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Abstract 

Background Cervical cancer (CC) is globally ranked fourth in terms of incidence and mortality among women. 
Vaccination against Human Papillomavirus (HPV) and screening programs can significantly reduce CC mortality rates. 
Hence, executing cost‑effective public health policies for prevention and surveillance is crucial. However, defining 
policies that make the best use of the available resources is not easy, as it requires predicting the long‑term costs 
and results of interventions on a changing population. Since the simpler task of predicting the results of public 
health policies is difficult, devising those that make the best usage of available resources is an arduous challenge 
for decision‑makers.

Methods This paper proposes a fine‑grained epidemiological simulation model based on differential equations, 
to effectively predict the costs and effectiveness of CC public health policies that include vaccination and screening. 
The model represents population dynamics, HPV transmission within the population, likelihood of infection clearance, 
virus‑induced appearance of precancerous lesions and eventually CC, as well as immunity gained with vaccination 
and early detection with screening.

Results We offer a compartmentalized modeling approach that separates population, epidemics, and intervention 
concerns. We instantiate models with actual data from a Colombian case study and analyze their results to show 
how our modeling approach can support CEA studies. Moreover, we implement models in an open‑source software 
tool to simultaneously define and evaluate multiple policies. With the support of the tool, we analyze 54 policies 
within a 30‑year time horizon and use as a comparator the CC policy that has been used until recently. We identify 8 
dominant policies, the best one with an ICER of 6.3 million COP (Colombian Pesos) per averted DALY. We also validate 
the modeling approach against the available population and HPV epidemic data. The effects of uncertainty in the val‑
ues of key parameters (discount rate, sensitivity of screening tests) is evaluated through one‑way sensitivity analysis.
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Conclusions Our modeling approach can provide valuable support for healthcare decision‑makers. The implementa‑
tion into an automated tool allows customizing the analysis with country‑specific data, flexibly defining public health 
policies to be evaluated, and conducting disaggregate analyses of their cost and effectiveness.

Keywords Cervical cancer, Public health policy, Cost‑effectiveness analysis, Simulation model, Automation

Background
Cervical cancer (CC) is the fourth most common can-
cer in women, with an estimated 604,000 new cases 
and 342,000 deaths around the world in 2020 [1]. This 
cancer type is almost always subsequent to an infection 
by the Human Papillomavirus (HPV). HPV infection is 
sexually transmitted, having a prevalence of up to 40% 
in young women [2]. Moreover, the estimated lifetime 
risk of contracting one or more genital HPV infections 
is about 80% for women [3].

Due to the magnitude of this public health issue, pre-
vention and surveillance policies have been deployed 
worldwide. Primary prevention relies on vaccination 
against HPV. Although vaccines are generally very 
effective in preventing infection, they are not enough as 
the sole means against CC, and this is why surveillance 
(screening) plays a key role. Early treatment of precan-
cerous lesions is highly effective, and it has been esti-
mated that it can avert up to 80% of CC cases occurring 
in developing countries, which in turn account for 80% 
of the worldwide prevalence [4]. Cytology and HPV-
DNA tests are two of the most common screening tests.

Many aspects affect the cost and utility of policies, for 
instance, the age range at which screening should start, 
the time interval between screenings and the type of 
tests to be applied. Similarly, there are options for vac-
cination that consider different target age ranges, and/
or whether to vaccinate girls only or boys as well. The 
best settings are also likely to depend on country-spe-
cific aspects, such as demographics and socioeconomic 
factors. For this reason, fine-granularity predictive 
models, which can account for the details of interven-
tions as well as the target population are of paramount 
importance when conducting Cost-Effectiveness Anal-
ysis (CEA) of CC interventions. Accurate and reliable 
models are even more crucial to CEA when there is a 
need to predict across long time horizons, as it is the 
case for CC.

Several types of predictive modeling approaches have 
been proposed to measure the cost-effectiveness of 
strategies against CC. In [5], the authors used a state-
transition mathematical model to simulate a cohort 
of U.S women, and estimated a 93% reduction in life-
time risk by using liquid pap test for women up to 30 
years old, and HPV and pap test for older women, with 
respect to a scenario without screening.

In [6], the authors developed a simulation model to 
study the natural history of CC using data from United 
Kingdom, The Netherlands, France and Italy. They evalu-
ated the cost and health benefits of integrating HPV-
DNA testing in CC screening programs. They found 
that strategies that incorporated HPV-DNA testing had 
lower cost, lower lifetime risk and higher life expec-
tancy, compared to the current country strategies. Fur-
thermore, in [7] the authors used Norway economic and 
epidemiological data for running a simulation model of 
HPV-induced CC. They compared the current Norway 
cytology scheme with strategies that included cytology 
for younger ages and HPV screenings for older ages. 
They concluded that the current scheme was less effec-
tive than the proposed interventions. In [8] the authors 
developed a differential-equation model that predicts 
the HPV vaccination impact on health and economics in 
the Sub-Saharan Africa. They found considerable health 
gains when pre-adolescent girls are vaccinated. For the 
Colombian population, in [9] a Markov model that rep-
resents the natural history of CC was developed in order 
to evaluate the effectiveness of different screening strate-
gies. The authors defined an efficient frontier by compar-
ing the costs and effectiveness of each strategy. Within 
the frontier, there were strategies that include vaccina-
tion and HPV-DNA test as the primary screening. An 
extended cost-effectiveness analysis of HPV vaccination 
was conducted in China by [10]. Using a Monte-Carlo 
simulation model, the authors estimated the distribution 
of deaths due to CC in scenarios that considered vaccina-
tion alongside screening. They found that if vaccination 
and screening were taken into account, cancer prevalence 
could decrease by 44%. In [11] a Markov Chain model 
was used to represent the natural history of the disease 
in Estonia, a country with low screening coverage. They 
evaluated the cost-effectiveness ratio of bivalent, quad-
rivalent and nonavalent vaccines in a school-based vacci-
nation program. As a result, they found that vaccinating 
girls has an incremental cost-effectiveness ratio with any 
type of vaccination scheme, compared to current pro-
grams. Moreover, bivalent vaccines had the lowest incre-
mental cost, and nonavalent vaccines the highest QALYs 
gained.

The results of the studies reported above support the 
need of capturing country-specific aspects into models 
that can predict the cost-effectiveness of public health 
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policies against CC. In general, these studies evaluate the 
cost-effectiveness of selected policies for a given context, 
such as a country or a set of countries. Thus, repeating 
the study for different policies or countries would require 
a substantial amount of data preparation and additional 
modeling.

The objective of this work is to define a general and rig-
orous modeling methodology that can predict relevant 
metrics to be used in CEA studies of CC interventions 
for the population of a country. The modeling supports 
the integration of country-specific data, the analysis of 
a large class of vaccination and screening interventions, 
the estimation of incidence, prevalence and death rates, 
and the generation of cost-effectiveness relevant met-
rics. Moreover, we also offer a software application that 
can automate most of the modeling and outcome metric 
evaluation steps.

Our approach is based on mathematical models that 
comprehend the health states dynamics, and use com-
partmentalized epidemiological models, rendered in 
form of ordinary differential equations. The numerical 
integration of differential equations can reproduce the 
dynamics of the population, the transmission of HPV 
and the possible progression to CC stages, under the 
effects of defined vaccination and screening policies. To 
provide a flexible solution for public health decision-
makers, our modeling was automated into an open soft-
ware tool, developed with  R® [12]. The software tool is 
endowed with a  Shiny© [13] graphical user interface, 
which almost completely hides the modeling complexity 
from the final user.

The paper is organized as follows. In the Methods sec-
tion we present the modeling methodology used for the 
CEA of policies against CC, the data required, and the 
software tool developed for automating the implementa-
tion. In the same section, we present an application of the 
modeling approach to the study of CC interventions on 
the Colombian population. The Results section includes 
a partial validation of the proposed modeling methodol-
ogy and some elements of evaluation of cost and effec-
tiveness for 54 policies that could be of interest for the 
Colombian use case. The Discussion section conducts a 
critical review of our proposal, its findings, and its limita-
tions. Finally, the Conclusions section presents our main 
remarks and perspectives for future research work.

Methods
Since this work aims at modeling the disease spread 
(HPV infection and progression to CC) at a population 
level, we base our modeling on classical, deterministic 
continuous-time epidemics modeling [14]. This approach 
partitions the whole population into a discrete num-
ber of subsets, called compartments, each containing 

individuals who can be considered homogeneous with 
respect to the variables that affect the dynamics of the 
disease. The change in the number of individuals within 
compartments is expressed in terms of a set of ordinary 
differential equations. Given the initial state provided at 
time t = 0 , the numerical integration of the differential 
equations provides a prediction for the population state 
over time.

