dietary, physical activity, blood glucose monitoring, 
and medication adherence.
2. Social cognition and psychology: diabetes health 
literacy, self-efficacy, depression, anxiety and stress.
3. Metabolic control: self-reported fasting plasma 
glucose or 2 h plasma glucose, dose of insulin and 
medicine, other indicators such as blood pressure, 
blood lipids, and BMI.
4. Economic evaluation: A comparison of incre-
mental cost-effectiveness ratios (ICERs) will be 
conducted between the AI-HEALS-based interven-
tion and usual care of T2DM. Therefore, health-
related quality of life (HRQoL), healthcare uti-
lization, including medical consultations, use of 
healthcare (outpatient, hospitalized, and primary 
care services), medicine purchases, accident vis-
its, and direct non-medical costs (diabetes-related 
transportation, lodging) will be collected.

Additionally, the rate of recruitment and drop-out, as 
well as the reasons for drop-out, will be gathered. To 
determine whether the data is homogeneous, demo-
graphic characteristics and study outcomes will be 
compared between people dropping out and partici-
pants resistant to the entire trial during data analysis.

Variables measurement
Sociodemographic variables will be obtained at base-
line. Physical examinations and questionnaire surveys 
will be completed at baseline, 1, 3, 6, 12, and 18 months 
(Table 1).

Sociodemographic variables: sex, age, marital sta-
tus, location, family average household, educational 
level, and occupation will be gathered, as well as clini-
cal information such as the duration of T2DM, detailed 
medical history, and current diabetes medications.

Measurement of blood glucose: HbA1c levels will be 
measured by drawing venous blood fasting.

Anthropometric variables: height, weight, waist cir-
cumference, and blood pressure of each participant will 
be measured twice by certified instruments. Height and 
body weight will be measured using an adequately cali-
brated certified electronic instrument. Divide weight 
(kg) by height (m) to calculate the BMI. Waist circum-
ference will be measured at the level of the umbilicus 
using a tape measure. As regards blood pressure, sys-
tolic and diastolic BP will be measured by a validated 
automated sphygmomanometer.
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Questionnaires
Self-management behavior will be evaluated by the Sum-
mary of Diabetes Self Care Activities (SDSCA). SDSCA is 
an 11-item brief self-report questionnaire for measuring 
levels of T2DM self-management behaviors with diet (5 
items), exercise (2 items), blood sugar testing (2 items), 
and foot care( 2 items) in last 7 days, which has great reli-
ability and validity for both research and practice [68].

Dietary intake will be assessed by self-administered 
diabetes eating behavior questionnaire, including sugar 
and fat (5 items), fruit and vegetable (5 items), oil and 
salt eating habits (4 items), cooking and dining habits (4 
items), and dietary monitoring behavior (4 items).

Physical activity during the last 7 days will be assessed 
by International Physical Activity Questionnaire Short 
Form (IPAQ-SF), including items for time spent on slight, 
moderate, vigorous activities or sedentary behavior [69].

Medication taking behavior will be evaluated by the 
Adherence to Refills and Medications Scale (ARMS) [70], 
a 12-item scale containing taking medications as pre-
scribed and refilling medications on schedule, which has 
great validity and reliability for measuring medication 
adherence.

Emotional state will be measured by the 7-item Gen-
eralized Anxiety Disorder (GAD-7) [71], the Patient 

Health Questionnaire 9 (PHQ9) [72], and the 4-item 
Perceived Stress Scale (PSS-4) [73], which reflect par-
ticipants’ levels of anxiety, depression, and stress over 
the last two weeks.

Health literacy will be evaluated by 12-item short-form 
health literacy scale (HLS-SF12) [74], which includes 12 
dimensions of health literacy with 12 questions about 
finding, understanding, judging, and applying health 
information about disease management, prevention, and 
health promotion.

Diabetes self-management skills will be assessed by a 
self-designed 9-item scale for people with T2DM, includ-
ing determining if their weight is normal, calculating 
their daily calorie needs, designing personalized reci-
pes, determining the size of the effect of regular food on 
blood sugar, adjusting their diet according to the amount 
of exercise they do, developing their own exercise plan, 
judging the intensity of various exercises, and knowing 
how to avoid and deal with hypoglycemia.

Self-efficacy will be measured by self-designed diabetes 
self-management scale, which reflects the confidence to 
do diabetes self-management behaviors, including diet 
(5 items), physical activity (7 items), identify and man-
age hypoglycemia (2 items) and access medical services 
(2 items).

