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Abstract 

Background  A recurrent feature of infectious diseases is the observation that different individuals show different 
levels of secondary transmission. This inter-individual variation in transmission potential is often quantified by the dis-
persion parameter k. Low values of k indicate a high degree of variability and a greater probability of superspreading 
events. Understanding k for COVID-19 across contexts can assist policy makers prepare for future pandemics.

Methods  A literature search following a systematic approach was carried out in PubMed, Embase, Web of Science, 
Cochrane Library, medRxiv, bioRxiv and arXiv to identify publications containing epidemiological findings on super-
spreading in COVID-19. Study characteristics, epidemiological data, including estimates for k and R0, and public health 
recommendations were extracted from relevant records.

Results  The literature search yielded 28 peer-reviewed studies. The mean k estimates ranged from 0.04 to 2.97. 
Among the 28 studies, 93% reported mean k estimates lower than one, which is considered as marked heterogene-
ity in inter-individual transmission potential. Recommended control measures were specifically aimed at preventing 
superspreading events. The combination of forward and backward contact tracing, timely confirmation of cases, 
rapid case isolation, vaccination and preventive measures were suggested as important components to suppress 
superspreading.

Conclusions  Superspreading events were a major feature in the pandemic of SARS-CoV-2. On the one hand, this 
made outbreaks potentially more explosive but on the other hand also more responsive to public health interven-
tions. Going forward, understanding k is critical for tailoring public health measures to high-risk groups and settings 
where superspreading events occur.
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Background
Since the emergence of the novel coronavirus SARS-
CoV-2 in late 2019 and the declaration of a public health 
emergency of international concern by the WHO on 30th 
January 2020 [1], more than 670 million cases have been 
recorded as of February 2023 [2]. Numerous efforts have 
been made to mitigate onward transmission. Knowledge 
about dispersion characteristics are indispensable for 
public health policy as it allows tailored control meas-
ures, and understanding dispersion may be critical for 
future pandemics.

The dispersion parameter k is an estimate of the disper-
sion in the number of secondary transmissions generated 
by each case. It is critical to estimating the probability 
of superspreading events in which certain individuals 
infect unusually large numbers of secondary cases [3]. 
Lloyd-Smith et al. first described that the distribution of 
individual transmission potential around the basic repro-
duction number R0 is frequently right skewed or overdis-
persed [3, 4]. They introduced the dispersion parameter 
k that indicates the variance in the number of offspring 
based on a Negative Binomial distribution [3]. Hence, 
k can be described as the variation in inter-individual 
transmission potential whereby low values of k represent 
higher variation and larger probability of superspreading 
events.

The ‘20/80 rule’ is a rule of thumb that emphasises the 
level of variance typically observed in infectious disease 
transmission: it is not uncommon that only about 20% of 
primary cases cause 80% of onward transmission [5]. In 
sexually transmitted and vector-borne diseases, studies 
often indicate the percentage of most infectious primary 
cases that account for 80% of secondary cases, serving as 
a surrogate marker for heterogeneity in individual infec-
tiousness [5].

If a disease spreads homogeneously, the variance 
around the base reproduction number R0 is low, k 
approaches infinity and the distribution of secondary 
cases approaches Poisson (Fig. 1A). Each case transmits 
the pathogen onto the next generation rather equally. 
In this scenario, broad population-wide control meas-
ures are necessary and the disease is more difficult to 
contain [3]. Contrarily, a heterogeneous offspring dis-
tribution exhibits a wider dispersion around R0 and k is 
smaller than one. In this scenario, superspreading events 
are more likely to occur and become a major concern 
(Fig. 1B). Large outbreaks happen less frequently but can 
become more explosive [3]. In this case, by focusing on 
specific settings or high-risk groups where superspread-
ing occurs, for example large gatherings indoors or peo-
ple of a certain age group, better containment of virus 
spread could be achieved without imposing population-
wide control measures. Simultaneously, the probability of 

extinction of the disease is more likely as more cases have 
no offspring at all.

Where the majority of cases does not contribute to 
onward transmission, the effective reproduction num-
ber could be substantially reduced by preventing super-
spreading events [6, 7]. In other words, public health 
interventions that specifically target settings where 
superspreading events occur could rapidly reduce over-
all transmission [8]. With high levels of superspreading, 
individual specific control measures targeting risk groups 
are likely to outperform population-wide interventions 
[9].