We choose continuous deterministic modeling because 
the large number of entities (the whole population of a 
country) is ensuring that a continuous approximation 
is adequate for the number of individuals in the system. 
Moreover, this type of model is very efficient and allows 
obtaining predictions over long time horizons (30 to 50 
years) in a limited computing time.

Models that can accurately reflect the dynamics of 
HPV and CC need to consider demographic, socio-eco-
nomic, and epidemiological aspects. To handle modeling 
complexity, we separately represent three distinct aspects 
or modeling layers: 

 (a). The population layer, where we model the 
dynamics of population without considering 
the disease. The processes affecting the number 
of individuals in compartments will be births, 
deaths and aging.

 (b). The disease layer, which models the transmission 
and clearance of HPV infection within the popu-
lation, and the possible transitions to pre-cancer-
ous and cancerous stages.

 (c). The intervention layer, in which we model the 
impact of prevention and/or surveillance actions 
that counter HPV epidemics, and detect and 
control the progression of CC lesions.

Each model layer is built on top of the previous one, 
by refining the compartmentalization with a finer sub-
division of the population. The population layer can be 
parameterized using official census data on the number 
of births and deaths in the population, and validated 
using other population projections, for instance, those 
provided by the United Nations (UN). For the second 
layer, country-specific data on HPV incidence, CC inci-
dence and CC death rates is required. Validation can 
be conducted by comparing model predictions against 
health records for disease prevalence in the population. 
For the last layer, the parameterization requires defining 
details of the vaccination and/or screening policies to be 
evaluated, as well as their effectiveness, e.g. immunity 
acquired, quality of the screening tests, etc. For valida-
tion, the results of previous cost-effectiveness literature 
studies can be used. The third modeling layer speci-
fies the prevention and surveillance interventions that 
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decision-makers are interested in evaluating. Among the 
possible prevention actions, we focus on vaccination. 
We assume vaccination campaigns are defined accord-
ing to a pulse vaccination strategy, by which a fraction of 
the susceptible population is vaccinated in a single pulse 
applied every certain periods [15]. Our model considers 
that vaccinated individuals can be from any gender and 
age, according to the inputs provided by the decision-
makers. As for surveillance, we consider the family of 
screening policies that consist of primary and triage tests, 
as depicted in Fig. 1.

In this type of screening, a positive result obtained by a 
primary test will have to be confirmed by another (triage) 
test. This double check will be of course not necessary 
in those circumstances when a certain diagnosis can be 
done with the primary test alone.

Policies will be evaluated in terms of cost and effective-
ness. In this work, the cost of a policy is the sum of the 
direct costs for vaccination and screening, considering 
a health system perspective. As for the effectiveness, we 
adhere to WHO recommendations for cost-effectiveness 
analysis in developing countries [16] by using Disability 
Adjusted Life Years (DALY). DALYs combine mortality 
and morbidity into a single metric: they are the sum of 
the potential years of life lost due to premature death, and 
the equivalent years of healthy life lost due to unhealthy 
life conditions.

In the next subsections we provide the details of the 
compartmentalized modeling approach we will be using. 
We proceed bottom up to describe the three modeling 
levels introduced in the previous section, and finally we 
model cost-effectiveness. We only provide the modeling 
rationale in the main body of the paper, moving to a final 
section several mathematical details to keep the reading 
lean and easy to follow.

Population layer model
Even slow changes in the composition of a population 
can become relevant over long time horizons. Therefore, 
we envisaged the need to build epidemics models on top 
of reliable predictive models of population dynamics.

For the population layer model, we divide the population 
into genders (females and males), and age ranges. The num-
ber of age divisions is the modeler’s decision. We denote by 
A = {0, 1, . . . ,K } the set of age ranges and we assume each 
age range in A, measured in years, will span the same tem-
poral width, except for the last range K which will account 
for all individuals in the tail of the age distribution. Let Fa(t) 
and Ma(t) denote the number of women and men in age 
range a ∈ A , at time t, t > 0 . We will consider Fa(t) and 
Ma(t), a ∈ A , to be continuous variables of our model. This 
is clearly an approximation, which disregards the true dis-
crete nature of a counting variable, but it is however com-
monly accepted due to the simplicity it entails in studying 
the population dynamics. The changes that can affect these 
continuous variables include births, aging and deaths, 
which will be modeled as differential equations.

Births will affect the number of individuals in the first 
age range, i.e. F0(t) and M0(t) . To characterize the birth 
process we introduce the time-dependent fertility rate of 
women at age range a, denoted by πa(t) , which provides 
the average number of children a woman in age range 
a ∈ A gives birth per year, at time t. Also, we denote by 
pf  the probability that a newborn is female, which we 
assume has no dependence on age range nor on time.

The term a∈A Fa(t)πa(t) , which we shall denote as 
N(t) hereafter, is the rate of births (individuals per year) in 
the population at time t. Population aging is modeled as a 
constant rate of change, with individuals moving from one 
age compartment to the next, for all age ranges, except the 
last one. The rate of aging, denoted by θ is the inverse of 
the age range width. To characterize death dynamics for 
all causes, we introduce the time-dependent death rate 
of individuals in age range a ∈ A at time t, which we shall 
denote by µF

a (t) and µM
a (t) for women and men, respec-

tively. The differential equations, including births, aging 
and deaths are presented below. For the first age range:

(1)

dF0(t)

dt
=N (t)pf − θF0(t)− µF

0 (t)F0(t),

dM0(t)

dt
=N (t)(1− pf )− θM0(t)− µM

0 (t)M0(t)

Fig. 1 Triage screening policies scheme
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For all age ranges a, with 0 < a < K :

Finally, for the last age compartment we have the follow-
ing two differential equations:

The mathematical formulation of the differential equa-
tions can be streamlined by introducing auxiliary indi-
cator functions, as explained in Mathematical modeling 
details section at the end of the paper. We do not con-
sider incoming or outgoing immigration flows in this 
model. However, including them will not change the fun-
damental structure of the population model. The sets, 
variables and parameters used in the model are summa-
rized in Table 1.

Disease layer modeling
We refine the population dynamics by partitioning each 
compartment into smaller ones, so that individuals in 

each compartment are homogeneous not only for gender 
and age, but also for health state. Relevant health states in 

(2)

dFa(t)

dt
= θFa−1(t)− θFa(t)− µF

a (t)Fa(t),

dMa(t)

dt
= θMa−1(t)− θMa(t)− µM

a (t)Ma(t)

(3)dFK (t)

dt
= θFK−1(t)− µF

K (t)FK (t),
dMK (t)

dt
= θMK−1(t)− µM

K (t)MK (t)

our modeling include those that characterize HPV trans-
mission dynamics (e.g. healthy, infected), and the vari-
ous disease states determined by the consequences of the 
infection (e.g. different grades of CIN or stages of CC). 
The set of possible health states for males, denoted by 
HM, is a subset of the females health states set, denoted 
by HF.

In this layer of modeling, we use Fh
a (t) to denote the 

number of women of age a ∈ A and health state h ∈ HF  
at time t; and Mh

a(t) to denote the number of men of age 
a ∈ A and health state h ∈ HM at time t. Individuals in 
the population will change their health state compart-
ment according to the natural evolution of the HPV 
infection and the natural history of CC evolution. The 
rate at which individuals get infected with HPV depends 
on their gender and age, which determine their approxi-
mate number of sexual partners per year and the likeli-
hood that their sexual partners are HPV infected. This 
latter factor can be estimated as the ratio of infected 
potential partners and the total number of potential part-
ners, which in our model evolve as functions of time. We 
assume that within each of the compartments defined in 
the population layer model, all individuals are homoge-
neous with respect to their sexual behavior, so that the 

rate of HPV infection at time t is the same for all the indi-
viduals in the compartment.