Table 1  Data collection components and collection timeline

Type of research Data collection component Timepoint

0 M 1 M 3 M 6 M 12 M 18 M

Quantitative research Sociodemographic variables sex, age, marital status, location, family average household, 
educational level, occupation, clinical information

√

Blood glucose HbA1c levels √ √ √ √ √

Anthropometric variables height, weight, waist circumference, and blood pressure √ √ √ √ √ √

Self-management behavior Questionnaire: SDSCA √ √ √ √ √ √

Dietary intake Questionnaire: self-administered diabetes eating behavior 
questionnaire

√ √ √ √ √ √

PA Questionnaire: IPAQ-SF √ √ √ √ √ √

Medication taking Questionnaire: ARMS √ √ √ √ √ √

Emotional stage Questionnaire: GAD-7, PHQ9, and PSS-4 √ √ √ √ √ √

T2DM knowledge and skills Questionnaire: HLS-SF12 and self-designed 9-item diabetes 
self-management skills scale

√ √ √ √ √ √

Self-efficacy Questionnaire: self-designed diabetes self-management 
scale

√ √ √ √ √ √

Behavioral change Questionnaire: self-designed 31-item MTM scale for health 
behavior change

√ √ √ √ √ √

Quality of life Questionnaire: EQ-5D-5L √ √ √ √ √ √

Economic evaluation healthcare utilization (medical consultations, use of out-
patient, hospitalized, and primary care services, medicine 
expenditures, accident visits, and lost productivity)

√ √

Cloud data KQBA interaction records and user reading behavior data √ √ √ √ √

Qualitative research Person-in-depth semistruc-
tured interview

User experience of the AI-HEALS √ √ √ √ √
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Change of self-management behaviors will be evaluated 
by a self-designed 31-item MTM scale for health behav-
ior change, including participatory dialogue, behavioral 
confidence, changes in the physical environment and 
social environment, emotional change, and behavioral 
change.

Quality of life will be measured by five-level EuroQol 
five-dimensional questionnaire (EQ-5D-5L) [75], which 
comprises five dimensions about mobility, self-care, usual 
activities, pain/discomfort, and anxiety/depression.

Cloud data: The cloud data from the AI-HEALS will 
be used to evaluate users’ FAQRobot interaction records 
and reading behavior data on a weekly basis. The FAQRo-
bot interaction records include user ID, user questions, 
bot answers, human–computer interaction time (accu-
rate to the second) and outgoing talk module (knowl-
edge reasoning engine, and common standard questions). 
User reading behavior data includes article clicks and 
reads, reading time per article, average effective reading 
rate (patients/articles), follow rate and unfollow rate of 
the WeChat service platform "PKU Diabetes Butler", and 
article Retweets. A collaboration agreement for this pro-
ject has been made with the Emotibot company. The data 
will not include users’ personal information, and will be 
used exclusively for this project and cannot be used for 
other purposes without authorization.

Economic evaluation
To assess the efficacy of this mHealth education pro-
gram on health equality, the economic evaluation will 
be reported as ICERs and compared between the AI-
HEALS-based intervention and traditional T2DM 
primary care. During the trial, the economic cost of 
healthcare utilization (medical consultations, use of out-
patient, hospitalized, and primary care services, medi-
cine expenditures, accident visits, and lost productivity) 
will be assessed per case, as well as the cost of project 
implementation (AI-HEALS-based interventions (plus 
primary usual care activities) versus primary usual care 
activities). Utility will be evaluated in terms of HRQoL, 
with data from the EQ-5D-5L used to calculate health 
utility values.

Qualitative analysis
Semistructured interviews of participants will be con-
ducted at 1, 3, 6, 12, and 18 months after the baseline to 
investigate feedback, including program appeal, accept-
ability, usability, and participant satisfaction. The inter-
view data will provide us a better understanding of the 
factors that drive engagement and behavioral changes in 
participants. We will invite participants to a 40-min tele-
phone-based or face-to-face personal in-depth interview. 

Participants will be selected considering the sociodemo-
graphic variables including sex, age, location, educational 
level and the duration of T2DM. Topics about personal 
experience, recommendations for the developments of 
the AI-HEALS as well as motivating factors and difficul-
ties of maintaining self-management behaviors are all 
encouraged to be discussed. Participants will be recruited 
successively until thematic saturation has been reached. 
Interview audio files will be transcribed verbatim and 
de-identified, and analysed by NVivo (version 12, QRS 
International, Doncaster, Australia) using the theoretical 
domains framework. The qualitative data and quantita-
tive data will be incorporated to better explain the results 
at multiple stages during the trial.