Infectious diseases with high levels of heterogeneity 
in transmission, in principle, should be easy to control 
with public health interventions [10] and this hetero-
geneity can even be advantageous for control measures 
[11]. However, this all depends on the ability to effec-
tively identify and reduce transmission related behavior 
in those populations spreading the disease, without stig-
matising those groups, and considering societal equity. 
Moreover, the effectiveness of measures will also criti-
cally depend on R0 and the speed to which any interven-
tion can be implemented.

This study reviews the dispersion parameter k in the 
context of the SARS-CoV-2 (COVID-19) pandemic, 
taking into account all-group k estimates as well as val-
ues for different subgroups. Following on from this, rec-
ommendations for public health are assembled, which 
studies derived from the calculation of their dispersion 
parameter estimates. Our aim is to provide a summary 
that researchers and policy makers can use to better 
understand the characteristics of k and in doing so can 
inform future pandemics.

Methods
Search strategy and study selection process
A review of the literature was undertaken using a system-
atic approach. On 4th August 2022 an online search was 
carried out for publications from 1st January 2020 to 4th 
August 2022 including the databases PubMed (via NCBI); 
EMBASE (via OVID); Web of Science; Cochrane Library. 
As a considerable proportion of work on SARS-CoV-2 / 
COVID-19 has been published as preprint articles, the 
“COVID-19 Portfolio” server of the National Institutes 
of Health (NIH) [12] was additionally searched for non-
peer reviewed work filtering for the following databases: 
MedRxiv; BioRxiv; arXiv.

Three search components were set up for the lit-
erature review with the following key concepts: (A) 
“SARS-CoV-2”, (B) “superspreading” and (C) “disper-
sion”. Keywords were searched for in all databases (see 
Table  1). Subject heading searches were conducted in 
databases where available (in principle PubMed, Embase, 



Page 3 of 22Wegehaupt et al. BMC Public Health         (2023) 23:1003 	

Cochrane Library) and where appropriate MeSH terms 
were identified.

For further eligibility of literature the following inclu-
sion criteria had to be met: The study was published on 
a peer-reviewed or non-peer-reviewed server; the study 
was based on real world data (e.g. epidemiological sur-
veillance, contact tracing data, genetic analysis of patient 
samples); the study provided at least one all-group esti-
mate for dispersion parameter k; the study was published 
between 1st January 2020 and 4th August 2022 in English 
or German language. Modelling studies were included 
when they drew on or were validated on epidemiological 
data.

This study both updated and extended a previously 
published review [13] in terms of study period covered 
and data extracted. In doing so, we aimed to expand the 
understanding of k in SARS-CoV-2 in the rapidly evolv-
ing pandemic by including most recent studies, captur-
ing evidence on virus subtypes, but also obtaining k 
estimates in various subgroups. In addition, we compiled 
public health recommendations derived from calculated 
k estimates.

The systematic literature search identified a total of 
675 studies (307 on databases for peer-reviewed and 
368 on databases for pre-print articles) from 1st Janu-
ary 2020 to 4th August 2022. The Cochrane database 

Fig. 1  Conceptual framework. Homogeneous and heterogeneous patterns of disease transmission require different control measures. A: Every 
infected individual passes on the disease to two other people on average, R0 equals two, k approaches infinity, secondary cases show a Poisson 
distribution with mean and variance equal to R0. As a consequence, Public Health aims at population-wide control measures. B: Infected individuals 
show different levels of secondary transmission, R0 equals two as in scenario A, but contrastingly k is smaller than one. Secondary cases show a 
Negative Binomial distribution. Public health measures can target high risk groups or settings where superspreading is likely to occur. Figure created 
with BioRender.com
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search did not retrieve any record. A reference list 
search of the previous review [13] yielded an additional 
four studies that met inclusion criteria. 679 records 
were imported into EndNote software (Version X9 3.3). 
After removal of 201 duplicates by stepwise deduplica-
tion, the remaining 478 records were screened by title 
and abstract. 434 studies did not meet inclusion crite-
ria (18 not related to SARS-CoV-2; 125 other SARS-
CoV-2 related public health topics; 201 insufficient 
information on dispersion parameters; 69 other natural 
sciences topic; 18 single case reports; 1 non English/
German language; 2 communications) and 44 stud-
ies were assessed further for eligibility. Among these, 
another 16 studies were excluded due to insufficient 
information on dispersion parameter estimates or pure 
focus on outbreak simulation. A total of 28 records 
was finally included in this study: We re-examined and 
extended data extraction of the 17 studies that were 
also included in the previous review [13]. Additionally, 
one major study of 2020 [14] not captured by the previ-
ous review was included as well as 10 newly identified 
and recently published studies (after 10/09/2021) for 
complete data extraction.