To capture the dynamics of health state change, we 
introduce the matrix of transition rates for women 
PFa(t) . This matrix has dimensions |HF ×HF | , and its 
entry h1, h2 (denoted as PFh1,h2

a (t) ) is the rate with which 
a woman in age range a ∈ A and health state h1 ∈ HF  , 
changes her health state to h2 ∈ HF  at time t. For men, 
we define the analogous matrices of functions PMa(t) , 
a ∈ A , each having dimensions |HM ×HM| . With such 
rate functions, we can describe the evolution of the num-
ber of individuals in their health states (no births, no 
change of age range, no deaths), as follows:

In each of the equations above, the terms in the positive 
summation account for the individuals who change their 

(4)dF
h1
a (t)

dt
=

∑

h2∈HF

Fh2
a (t)PFh2,h1

a (t)−
∑

h2∈HF

Fh1
a (t)PFh1,h2

a (t), a ∈ A, h1 ∈ HF

(5)dM
h1
a (t)

dt
=

∑

h2∈HM

Mh2
a (t)PMh2,h1

a (t)−
∑

h2∈HM

Mh1
a (t)PMh1,h2

a (t), a ∈ A, h1 ∈ HM

Table 1 Sets, variables and parameters used in the population 
model

Sets Description
A Age ranges

Variables Description
Fa(t) Number of women of age range a ∈ A at time t

Ma(t) Number of men of age range a ∈ A at time t

Parameters Description
πa(t) Fertility rate of women in age range a ∈ A at time t

pf Probability that a newborn is a woman

µF
a(t) Death rate of women in age range a ∈ A at time t

µM
a (t) Death rate of men in age range a ∈ A at time t

θ Population aging rate
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health state to become h1 , and the terms in the negative 
summations for those who change their health state to 
become a health state other than h1.

Since perinatal transmission of HPV is not uncommon 
[17], it is necessary to characterize the health state at 
birth. We thus introduce vector BF for females and BM 
for males, whose entries provide the probability distri-
bution for the initial health state. The interested reader 
can find the final form of the differential equations in the 
Mathematical modeling details section. Sets, variables 
and parameters introduced in this modeling layer are 
summarized in Table 2.

Intervention layer modeling
Finally, we define the intervention layer model, which 
considers vaccination and screening as possible preven-
tion and surveillance policies. The effect of interventions 
is modeled through the change they exert on the rates of 
health state transition functions PFa(t) and PMa(t).

Modeling vaccinations
To model a pulse vaccination intervention, the percent-
age of individuals to be vaccinated, their ages and the 
duration of the intervention (in years) must be defined. 
During each year, several ages can be the target of the 
vaccination campaign.

We assume that vaccination is effective only if applied 
to individuals that have not yet been exposed to HPV. 

We denote by HFV  the subset of health states HF  of 
women for which the vaccination would be effective, and 
by HMV  the analogous subset of health states for men.

We assume that when individuals whose health state 
is in HFV  (for women) or in HMV  (for men) are vac-
cinated, permanent immunity against HPV is acquired. 
Therefore, in this modeling layer we add a new health 
state V  to keep track of the immunized sub-popula-
tion. Also, we define new parameters ⓕ y(t)a  and ⓜ y(t)a  
to respectively represent the percentage of women and 
men, of age a ∈ A to be vaccinated in year y(t) of the 
intervention. The differential equations for this mod-
eling layer are only reported in the Mathematical mod-
eling details section. Table 3 reports the sets, variables 
and parameters introduced for modeling the vaccina-
tion interventions.

Modeling screening
The definition of a triage screening policy requires select-
ing the primary and the secondary tests, the ages at which 
the screening is to be performed, and its frequency. To 
model screening policies, we consider a possible set � 
of tests, and each test φi ∈ � will be characterized by its 
sensitivity β i and specificity αi.

In a triage screening scheme, the diagnosis follows 
the process shown in Fig.  2. The likelihood of a cor-
rect diagnosis depends on the sensitivity and specificity 
of the two tests used in the screening. A triage screen-
ing strategy (using test φi as primary and φj as second-
ary) will provide a correct classification for true positive 
individuals with probability c+i,j = β iβ j . For true negative 
individuals, the probability of correct classification is 
c−i,j = 1− (1− αi)(1− αj).

Table 2 Sets, variables and parameters used in the disease 
model

Sets Description
HF Health states of females

HM Health states of males

Variables Description

Fha (t) Number of women of age a ∈ A in health state 
h ∈ HF at time t.

Mh
a(t) Number of men of age range a ∈ A in health state 

h ∈ HM at time t.

Parameters Description
PFa(t) Matrix of transition rates between health states 

for women of age a ∈ A at time t.

PMa(t) Matrix of transition rates between health states 
for men of age a ∈ A at time t.

BF Vector of health state probability distribution 
at birth for women.

BM Vector of health state probability distribution 
at birth for men.

µF
a,h(t)

Death rate for women of age a ∈ A and health state 
h ∈ HF , at time t.

µM
a,h(t)

Death rate for men of age a ∈ A and health state 
h ∈ HM , at time t.

Table 3 Sets, variables and parameters introduced for modeling 
vaccinations

Sets Description
HFV Subset of health states HF for which 

the vaccination would be effective

HMV Subset of health states HM for which 
the vaccination would be effective

Variables Description

FVa (t) Number of women of age a ∈ A 
who have been immunized by time 
t

MV
a (t) Number of men of age range a ∈ A 

who have been immunized by time 
t

Parameters Description

ⓕy(t)
a

Target percentage of women of age 
a ∈ A to be vaccinated in year y(t)

ⓜy(t)
a

Target percentage of men of age 
a ∈ A to be vaccinated in year y(t)
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We introduce AS ⊂ A , the subset of the ages to apply 
screening to, and fa , the screening frequency (in screen-
ings/year) at age a ∈ A . Moreover, adherence of women 
to screening policies is an important aspect, as historical 
data shows that only a fraction of the target thoroughly 
follows it. The underlying reasons are multi-faceted 
and country specific, see for instance [18, 19]. For the 
sake of our modeling we will introduce the age depend-
ent parameter da , whose value provides the percentage 
of women of age a ∈ AS who adhere to the screening 
program.

When a CIN or CC condition is diagnosed, an inter-
vention may be necessary. We consider two distinct types 
of interventions: local treatment (excision and ablation) 
of CIN lesions, and hysterectomy for CC stages. For con-
sidering this, we define HFL and HFH , two disjoint sub-
sets of HF: the first one considers the health states that, 
when diagnosed, will lead to local treatment; and the 
latter those that will lead to hysterectomy. A new health 
state ḧ is introduced to keep track of women who under-
went hysterectomy. The differential equations are shown 
in the Mathematical modeling details section. Table  4 
provides a summary of the set, variables and parameters 
introduced for modeling screening.

Cost‑effectiveness modeling
Cost-effectiveness analysis (CEA hereafter) provides a 
suitable framework for quantitatively estimating and 
comparing the total impact, in terms of both health and 
economic consequences, of different policies. For meas-
uring cost-effectiveness we use a C/E ratio [20] that 
measures the merits of a new intervention with respect 

to baseline scenarios or comparators. The comparator is 
typically representative of the currently applied public 
health policy. The two elements of the C/E metric are 
defined as follows:

• C is the incremental cost of the resources consumed 
with the adoption of the new interventions, with 
respect to the comparator.

Fig. 2 Diagnosis in triage screening schemes

Table 4 Set, variables and parameters used to model screening 
interventions

Sets Description
� Set of available tests

AS Subset of the ages ranges A where screening 
is applied to

HFL Subset of health states HF for which when diag‑
nosed will lead the individual to local treatment

HFH Subset of health states HF for which when diag‑
nosed will lead the individual to hysterectomy

Variables Description

F
ḧ(t)
a

Number of women of age a ∈ A who underwent 
an hysterectomy, at time t.

Parameters Description

β i Sensitivity of test φi.

αi Specificity of test φi.

c+i,j Overall sensitivity, when using φi as primary 
and φj as secondary.

c−i,j Overall specificity, when using φi as primary 
and φj as secondary.

fa Frequency of screening for women of age a ∈ A 
defined by the screening policy.

da Percentage of women of age a ∈ A who will 
adhere to the screening policy.
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• E is health improvement generated with the adop-
tion of the new interventions, with respect to the 
comparator.

The health outcome can be quantified in a variety of ways. 
In the following, we consider DALYs [21]. When effective-
ness is measured through DALYs, the ratio C/E is usually 
referred as cost per the DALY averted, because it estimates 
the additional expenditure necessary to save one DALY. 
Distinct interventions are compared through their C/E 
ratios, and in the analysis interventions with the small-
est ratios are the most promising ones. Though, a disag-
gregated analysis that evaluates the trade-offs between 
cost and effectiveness is also conducted, to identify public 
health policies that may offer additional advantages.

Estimating costs
We assume that the total cost of a public CC prevention 
and surveillance policy corresponds to the sum of the 
direct costs bore by the health-care payer for vaccination 
and screening over [0,  T], the defined time horizon for 
the analysis.