Statistical analysis
Data from the quantitative study will be recorded in the 
designed questionnaire and double-parallelly entered 
into Epidata 3.1 (Version 15.0.5, Odense, Denmark). 
Variables analysis will be based on the premise of inten-
tion to treat. Continuous variables will be presented as 
mean ± SD (M(P25, P75), if they are abnormal distribu-
tion), and be compared using Student’s t test or one-way 
ANOVA (or non-parametric tests if necessary). Data dis-
tribution will be identified by a Kolmogorov–Smirnov 
test. Categorical data reported as n(percentage of sample) 
will be compared using χ2 tests. With regard to the cross-
sectional analysis, linear regression, logistic regression 
and structural equation model (SEM) will be conducted 
to explore the influence factors of behaviors pattern and 
mHealth usage pattern evaluated by the group-based tra-
jectory model (GBTM). For longitudinal data, a general-
ized linear mixed model (GLMM) will be used to identify 
the effectiveness of the AI and mHealth-based interven-
tion in behavioral changes and diabetic control. Set an 
alpha risk of 0.05 for two-sided tests. Data will be ana-
lysed using IBM SPSS Statistics version 24.0 (SPSS Inc., 
an IBM Company, Chicago, Illinois, USA), Stata (version 
14.0, Stata Corporation, College Station, TX) and Mplus 
(version 7.4, Muthén & Muthén, Los Angeles, CA, USA).

Study management
Prior to the study, the investigators will be trained and 
assessed comprehensively. Throughout the study, the 
study subjects will be registered and coded to minimize 
the occurrence of missing visits during the follow-up 
period. To maintain consistency between the interven-
tion and control groups, survey time and questionnaire 
will be kept substantially identical. During data analysis, 
a double-entry checking procedure will be implemented 
to enhance the quality of data entry, and experts will be 
consulted to select appropriate statistical methods. If 
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finding abnormal values, the original questionnaires will 
be checked and verified for accuracy to proceed to the 
analysis. Additionally, the qualitative data will be collated 
and proofread by two researchers to ensure reliability in 
the analysis of the qualitative findings.

The research leaders and primary investigators will 
supervise research implementers regularly to ensure the 
correct implementation of all research procedures and 
to guarantee the accuracy of the collected data. If inves-
tigators are failure to adhere to predefined survey and 
follow-up standards, research leaders will terminate the 
trial, revise the randomization scheme and recollect data 
after the modification is completed. In the event of fun-
damental or widespread design errors or inaccuracies in 
the research questionnaire during the survey process, the 
researchers will halt the trial to modify and redesign the 
questionnaire. After the necessary revisions were com-
pleted, the revised questionnaire will be then redistrib-
uted to participants.

The data monitoring committee (DMC) will be com-
posed of at least two members from the Biomedical 
Ethics Committee of Peking University, who have no 
conflicts of interest with our study. The DMC will con-
duct regular monitoring and review of the study, and will 
report the findings to the Ethics Committee. This pro-
cess will operate independently of the primary investiga-
tors. If the DMC identifies deviations from the approved 
research protocol or unauthorized changes to the study 
procedures during the research process, they have the 
authority to suspend or terminate the study. Further-
more, during the research, the project researchers are 
responsible for promptly reporting any serious adverse 
events (SAE) or adverse events (AE) to the Ethics Com-
mittee. If any participants experience AE or SAE, regard-
less of their relationship to the research intervention or 
whether the intervention has been implemented, the 
researchers must notify the investigators within 24  h of 
the event and terminate the trial. Additionally, in the 
event of serious program bugs or significant deficiencies 
in user interaction during the participant’s engagement 
with AI, the researchers must interrupt the trial, redesign 
the study, and rectify the issues with the AI program.

Discussion
As the Internet and smartphones have advanced, an 
increasing number of people are turning to mobile Inter-
net to obtain information, and mHealth has been shown 
to be a cost-effective way to promote self-management 
behaviors in T2DM primary care. AI and mHealth-based 
programs have shown great promise in diabetes manage-
ment, such as predicting blood glucose levels, monitoring 

medication dosages, identifying high-risk patients, and 
assisting in diabetes diagnosis. KBQA and AI-based 
reminding and monitoring programs in CHCs can 
answer patients’ questions and provide real-time feed-
back on their blood glucose levels, dietary patterns, med-
ication taking and exercise, removing time and distance 
barriers to health care consultations and increase health 
care accessibility. AI can also interact with patients in a 
playful manner, improving their mood and adherence to 
treatment. An AI-based diabetes self-management assis-
tant would be an excellent tool for both clinicians and 
patients as the GPT model is promoted and developed.

Since there have been few studies on integrating AI 
technology, especially intelligent question and answer 
systems, into T2DM community interventions. The find-
ings of this study will indicate the feasibility and effecacy 
of the AI-based KBQA, monitoring, recording and alert-
ing system for individualized T2DM interventions. The 
findings will provide meaningful insights into refining 
AI-based T2DM management and improving the usabil-
ity of diabetes mHealth software.
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