Quality appraisal, data extraction and synthesis
Quality appraisal of literature was of particular con-
cern in this study as a significant number of non-peer 
reviewed, and therefore possibly not previously quality 
checked, COVID-19 work was expected to be eligible 
for inclusion according to the search strategy. The final 
set of identified studies was subjected to a critical qual-
ity appraisal checklist according to the Critical Appraisal 
Skills Programme (CASP) guidelines [15] and the quality 
of cross-sectional studies (AXIS) scale [16]. A set of 13 
quality appraisal questions were grouped into the catego-
ries “introduction” (2 questions), “methods” (6), “results” 
(2) and “discussion” (3). The articles were scored based 
on positive units, ranging from strong (≥10/13 “YES”-
units) and good (7-10/13) to weak (<7/13) quality (see 
supplement A). Emphasis was given to the assessment of 
the description of methods in order to ensure an a priori 
valid dispersion parameter calculation.

Articles finally included in this review were first clas-
sified by their study characteristics: Author, journal, 
publication date, title, type of method for estimation of 
k and type of dataset. Subsequently, epidemiological data 
was extracted: Estimate of dispersion parameter k; 95% 

Table 1  Search strategy

Steps Search terms

Search component A (SARS-CoV-2)
  1 Keywords

SARS-CoV2 OR SARS-CoV-2 OR Covid19 OR Covid-19 OR "Coronavirus 2019" OR "2019-
nCoV" OR "Wuhan coronavirus" OR "Wuhan pneumonia"

  2 Subject headings
PubMed: SARS-CoV-2, COVID-19

Embase: Severe acute respiratory syndrome coronavirus 2, coronavirus disease 2019

  3 1 OR 2 (results for search component A)

Search component B (Superspreading)
  4 Keywords

Superspread* OR super-spread*

  5 Subject headings
Embase: superspreading event

  6 4 OR 5 (results for search component B)

Search component C (Dispersion)
  7 Keywords

Dispersion OR kappa OR variability OR heterogen* OR "secondary case*" OR "20/80 rule"

  8 Subject headings
Embase: Epidemiological data

  9 7 AND 8 (results for search component C)

Inclusion for further assessment
  10 3 AND 6 AND 9 (Embase)

  11 3 AND 4 AND 7 (PubMed)

  12 1 and 4 and 7 (Web of Science, Cochrane Library, medRxiv, arXiv, bioRxiv)
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confidence interval (CI) of dispersion parameter k; esti-
mate of basic reproduction number R0; 95% CI of basic 
reproduction number R0; percentage of cases that is 
responsible for 80% of secondary cases (20/80 rule); pop-
ulation (size, contacts, clusters); information on analysis 
of subgroups/ clusters/ settings/ events; study period; 
and region/ country. Moreover, public health control 
measures that were recommended based on the identi-
fied dispersion characteristics were extracted as well as 
the type of virus investigated (wildtype vs. variant of con-
cern (VOC)) (see supplement B). To investigate whether 
the dispersion of secondary cases differs in certain sub-
groups, available data on k estimates in subgroups was 
grouped into four categories for further analysis: (1) set-
tings, (2) age of primary case, (3) symptoms at the time 
of disease transmission, and (4) pre/after public health 
intervention. Data extracted in this study was primarily 
used for descriptive and comparative analysis.

Epidemiological calculations and meta‑analysis
For studies that included an all-group mean k estimate, 
its 95% confidence interval and the number of cases 
studied (sample size), a meta-analysis was carried out to 
approximate a pooled global k value for SARS-CoV-2. 
The analysis included 32 values (obtained from 24 stud-
ies). Four studies (containing 8 all-group mean k esti-
mates) were excluded for the pooled analysis because of 
lack of sample size [6, 17], confidence intervals [10], or 
both [18]. Two all-group mean k estimates in one study 
[19] were excluded as upper confidence intervals reached 
infinity and thus weight in the pooled estimate was con-
sidered negligible. The calculation of a global mean k esti-
mate was performed using the inverse variance method 
for pooling. Hereby, studies containing larger sample 
sizes and small confidence intervals were given more 
weight. Obtaining high heterogeneity between values (I2 
test for heterogeneity=100%), we subsequently employed 
a random effects model for the measurement of a global 
mean k estimate. Calculations were carried out in R (ver-
sion 4.2.3), R-package ‘meta’.