The total vaccination cost ( CV  ) of a policy is calcu-
lated by multiplying the unitary cost of vaccination 
doses (reported to present costs) by the number of vac-
cinations administered over [0, T]:

where v(t) is the time-dependent function that models 
the net-present cost of the vaccination doses, and the 
expression in the summation corresponds to the instan-
taneous rate of vaccination at time t ∈ [0,T ].

The total screening cost ( CS ) is calculated as the num-
ber of tests performed in a given time frame [0,  T], 
multiplied by the cost per test. We separately model the 
costs of primary and secondary screening tests, which 
we denote by CPS and CSS , respectively.

Variable si(t) is the direct cost of primary screening 
test φi at time t, and the summation corresponds to the 
instantaneous rate of primary screening.

Similarly, the triage screening costs CSS are calculated 
as the number of triage tests performed in the time 
frame [0,  T], multiplied by the unitary cost sj(t) of the 
applied test φj at time t. As a triage test is done after a 
positive result of a primary test φi without regard to the 
patient’s true state, we need to sum the costs incurred 

(6)

(7)CPS =

∫ T

0

∑

a∈AS

∑

h∈HF

[

Fh
a (t)fada

]

si(t)dt

for the right diagnosis of true positive cases, as well as 
those of the misdiagnosis of negative individuals, i.e. the 
primary false positives:

where HFT = HFL ∪HFH is the set of all health states 
of true positive women.

Estimating effectiveness
To estimate the effectiveness, we separately evaluate the 
DALYs accrued as a consequence of premature deaths due 
to CC (Years Lost Life - YLL) and those for the time spent 
in disease states (Years Lived with Disability - YLD).

The YLL component of the total DALYs is computed by 
summing up the total contribution of deaths that occur at 
each age a ∈ A , across the time horizon [0, T]. If a woman 
in age range a dies of CC at time t, the contribution to the 
YLL component of DALYs will be max{0, L− a} , where 
L is the expected lifetime of women and a is the center 
of the age interval a. The exact computation of the YLL 
would require considering the precise death age within 
the range a. Since we represent the age as a range, the 
computation of the DALYs will be approximate.

For each age range a such that a ≤ L we consider an 
additional health state d̈ for death. Let Fd̈

a (t) be the con-
tinuous variable that accumulates the number of individu-
als who have died of CC at age a by time t ∈ [0,T ] . Then, 
the values of Fd̈

a (T ) will give the total number of women 
who have died of CC across the whole time horizon [0, T], 
at each age a ∈ A , and the total number of YLLs for the 
whole population can be estimated as follows:

Notice that approximating the true time-dependent 
expected life-time by a constant L can introduce a sig-
nificant approximation over large time horizons. The 
expression in Eq. 9 can be easily modified to account for 
a piece-wise constant approximation of any L(t) function.

We consider the following health states to be YLD 
contributors:

• HFL ∪HFH , i.e. states that would require treatment;
• cc, the cervical cancer state;
• ḧ , the state entered after hysterectomy.

Each state above is mapped to a specific weighing factor, 
which accounts for the severity of impairment in the abil-
ity of the individual in conducting a normal life. Let us 
denote by Wh the weight factor of a health state h.

(8)

CSS = ∫
T

0

∑

a∈AS

[

∑

h1∈HFT

F
h1
a (t)fada� i +

∑

h2∉HFT

F
h2
a (t)fada(1 − �i)

]

sj(t)dt,

(9)YLL =
∑

a∈A,a≤L

F d̈
a (T )(L− a)
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To compute the YLDs, we introduce dedicated com-
partments and variables in the model. For each YLD con-
tributor state h, a continuous variable YLDh(t) is added to 
the model, whose value corresponds to the accumulated 
YLD for all the individuals that spent a time interval in 
health state h. The differential equation that describes the 
evolution of variable YLDh(t) is:

The value YLDh(T ) at the end of the time horizon gives 
the total accumulated YLDs for each state h ∈ HF  and for 
state cc.

The contribution of state ḧ is to be computed with a 
different approach. Since a woman undergoing hysterec-
tomy will suffer a permanent impairment of her repro-
ductive health, YLDs will be accrued from the moment 
an individual enters the state ḧ until the end of the wom-
an’s fertile period (as estimated from the population). The 
age a at which women undergo hysterectomy is tracked 
by a dedicated variable Fḧ

a (t) , and the estimation of this 
YLD component is then carried out with computations 
similar to the one described in Eq. 9 for the YLL. Table 5 
summarizes the variables and parameters introduced for 
cost and effectiveness modeling.

(10)
d

dt
YLDh(t) =

∑

a∈A

WhF
h
a (t).

Results
We present here results from the application of the pro-
posed modeling approach to the analysis of a hypotheti-
cal set of public health policies that could be deployed 
against CC in Colombia. While carrying out a complete 
and rigorous CEA is out of our scope, we want to demon-
strate that our modeling approach can provide many of 
the quantitative predictions required by decision-makers 
for a detailed CEA study.

The case of Colombia is an interesting one because 
eventhough significant progress has been made in 
reducing the mortality for CC [22], from 14 deaths per 
100,000 women in 1987 to 7.08 deaths per 100,000 in 
2013 [23, 24], a very heavy burden of the disease was 
estimated for 2016 [25]. Also, the country has recently 
introduced a new public health policy against CC, which 
includes combined vaccination and screening.

Vaccination against HPV was introduced in Colombia 
in 2012. Girls aged between 9 to 17 years [26] are the tar-
get of the immunization campaigns. Screening against 
CC has also been in place in Colombia since 1990, fol-
lowing the 1-1-3 scheme. This scheme requires annual 
collection and analysis of a pap-smear specimen. After 
two consecutive years with negative results, the fre-
quency of the cytology decreases to once per 3 years. 
However, with the introduction of the HPV-DNA test, 
efforts have been made to introduce the HPV DNA test 
as a primary screening test since 2017 [27, 28]. Consider-
ing that the HPV-DNA test has a higher sensitivity [29], 
it may provide better health benefits; however, it is also 
more expensive than cytology.

The cost-effectiveness of HPV DNA test versus cytol-
ogy for CC screening has been studied in Colombia 
[30], but the the best of our knowledge, no study has 
yet considered the combined effects of policies that 
include both prevention and surveillance interventions. 
This motivates us to analyze and evaluate the costs and 
health benefits of different prevention and surveillance 
policies against CC in the country, taking as a compara-
tor the policy that has been used in the country until 
recent years. This analysis also serves the purpose of 
showing the open-source application we developed for 
its automation.

We first configure the study, detailing the choice 
made for compartmentalization. Then, we discuss 
the model initialization and parameterization, briefly 
mentioning the used data sources. To assess the study 
quality, we applied the Consolidated Health Economic 
Evaluation Reporting Standards (CHEERS) checklist 
[31]. The assessment included the study perspective, 
comparator, outcomes, time horizon, cost discounting, 
reporting of the target population, sensitivity analysis, 
among others.

Table 5 Variables and parameters introduced for modeling cost 
and effectiveness

Variables Description
CV Total cost of vaccinations over the time horizon 

[0, T]

CPS Total cost of primary screening tests over the time 
horizon [0, T]

CSS Total cost of secondary screening tests 
over the time horizon [0, T]

Fd̈a (t)
Number of Women who died of CC in age range 
a ∈ A , up to time t

YLDh(t) YLDs accumulated up to time t for individuals who 
lived in health state h ∈ HF

Parameters Description
L Women lifetime expectancy in the population

Wh Weight factor for health state h ∈ HF , used for YLD 
estimation

c+i,j Overall sensitivity, when using φi as primary and φj 
as secondary

c−i,j Overall specificity, when using φi as primary and φj 
as secondary

fa Frequency of screening for women of age a ∈ A 
defined by the screening policy

da Percentage of women of age a ∈ A who will 
adhere to the screening policy

v(t) Direct cost of vaccination per person at time t

si(t) Direct cost of test φi at time t
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Configuring the study
We apply our modeling approach by partitioning the 
population by gender, and each gender further into 70 
disjoint age ranges: A = {0, 1, ..., 70 or older} . Figure  3 
shows a screenshot of the automated tool, through which 
a user can specify the maximum age, and simulation 
length. The range corresponding to the maximum age 
includes all individuals that are at least 70.

As for the time horizon, we choose a 30-year period, 
which starts in 2020. Such a wide time window is needed 
to ensure that the mid- and long-term benefits of vacci-
nation campaigns are observable in the population.

Model initialization and parameterization
To initialize the state of the model, we assign the initial 
population in each age range and gender using data from 
the National Department of Statistics (DANE) popula-
tion projections for 2020 [32]. For females, we consid-
ered health states that included the precancerous stages 
CIN1, CIN2 and CIN3. We do not detail CC stages, as we 
are not considering treatments apart from hysterectomy. 
Other choices are of course possible and our modeling 
approach can easily accommodate them. For the preva-
lence of the HPV infection in men and women, we obtain 
data from [33]. For the prevalence of the CIN stages and 
CC among women, we use the studies done by [34–37]. 
We assume that all newborns are in the healthy state.

To estimate the number of immunized individuals at 
time t = 0 , we use data provided by the Colombian Min-
istry for Health, on approximately 2.13 million girls aged 
between 9 and 19 who were subject to HPV vaccination 

between 2012 and 2019. The national campaign was only 
directed and subsided to girls. Thus we do not consider 
immunized boys in the initial state of the model. We 
calculated the percentage of hysterectomized women of 
each age range with data from a Colombian survey ([38]). 
We also used information from the German Health 
Interview and Examination Survey for Adults [39]. The 
number of individuals in all other compartments, includ-
ing those for deaths and DALYs estimation, will be initial-
ized in zero.

We now describe the parameters of the equations fol-
lowing our layering scheme, in a bottom-up fashion. In 
the population layer, the age-dependent birth and mor-
tality rates were estimated based on the population sta-
tistics published annually by DANE [32]. With a double 
exponential smoothing [40] we extrapolated time-
dependent functions for the fertility rates and for death 
rates across the analyzed time-horizon. The probability 
that a newborn is female was estimated from the Colom-
bian birth data available in [41].

For the disease layer, we estimated the HPV infection 
rates from the age-dependent number of sexual partners 
for Colombian men and women during a year [38], the 
likelihood of contracting the HPV infection during one 
sexual intercourse [42], and the proportion of infected 
individuals over the total population. The remaining nat-
ural history health state transition rates were estimated 
from five years of CC screening medical records from a 
Colombian private health service provider [43, 44]. Finally, 
we obtained the CC mortality rates from a population-
based cancer research study conducted in Colombia [45].

Fig. 3 Age ranges configuration tab
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The parameters of the intervention layer define the 
policies for the CEA. The comparator considers pulse 
vaccination for five years since t = 0 , with 6% of girls 
aged between 9 and 19 years vaccinated per year (around 
40,000 girls vaccinated per year, as the current vaccina-
tion campaign). Vaccination is combined with a 1-1-3 
screening scheme used throughout the whole time hori-
zon of the analysis, where cytology is the primary and 
HPV-DNA the secondary test.

We consider a set of possible policies that combine vac-
cination and screening. For vaccination, in all considered 
cases the target population is composed by individuals 
aged between 9 and 19. We analyze 11 pulse vaccination 
strategies reported in Table  6, which are characterized 
by the target gender, the percentage of the target to vac-
cinate, and the duration of the intervention. The dummy 
intervention Vac0 stands for no vaccination, and Vac1 is 
the current vaccination intervention.

Figure  4 shows the software tab for defining vaccina-
tion interventions. The user can select the target gender, 
ages, percentages, and the duration of the intervention. 
In Fig. 4, intervention Vac4 is defined, which only consid-
ers vaccination for girls.

Table  7 reports the screening interventions consid-
ered. All of them use cytology and HPV-DNA as primary 
or secondary tests, and they are applied throughout the 
whole time horizon. We considered the following fre-
quency schemes: 

1-1-3 : test now, second test after one year, third test 
after another year, and subsequent tests every 3 years;

1-5 : test now, second test after one year, and subse-
quent tests every 5 years;

3-5 : test now, second test after 3 years, and subse-
quent tests every 5 years;

3 : a fixed frequency scheme, testing every 3 years.

Intervention Sc1 denotes the comparator screening 
policy.

Figure 5 shows the software tab for defining screening 
interventions. The user is allowed to choose which tests 
to use as primary and triage, and to upload a file with the 
ages in which screening is applied, along with the esti-
mated adherence.

The combination of vaccination and screening inter-
ventions define 54 possible policies, which are shown in 
Table  8. Notice that policy P1 corresponds to the com-
parator for the purpose of our analyses. The cost per 
averted DALY of policies P2-P54 will be compared with 
respect to those of policy P1.

To finish the characterization of the intervention layer, 
we specify the value of key model parameters. Sensitivity/
specificity of cytology and HPV-DNA tests were obtained 
using information from the Colombian National Institute 
of Cancer [29]. Costs of vaccination and tests were esti-
mated in Colombian Pesos (COP) [46], and the screening 
coverage was recovered from the National Demographic 
and Health Survey conducted by the Ministry of Health 
in 2015 [47]. Finally, the disability weights for CC are 
obtained from the Global Burden of Disease 2017 study 
[48, 49]. The values of all parameters are reported in 
Table 11 at the end of the document.

Model validation
We validated the population predictions generated by 
our model by comparing them with the UN population 
projections [50].

Figure  6 displays the absolute values of the popula-
tion for men (left) and for women (right), computed 
every five years along the 2020-2050 time horizon. It 
also shows the relative difference between the estimate 
provided by our model and the UN projections (plotted 
on the secondary vertical axis at the right). Only small 
differences can be appreciated in the totals (max devia-
tion 2.3% at t =30years). Figure  6 also shows that the 
model tends to overestimate the size of the female pop-
ulation, and to underestimate the male one.

To observe the discrepancies in more detail, in Fig. 7 
we compare the Colombian male (left) and female 
(right) population pyramids predicted by our model 
for 2050 (darker hues) and the reference values (lighter 
hues). The most significant differences are for the pop-
ulation in the first and in the last age ranges, but are 
however within 5% in all cases. Thus, we can assume 
that our model is able to reproduce Colombian popula-
tion dynamics.

As for the validation of the upper layers of the model, 
there are unfortunately very few projections available in 
the literature that can be used as reference. An available 

Table 6 Vaccination interventions

ID % target 
women

% target men Time window

Vac0 0% 0% year 1 ‑ year 30

Vac1 6% 0% year 1 ‑ year 5

Vac2 10% 10% year 1 ‑ year 5

Vac3 0% 10% year 1 ‑ year 5

Vac4 10% 0% year 1 ‑ year 5

Vac5 0% 20% year 1 ‑ year 5

Vac6 20% 0% year 1 ‑ year 5

Vac7 20% 20% year 1 ‑ year 5

Vac8 20% 20% year 1 ‑ year 10

Vac9 20% 20% year 1 ‑ year 15

Vac10 20% 20% year 1 ‑ year 20
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metric is the prediction of the Colombian age stand-
ardized mortality rate due to CC for 2019 [51]. There-
fore, we estimated with our model the age standardized 
mortality rate for 2019 with a model whose t = 0 is set 
to 2015, i.e. running the model along a five years time 
horizon, and compared it with the 2019 prediction in 
the literature. Our model provides an age standardized 
mortality rate of 6.628 for 2019, which falls within the 
95% confidence interval (6.33–7.36) estimated in [51]. 
This increases our confidence about the ability of the 
model to properly represent the dynamics of CC in the 
Colombian population.

Fig. 4 Vaccines intervention definition tab: defining Vac4

Table 7 Screening interventions

ID Primary test Triage test Screening 
frequency 
scheme

Sc1 Cytology HPV‑DNA 1‑1‑3

Sc2 HPV‑DNA HPV‑DNA 1‑1‑3

Sc3 HPV‑DNA HPV‑DNA 3‑5

Sc4 Cytology HPV‑DNA 3‑5

Sc5 Cytology HPV‑DNA 3

Sc6 HPV‑DNA HPV‑DNA 3

Sc7 HPV‑DNA HPV‑DNA 1‑5

Fig. 5 Screening intervention definition tab: defining Sc1
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Cost and effectiveness predictions
We report the predictions of cost and effectiveness for 
the 54 policies defined in Table 8, as obtained from the 
solution of the differential equations. We first review the 
C/E ratio, then we look into the disaggregated results by 
separately checking the two dimensions of cost and effec-
tiveness. Finally, we conducted a sensitivity analysis to 
assess the robustness of policy ranking.