Results
Study characteristics
The PRISMA flowchart shows the detailed study selec-
tion process (Fig. 2). Table 2 summarises the study char-
acteristics of included studies, by author in alphabetical 
order.

Type of articles, date of publication and critical appraisal
All 28 studies finally included were peer-reviewed 
publications. Any pre-print article that was identi-
fied within the study selection process was removed by 
deduplication as it had meanwhile been published in a 

peer-reviewed journal. Included studies were published 
between 2020 and 2022, with the first publication on 
SARS-CoV-2 superspreading dating to 30th January 2020 
[17] and the most recent dating to 11th July 2022 [22]. The 
quality assessment by critical appraisal revealed high-
quality studies (all scoring 10 or higher, see supplement 
C). The most frequent weakness was the lack of consid-
ering limitations in nine publications. The fact that any 
eligible pre-print article had been published in a peer-
reviewed journal in the meantime supported the results 
of the quality appraisal of included studies.

Type of dataset
The included studies performed their calculations using 
epidemiological data. Five categories of datasets could be 
identified: the first type of dataset was used by 7 studies 
and was based on contact tracing data. By asking patients 
with confirmed SARS-CoV-2 infection to document their 
close contacts with other infected patients, cases could 
be placed in a wider transmission network. Calculating 
the empirical offspring distribution led to an estimate of 
transmission heterogeneity. A second basis for estimat-
ing the dispersion in the population under study was sur-
veillance data. Four studies exclusively used information 
from surveillance to infer transmission dynamics. In this 
kind of analysis, temporal and geographical coincidence 
of one or more index and secondary cases is used as a 
means to indirectly reconstruct clusters of cases. 13 stud-
ies used a combination of surveillance and contact trac-
ing data (see Table 2). We did not observe any significant 
difference between all-group mean k estimates originat-
ing from contact tracing data, surveillance data or a com-
bination of both (see supplement D). Thirdly, two studies 
drew on SARS-CoV-2 genomic sequences and used phy-
logenetic trees to deduce dispersion patterns [30, 36]. 
RNA viruses constantly mutate during replication and 
transmission. By sequencing the viral genome, epidemi-
ological information can thus be obtained and mapped 
into transmission networks. As a fourth data source, a 
study investigating the variability of within household 
transmission, paired serological SARS-CoV-2 antibody 
test data with a household survey [10].The fifth type 
of dataset matched surveillance data (including demo-
graphic information and geolocation of the residence of 
cases) with aggregate high-volume mobility data of the 
population (obtained by Facebook users who enabled 
location services on their mobile phones) to infer viral 
spreading across the region [18].

Type of method for estimation of k
In line with a common mode of measuring the hetero-
geneity of infectiousness and suggested by the pivotal 
paper of superspreading events in infectious diseases 
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[3], most studies used a negative binomial distribu-
tion for the estimation of the dispersion parameter k 
[6–8, 10, 11, 14, 17–24, 26–29, 31–35, 37, 38]. In addi-
tion, one study quantified superspreading potential by 
using different mixture distributions and compared 
these to the negative binomial dispersion parameter: 
the authors suggest a cautious choice of the underlying 

data generating distribution as the mean in offspring 
and its variance can become skewed with increas-
ing overdispersion if incorrect assumptions about the 
type of distribution are made [28]. Finally, two studies 
analysed genomic SARS-CoV-2 sequences obtained by 
patients’ samples and subsequently used these for phy-
lodynamic analyses for the estimation of k [30, 36].

Fig. 2  Study selection process.
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Countries
Studies investigated SARS-CoV-2 superspreading in 12 
countries: China [9, 24, 36] (including specific reports 
on Hong Kong [9, 11, 19, 21, 28], Shenzhen [20], Tian-
jin [9, 37], Wanzhou [32] and the provinces of Hunan 
[33], Guangdong [38] and Shandong [35]), Denmark [6], 
France [8], India (regions of Karnataka [22], Tamil Nadu 
and Anda Pradesh [14, 28]), Israel [30], Indonesia [23] 
(Jakarta Depok, region of Batam), Japan [19, 27], New 
Zealand [26], Rwanda [28], Singapore [19, 34], South 
Korea [29, 31], and the United States of America (states 
of Georgia [18] and Utah [10]) (Fig. 3). Two studies exam-
ined patterns of SARS-CoV-2 transmission from a global 
perspective [7, 17].