C/E scoring of policies
When comparing the C/E of policies P2-P54 with 
respect to the comparator policy P1, we first check 
whether some policies are definitely to be excluded 
from the analysis. In fact, there may be policies that 
cost more than P1 and do not reduce the DALYs. This 

is the case of 16 policies (P13-P18, P35, P37-P39, and 
P45-P50). An inspection of the details of the interven-
tions defined for these policies reveals that they all have 
in common screening strategies that use the HPV-DNA 
test for both primary and secondary test, i.e. screen-
ing Sc3, Sc6 and Sc7. Particularly, P13-P18 are policies 
implementing screening strategy Sc3 (double HPV-
DNA test, frequency scheme  3-5), and policies P45-
P50 implement Sc7 (double HPV-DNA test, frequency 
scheme  1-5). Policies P35, P37-P39 implement screen-
ing strategy Sc6 (double HPV-DNA test, frequency 
scheme 3). Apart from P38, they all have in common a 
vaccination strategy that does not include women as a 
target (Vac0, Vac3, Vac5). These policies will not be fur-
ther considered in this CEA.

Table 8 Public health policies compared to P1

ID Vacc Scr ID Vacc Scr ID Vacc Scr

P1 Vac1 Sc1 P19 Vac0 Sc4 P37 Vac3 Sc6

P2 Vac2 Sc1 P20 Vac2 Sc4 P38 Vac4 Sc6

P3 Vac3 Sc1 P21 Vac3 Sc4 P39 Vac5 Sc6

P4 Vac4 Sc1 P22 Vac4 Sc4 P40 Vac6 Sc6

P5 Vac5 Sc1 P23 Vac5 Sc4 P41 Vac7 Sc6

P6 Vac6 Sc1 P24 Vac6 Sc4 P42 Vac8 Sc6

P7 Vac0 Sc2 P25 Vac0 Sc5 P43 Vac9 Sc6

P8 Vac2 Sc2 P26 Vac2 Sc5 P44 Vac10 Sc6

P9 Vac3 Sc2 P27 Vac3 Sc5 P45 Vac0 Sc7

P10 Vac4 Sc2 P28 Vac4 Sc5 P46 Vac2 Sc7

P11 Vac5 Sc2 P29 Vac5 Sc5 P47 Vac3 Sc7

P12 Vac6 Sc2 P30 Vac6 Sc5 P48 Vac4 Sc7

P13 Vac1 Sc3 P31 Vac7 Sc5 P49 Vac5 Sc7

P14 Vac2 Sc3 P32 Vac8 Sc5 P50 Vac6 Sc7

P15 Vac3 Sc3 P33 Vac9 Sc5 P51 Vac7 Sc7

P16 Vac4 Sc3 P34 Vac10 Sc5 P52 Vac8 Sc7

P17 Vac5 Sc3 P35 Vac0 Sc6 P53 Vac9 Sc7

P18 Vac6 Sc3 P36 Vac2 Sc6 P54 Vac10 Sc7

Fig. 6 Predicted Colombian population and comparison with UN projections
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Figure  8 shows the cost-effectiveness ratio of all the 
remaining policies (those that are not certainly worse 
than P1, listed above), with respect to the comparator P1. 
Policies are sorted by their C/E, and a color scheme has 
been introduced to allow tracking the vaccination strat-
egy they use.

As it can be observed from Fig.  8, there are five 
policies that have a negative C/E ratio. These policies 
achieve better results (less DALYs) at a lower cost. 
Therefore, replacing P1 with any of these five policies 
would imply a saving for a better effectiveness. It is 
interesting to notice that the best three policies (P32, 
P33 and P34) are all characterized by a vaccination 
strategy that targets both girls and boys. On the other 
hand, policy P36 at the rightmost extreme in Fig.  8 
(highest C/E ratio) also considers vaccinating both 
sexes. Furthermore, there are policies with very low 
C/E ratio, such as P19 and P25, which do not include 
vaccination at all. These results show the importance 
of choosing the right combination of prevention and 
surveillance strategies when defining a public health 
policy for CC.

The bar chart in Fig. 9 reports the same data about the 
C/E of the policies, with a different sorting and color 
scheme, which now highlights the screening strategy. 
A fundamental conclusion obtained from Fig.  9 is that 
screening policies that use the HPV-DNA test for both 
primary and secondary test tend to be less cost effective 
than those that use cytology and HPV-DNA.

Disaggregated analysis
We separately analyze the cost and effectiveness of 
policies. Trading cost versus effectiveness allows taking 
into consideration different constraints and objectives 
of various stakeholders of the health systems; however, 
it introduces more complexity. The concept of efficient 
frontier can be applied to keep the analysis simple.

Figure 10 plots results in the cost-effectiveness plane. 
Each policy is represented on the plane as a point, 
whose coordinates are given by its estimated cost (hori-
zontal axis) and effectiveness (vertical axis). The ideal 
policy has low cost and high effectivity, i.e. reduced 
number of DALYs, which would be depicted as a point 
close to the origin.

Fig. 7 2050 Colombian population pyramid
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The cost-effectiveness plane shows two additional 
dashed axes, centered at the comparator P1. Policies in 
quadrant I are those with higher cost and less effectivity 
than P1 (surely worse than P1), while those in quadrant 
III have less cost and higher effectivity (definitely better 
than P1). However, policies in quadrants II and IV may 
offer interesting trade-offs between expenditure and 
public health results.

Policies that are more clinically effective and cost-
saving are called dominant, and identify the efficient 
frontier (the concave line in Fig. 10). The relative qual-
ity of a policy can be visualized on the cost-efficiency 
plane as its distance from the efficient frontier. Policies 
marked as red dots are said to be dominated, and have 
increased costs or reduced effectiveness compared to 
dominant strategies. Therefore, they will not be further 
considered in this analysis.

All the dominant strategies consider vaccinating solely 
women (24, 6, 12), or both women and men (32, 33, 43, 
8). Policies that only vaccinate men or do not use vacci-
nation are always dominated. Moreover, none of the poli-
cies that consider vaccination for the longest period of 
time (20 years) are within the efficient frontier. This hap-
pens because the benefits of vaccination campaigns are 
only observable after decades: vaccination intervention 
after year 15 of the analysis only adds to the costs without 
any significant returns in effectiveness.

Most of the dominant strategies consider screening 
with Pap test as a primary test (24, 32, 33, 6). Addition-
ally, the most expensive and effective policies (12 and 8) 

are the ones with the highest screening frequency. The 
least expensive and least effective policies are those with 
the lower frequency between screenings (24 and 32).

Table  9 shows the ICER analysis for all the dominant 
strategies. Costs are in billion COP (Colombian Peso), 
over 30 years discounted at 3%. Health outcomes are in 
thousand DALYs, over 30 years.

Policy 24 has the lowest cost and the highest DALYs, 
and its ICER of 0.630 tells us that for averting an addi-
tional thousand DALYs, an investment of 0.630 billion 
COPs is required. In contrast, policy 12 (higher cost 
and lower DALYs) has an ICER of 17.108 implying 
that to avert one additional thousand DALYs, a much 
higher investment is necessary. Furthermore, when the 
investment is over 3,818.992 billion COP, an additional 
investment only marginally improves the effectiveness 
(policy 8).

We also report two epidemiologic health outcomes 
that can provide a different perspective on the effec-
tiveness of policies: the prevalence of CC and the age-
standardized mortality rate (ASMR)1. Both metrics 
are evaluated at year 2050. As it can be appreciated in 
Fig.  11, left chart, the ASMR is directly proportional 
to CC prevalence in the population. Among the domi-
nant policies, those that only vaccinate women (24, 6, 
12) have a higher prevalence and ASMR than those 
that also consider vaccinating males. The right chart in 

Fig. 8 Cost‑effectiveness ratio: cost (in million COP) per DALY averted

1 The ASMR is the weighted average of the age-specific mortality rates, 
where the weights are the proportions of persons in each age group [52]
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Fig.  11 shows the relationship between the predicted 
policy cost (horizontal axis) and the ASMR (vertical 
axis) for the dominant policies. Each variable is normal-
ized with respect to the value of the best policy, i.e. the 

one achieving the minimal cost (P24) and the minimal 
ASMR (P43). Policies that are at minimal distance from 
the bottom-left corner of the chart have both low ASMR 
and costs that are comparable with the least expensive 

Fig. 9 Cost‑effectiveness ratio: cost (In million COP) per DALY averted

Fig. 10 Disaggregated cost‑effectiveness evaluation of policies: efficient frontier
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ones. For instance, the cost of policy P32 (P33) is only 
1.5 (1.7) times the one of the least expensive one (P24), 
but it provides 3 (4) times better ASMR.

Finally, we review the results of the 1-1-3 CC screening 
policy that was used in Colombia until recent years (com-
parator policy P1). Table 10 shows the estimated preva-
lence, number of deaths, age-standardized mortality rate, 
and overall cost and effectiveness of this policy. As we 
observe, this policy is dominated and, aside from policy 
24, all dominant policies have a lower estimated ASMR 
for 2050 than policy P1.

Sensitivity analysis
The accuracy of the parameter estimation has to be 
always taken into consideration when making decisions 
based on the output of a predictive model. We assess 
the robustness of results by sensitivity analysis, checking 
whether and how the dominance relationships change 

with varying values of selected model parameters. The 
following parameters were considered for the sensitivity 
analysis: 

1 Discount rate: commonly varied in CEA to evaluate the 
uncertainty associated with economic factors. It may 
be particularly relevant in the context of a developing 
country such as Colombia. Following various studies in 
the literature [11, 53, 54], we choose a range [0− 6]%.

2 Vaccination cost per dose: bound to the dynamics of 
big pharmaceutical companies and to the agreements 
that the government establishes with them. We 
choose a range of variation [−10, 10]% with respect 
to the nominal value (reported in the Appendix).

3 Cost of testing: may change upon its widespread intro-
duction. Currently, the cost of HPV-DNA test is higher 
than cytology. When the latest evaluation of the CC 
burden was conducted in Colombia, cytology was esti-
mated to cost $8US, while a HPV-DNA test around 
$12US. We shall consider ranges of variation for both 
parameters, as defined in previous studies [30, 46].

4 Sensitivity of screening tests: highly correlated to 
processes, tools and expertise of health providers. 
A study conducted on a private health care facil-
ity in Bogotá [43] estimated the cytology sensitivity 
to lie in the interval [0.76-0.87] with 95% confidence 
level, a much higher value than the [0.3-0.85] interval 
reported by the Colombian National Cancer Institute 
[29]. For the purpose of our analysis, we choose the 
range [0.3-0.87] for cytology sensitivity.

The combined tornado diagram reported in Fig.  12 
shows the variation (relative change with respect to 

Table 9 Analysis of dominant policies: costs over 30 years, 
discounted at 3% per year in billion COPs; health ouctomes over 
30 years, in thousand DALYs

Policy Cost (COPs) Health outcomes 
(DALYs)

ICER (COPs/DALY)

24 777.897 1,236.512 0.630

32 1,198.650 977.216 1.629

33 1,275.958 962.837 5.027

6 1,574.955 906.447 5.398

43 2,521.734 825.865 11.749

12 3,818.992 750.037 17.108

8 4,025.723 750.006 6,676.876

Fig. 11 Predictions at year 2050: CC prevalence and ASMR for the dominant policies
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the baseline) for cost (blue bars) and health outcome 
(red bars), averaged over the 54 policies. The error bars 
show the 95% confidence interval for the average varia-
tion across the considered policies. We can appreciate in 
Fig. 12 the importance of the discount rate and test cost 
variations. On the contrary, the considered changes in 
the cost of HPV vaccination appear to be not relevant for 
cost-effectiveness.

We show in Fig. 13 how the efficient frontier changes 
when the values of parameters are modified. The black 
lined frontier corresponds to the comparator scenario 
where all parameters take their nominal values (reported 
in the Appendix). The red frontier is calculated when the 
parameter is set to the smallest value within the sensitiv-
ity analysis range, while the blue one is the one estimated 
with the largest value in the range. We observe that poli-
cies 8, 12, 24 and 32 are robust in the sense that they 
belong in the efficient frontier in at least 10 of the 12 pre-
sented scenarios.

We observe that, although variations in the discount 
rate generate nominal changes in the total effectiveness, 
most of the efficient frontier policies remain the same. 
The same occurs with variations in the sensitivity of the 
Pap test. On the other hand, variations in the cost of the 
pap test do not appear to produce remarkable variations 

in the cost and effectiveness of the dominant policies. 
Indeed, most of the dominant policies continue being the 
same for the analyzed range. Finally, increasing the cost 
of the HPV-DNA test to the upper bound produces a sig-
nificant increase in the total cost of policies 8, 12 and 44. 
This happens as the mentioned policies use the HPV-test 
for both primary and triage screening.

Discussion
Screening and prevention policies against CC change over 
time and there is not consensus about an ideal program 
to be implemented around the world. In addition, the best 
intervention is not necessarily the one with the lowest C/E 
ratio, as countries usually have a limited budget to allocate 
to public health strategies. Moreover, there is not a single 
threshold for determining whether or not a C/E ratio is 
appropriate; therefore, healthcare decision-makers should 
conduct a detailed analysis that takes into account multi-
ple factors while choosing the most appropriate strategies 
for intervention. A model-based approach can support 
flexible CEA of multiple policies for CC, and the automa-
tion of the analysis workflow into a software application 
relieves the burdens of data assimilation and model man-
agement, allowing decision-makers to focus on the analy-
sis of costs and merits of candidate policies.

Table 10 Results for the 1‑1‑3 CC public health policy (P1). The estimated ASMR is per 100,000 women. The accumulated cost is 
presented in billions of COP, discounted at 3% per year. DALYs are discounted at 3% per year

2020 2050 Overall time horizon

 Policy Prevalence Deaths ASMR Prevalence Deaths ASMR Cost Effectiveness

1 1,775 1,634 6.292 634 548 1.886 $1,619.356 986,025.73

Fig. 12 Average relative change of cost and effectiveness at the extremes of parameter variation ranges
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When tested on the Colombian case, our approach 
found that, in general, efficient policies include vaccina-
tion within the first 15 years and most of the dominant 
strategies consider screening with Pap test as the pri-
mary test. Screening alone tends to be insufficient, and 
it is recommended to have secondary prevention policies 
such as vaccination [54–56]. We found 8 dominant poli-
cies with costs ranging between $750,000 to $4,000,000 
millions of COP and estimated efficiency (in DALYs) of 
750,000 to 1,250,000 for the 30 years of simulation time. 
The obtained ICER for these policies was below $7,000 
millions of COP per DALY averted. Moreover, for 2050 
we estimated a reduction in the ASMR below 2.5 per 
100.000 women if any of the policies on the efficient fron-
tier is applied. In particular, policy P6, whose total cost is 
similar to that of the comparator policy P1 (has an ICER 
of $5.398 millions of COP per DALY averted and an esti-
mated 1.521 ASMR for 2050). We performed sensitivity 
analysis to assess the impact of uncertainty in some key 
parameters, and found that policies 8, 12, 24 and 32 are 
robust in the sense that they belong to the efficient fron-
tier in more than 80% of the evaluated scenarios.

To the best of our knowledge, this is the first attempt 
to evaluate integral policies that include screening and 

vaccination in Colombia. Previous studies analyzed the 
impact of screening or vaccination, but not the the com-
bination of the two intervention types; and were unable 
to predict health outcomes in the long run [30, 51, 57]. 
With the support of our modeling approach, we can esti-
mate the effects of different policies within a desired sim-
ulation time and evaluate them in terms of their cost and 
health outcomes. Our proposed methodology provides 
a framework to include male vaccination in addition to 
primary and secondary prevention policies, and a flexible 
usage by public health decision-makers, considering the 
automation of our modeling and analysis approach into 
an open software tool.

A notable advantage of our modeling methodology 
consists in encompassing a modular modeling approach 
with layers that can handle distinct concerns. As a conse-
quence, the lowest layer model, i.e. the population model, 
can be reused and applied to the analysis of any disease. 
Nonetheless, the disease and intervention layers are spe-
cific to CC, as they encode the transmission and natural 
history of HPV infection, health states and intervention 
types that are only relevant for this condition.

There are several limitations to this study. First, we 
did not consider screening follow-up strategies, which 

Fig. 13 Variations of the efficient frontier when parameter values are changed
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consist in applying an additional test after a determined 
time-period for women who had a positive primary 
screening test but a negative triage test. These strategies 
have been adopted in some countries for preventing pos-
sible disease progression. Secondly, regarding vaccina-
tion, we did not consider the benefits of HPV vaccine 
against non-cervical conditions such as oral cancer, ano-
genital cancers, and genital warts. The inclusion of such 
effects would improve C/E ratios of interventions that 
consider vaccination. Moreover, we assume that when 
individuals who have not yet been exposed to HPV are 
vaccinated, they will acquire permanent immunity. How-
ever, the vaccine does not represent total protection, as 
it only protects for HPV types that are together respon-
sible for up to 90% of cervical cancers [58]. Moreover, 
for approximations over longer time horizons, it is rec-
ommended to model female life expectancy by a time-
dependent function. Equations for calculating the DALYs 
can be easily modified to include an approximation of a 
lifetime time-dependent function. Lastly, for countries 
where women enjoy an extended life expectancy, increas-
ing the level of detail of the population compartmen-
talization for the upper age ranges would improve the 
accuracy of DALYs estimation.