Epidemiological parameters
Estimates for dispersion parameter k
All studies provided a point estimate and 95% CI for the 
dispersion parameter k, indicating the extent of hetero-
geneity in disease transmission. 93 % of studies (26 of 28) 
reported mean k estimates lower than one and found a 
high degree of superspreading potential. Mean k esti-
mates ranged from 0.04 (0.03, 0.04) [22] to 2.97 (2.86, 
3.08) [30]. The median of reported mean k point esti-
mates was 0.31. In total, 42 all-group point estimates of 
k were reported across 28 studies. Employing a weighted 
meta-analysis of 32 point estimates (of 24 studies), the 
global pooled mean estimate of k was 0.41 (0.23, 0.60). 

Figure  4A illustrates the all-group mean k estimates for 
all studies and the global pooled mean estimate. Table 3 
shows all epidemiological data extracted from 28 publi-
cations. Paired estimates of R0 and k for each study are 
displayed in Fig. 5.

Proportion of primary cases accounting for 80% of onward 
transmission
Sixteen studies presented the fraction of most infectious 
that generate 80% of secondary cases in SARS-CoV-2, 
ranging from 8.7% to 32.3% (Fig. 4B). Nine studies found 
that percentages of less than 20% of cases accounted for 
80% of onward transmission.

Subgroup analysis

Analysis by cluster type and setting  Five studies inves-
tigated the dispersion of SARS-CoV-2 infections in 
specific settings. High levels of overdispersion were 
present across all settings with mean k estimates rang-
ing between 0.014 and 0.72 (Fig.  6A by setting, Fig.  6B 
by publication). Three studies identified k estimates in 
households and four at work with superspreading occur-
ring somewhat less likely in the former than in the latter. 
Both religious gatherings and hospitals or convalescent 
homes were identified as risk settings for superspreading 
[22, 29, 35]. There was an increase in overdispersion and 
superspreading potential the less close the contacts were 

Fig. 3  Geographical mapping of reported k estimates. Shown are all-group point estimates of k. Colour-coding based on the countries’ values in 
the range of k. Created with mapchart.net



Page 10 of 22Wegehaupt et al. BMC Public Health         (2023) 23:1003 

[33] (risk in ascending order: household, extended fam-
ily, social contact and community contact). This result of 
high overdispersion following sporadic community con-
tacts was consistent with low k values found for leisure 
facilities [29] and air transportation [35] in two other 
studies.

Analysis by age of infector  A Japanese study found low 
k estimates for all age groups throughout the entire study 
period which did not differ significantly. Of note, 80% of 

primary cases causing secondary transmission belonged 
to the age group of 20-69 years [27]. The other study 
stratifying k for age groups reported that children under 
10 years played less of a role in the spread of SARS-
CoV-2 than adults. With a mean reproduction number of 
0.87 (versus 1.49 and 1.51 for adults and elderly people, 
respectively) and a mean k estimate of 3.17 (versus 0.7 
and 0.5 for adults and elderly people, respectively), they 
generated fewer secondary cases on average and were less 
likely to be superspreaders [26] (Fig. 6C). Another study 
divided into two age groups above and below 60 years of 

Fig. 4  All-group point estimates of k and proportion of primary cases accounting for 80% of onward transmission. (A) All-group point estimates 
of k with 95% CI arranged in alphabetical order. Dashed line indicates mean, area in grey indicates 95% CI of global pooled estimate. Arrows 
indicate that upper 95% confidence interval reaches infinity. Point estimates in grey are not included in meta-analysis for global pooled estimate. 
B Proportion of most infectious primary cases that generate 80% of secondary casesarranged in alphabetical order. Dashed line indicates empirical 
‘20/80 rule’.
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age. Though not directly calculating k values, it showed 
that the average of the mean number of offspring in the 
age group under 60 years is 2.78 (2.10, 4.22) times larger 
than in elderly cases and that younger people therefore 
tended to generate more extreme numbers of offspring 
[18].