Conclusions
We propose a modeling methodology for the detailed 
estimation of costs and health outcomes of prevention 
and surveillance interventions for CC, at a country level. 
To do so, we build a continuous-time, deterministic rep-
resentation of population dynamics, epidemics of disease, 
and interventions based on multiple layers of compart-
mentalized models. The population layer reproduces the 
natural processes of a population. The infection layer 
models the transmission and clearance of HPV infections 
within the population, as well as the progression and 
regression of the infection to precancerous lesions and 
eventually to CC. This layer describes the HPV transmis-
sion dynamics for both women and men, since both can 
acquire the infection and the incidence is proportional 
to the number of infected individuals in the population 
at any moment in time. Finally, the intervention layer 
models the effects of prevention and surveillance policies 
within the population.

We implemented our methodology into a software 
application built with  R® [12] and endowed with an 
interactive  Shiny©  Web interface [13]. With this appli-
cation, we analyzed a Colombian case study, evaluating 
54 different policies based on the Colombian Ministry 
of Health guidelines for CC prevention, as well as CC 
policies that were considered in the CEA literature for 
low and middle-income countries. The results of our 
analyses identify a set of dominant policies that may be 

interesting candidates for decision-makers. We found 
that the screening and vaccination program deployed in 
Colombia until recent years is not included among the 
best policies.

Our method offers several practical advantages. It pro-
vides an automation of the modeling, parameter ini-
tialization and analysis into an open software tool, which 
facilitates the analysis of CC policies. Compared with tra-
ditional time-consuming discrete simulation models, our 
method can provide results for long time horizons in less 
time, for using a deterministic continuous approxima-
tion. Our approach provides flexibility for public health 
decision-makers to simultaneously explore multiple 
options of intervention and determine the policy to adopt 
among dominant strategies, according to cost constraints 
and desired health benefits. The implementation of the 
approach into an open software tool makes it attractive for 
a larger community of researchers and decision-makers.

Model parameters and assigned values
Table  11 summarizes the values of parameters used in 
this paper for instantiating the models used for CEA.

Mathematical modeling details
In this section, we provide the full detail about the defini-
tion of the differential equations of the model.

Population layer
By introducing the indicator function IX which takes a 
value of 1 when the predicate X is true and 0 otherwise, 
we can rewrite Eqs.  1, 2, and 3 of the population layer 
model in the following compact form:

Each equation includes a positive first term for births, 
which will only be non-zero for the first age range; a posi-
tive term for the individuals who came from an earlier 
age compartment, which is null for the first age range; 
a negative term for those who progress to the next age 
compartment (aging), which is null for the last age range 
K; and a negative term for the deaths. We do not consider 
incoming or outgoing immigration flows in this model. 
However, including them will not change the fundamen-
tal structure of the population model.

Disease layer
Since the life expectancy depends on the health state of 
the individual, we enrich the characterization of death 
rates and we denote by µF

a,h(t) ( µ
M
a,h(t) ) the death rate of 

(11)

dFa(t)

dt
= N (t)pf Ia=0 + 𝜃Fa−1(t)Ia≠0 − 𝜃Fa(t)Ia<K − 𝜇F

a
(t)Fa(t), a ∈ A

(12)

dMa(t)

dt
= N (t)(1 − pf )Ia=0 + 𝜃Ma−1(t)Ia≠0 − 𝜃Ma(t)Ia<K − 𝜇M

a
(t)Ma(t), a ∈ A
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women (men) in age range a ∈ A and health state h ∈ HF  
( h ∈ HM ). We can now state in Eq.  13 the differential 
equations that model the dynamics of the disease layer for 
women, being those for men analogous in their structure.

Intervention layer
Vaccinations
For pulse vaccination interventions, we define the follow-
ing parameters: 

(a) [0, T] is the time horizon of model evolution, and 
y : [0,T ] → N is the function that returns the real 
year corresponding to time t ∈ [0,T ].

(b) ⓕy(t)
a  is the target percentage of women of age 

a ∈ A to be vaccinated in year y(t) of the interven-
tion.

(c) ⓜy(t)
a  is the target percentage of men of age a ∈ A 

to be vaccinated in period y(t) of the intervention.

(13)

dF
h1
a (t)

dt
=N (t)pf 𝔹𝔽h1 (t)Ia=0 + �F

h1
a−1

(t)Ia≠0 +
∑

h2∈HF

F
h2
a (t)ℙ𝔽

h2 ,h1
a (t)

−
∑

h2∈HF

F
h1
a (t)ℙ𝔽

h1 ,h2
a (t) − �F

h1
a (t)Ia≠K − �F

a,h1
(t)F

h1
a (t),

a ∈ A, h1 ∈ HF

We update the set of health states for women to be 
HF ∪ {V } and the set for men to be HM ∪ {V }.

We can now provide the differential equations that model 
the effects of vaccination interventions on the population. 
We first provide the equations that describe the dynamics 
of females on which the vaccination would be effective, i.e. 
whose health state belongs to HFV :

The last term is accounting for the individuals who get 
vaccinated in year y(t) and change their health state as 
they become immune.

We can now generate the differential equations for the 
women who received the vaccination, i.e. whose health 
state is V.

Notice that the HPV immunity of individuals with health 
state V is modeled by making them not subject to the state 
change dynamics modeled by rate transition functions 
PFa . No other compartments will be affected by vaccina-
tion interventions, as the vaccination would have no effect 
for women whose health state is not in HFV  . For the sake 
of brevity, we do not provide the corresponding equations 
for men, which are analogous to Eqs. 14 and 15.

Screening
Which health state women reach after an intervention 
depends on the treatment type. Women that undergo 
local treatment re-enter the health states transition 
dynamics followed by the general women population. We 
assume that, after treatment, women will reach a health 
state h∗ �∈ HFV  , as they already acquired HPV infection. 
Women who undergo a hysterectomy will reach a new 
health state ḧ , where they will no longer suffer from HPV 
infections and its consequences.

We can now provide the differential equations for mod-
eling screening strategies. Differential equations for women 
of age a ∈ AS are presented below:

Notice that we slightly simplified the general equation because 
we assume screening is not applicable to the first age range. 

(14)

(15)

(16)

dFh1dta(t)

=
�F

h1
a−1

(t) +
∑

h2∈HF

F
h2
a (t)ℙ𝔽

h2 ,h1
a (t) −

∑

h2∈HF

F
h1
a (t)ℙ𝔽

h1 ,h2
a (t)

−F
h1
a (t)fadac

+

i,j
Ih1∈HFL∪HFH

− �F
h1
a (t)Ia≠K − �F

a,h1
(t)F

h1
a (t), a ∈ AS

Table 11 Model parameters

Parameter Value Source

Population initialization [32]

Transition probability matrices [30]

[59]

Test accuracy estimates

        Cytology sensitivity 0.585 [29]

        Cytology specificity 0.986

        HPV‑DNA test sensitivity 0.925

        HPV‑DNA test specificity 0.905

Test and treatment costs

        Cytology cost US$8.0 [46]

        HPV‑DNA test cost US$12.10 [30]

        Vaccination cost per dose US$8.30 [30]

Adherence to screening schemes

        20‑24 years 70% [47]

        25‑29 years 78%

        30‑34 years 83%

        35‑44 years 85%

        45‑49 years 86%

Disability weights

        CIN1 0.049 [48, 49]

        CIN2 0.049

        CIN3 0.049

        Cancer 0.451
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The second negative term in Eq.  16 accounts for screening 
disease detection. Individuals who undergo screening (under 
a policy with frequency fa and adherence da, ∀ a ∈ AS ) 
and are suffering from a condition that requires treatment 
( h1 ∈ HFL ∪HFH ), a correct diagnosis ( c+i,j ) will result in 
a health state change. The misdiagnosis of true positives 
( 1− c+i,j ) will not lead to a health state change and is therefore 
not explicitly represented. The incorrect diagnosis of true neg-
atives is not relevant for health states transition dynamics, but 
will be considered when measuring policies costs.

We now provide the differential equations for women 
in state h∗ �∈ HFV :

For state ḧ:
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