Analysis by symptoms  Two studies distinguished 
between asymptomatic and symptomatic cases. The basic 
reproduction number was significantly lower in asympto-
matic than in symptomatic cases, but overdispersion was 
higher in the asymptomatic group [22]. Except for the 
first of transmission generations, a lower R0 in asympto-
matic cases was also observed in the other study, which, 
however, did not determine k values [32] (Fig. 6D).

Analysis by public health intervention  Two studies 
examined whether heterogeneity in individual infec-
tiousness is affected by pandemic control measures. In 
the first study, after interventions (traffic restriction, 
quarantine measures) had taken effect, a lower trans-
mission potential and heterogeneity (decrease in R0 and 
increase in k) was observed [37]. The second study also 
found a decrease in R0 after alert level introduction (cur-
fews, shutdown of business and schools), but contrarily 

showed an associated decrease in k across all age groups 
[26], but if this decrease in k under public health inter-
ventions resulted in more superspreading events was not 
discussed (Fig. 6E).

Virus characteristics
Three studies focused on the SARS-CoV-2 variants of 
concern Delta and Omicron, respectively. Delta is attrib-
uted a higher superspreading potential (k=0.26) by the 
first publication, compared to that of the wild-type in 
the early pandemic outbreaks [38]. The authors empha-
sised the risk of superspreading if Delta entered areas 
with low herd immunity or places where many people 
meet. The second study analysed the change in transmis-
sion dynamics as Delta became the dominant variant in 
South Korea. A slight increase in k was identified here 
(0.64 and 0.85 before and at predominance, respectively) 
[31]. One study looked at heterogeneity in transmission 
of the Omicron variant and found overdispersed trans-
mission. Compared to Omicron subtype BA.1, the more 
recent subtype BA.2 has an even greater superspreading 
potential [21]. The authors hypothesise that the observa-
tion of greater susceptibility to superspreading might be 
explained with low prevalence of vaccination boosters at 

Fig. 5  R0 and corresponding k values. Shown are extracted R0 and corresponding k values (with 95% CI). Upper CI limit not depicted if reaching 
infinity.
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Fig. 6  k and R0 estimates for different subgroups. A Analysis by cluster type/ setting (by setting). B Analysis by cluster type/ setting (by publication). 
C Analysis by age group. D Analysis by symptoms. E Analysis by public health interventions.
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the time of investigation and only limited natural immu-
nity due to a ’zero COVID-19’ policy in Hong Kong [21].

Public Health recommendations
Table  4 categorises and lists all public health interven-
tions recommended in the reviewed papers, as stated in 
the publications, regardless of their feasibility, societal 
or legal/ human rights implications. The strategy to spe-
cifically ban large gatherings and limit capacity in indoor 
spaces was the most recommended, followed by target-
ing high-risk groups and large close contact groups. In 
the category of surveillance and contact tracing, the need 
for rapid tracing and quarantine for contacts was most 
frequently suggested. One study that calculated a mean 
k point estimate also addressed backward tracing as an 
approach to mitigate viral spread. Population-wide con-
trol measures like wearing face-masks and vaccination 
were also among the recommendations to reduce viral 
spread despite an overdispersed transmission pattern.

Discussion
We find here a wide range of work that estimates the 
heterogeneity in transmission of SARS-CoV-2 and over-
all, we find consistent evidence of high level of overdis-
persion across settings. This suggests that public health 
measures that focus on risk groups may have been effec-
tive at slowing transmission, where the disease had not 
been evenly spreading among the general population.

Heterogeneity in SARS-CoV-2 transmission was pre-
sent in the early outbreaks of the pandemic as well as 

in the latest observations and across different variants. 
Our compilation of k estimates for subgroups classified 
according to different criteria showed that superspread-
ing occurs across all age groups and in a wide variety of 
settings. Children may seem to be less heterogeneous 
transmitters though the number of studies stratifying for 
age was limited. By contrast, asymptomatic carriers can 
be particularly hazardous, as they showed more hetero-
geneous transmission patterns and can thus also contrib-
ute to superspreading.

Going forward, a common approach in early pandemic 
response measures is the so-called backward tracing 
of cases, recommended by one study [22], in which not 
only possible contacts of the infected individual are noti-
fied, but also the origin of infection is traced back to the 
index case. This method helps to identify clusters and 
was largely adopted by Japan in the first wave of infec-
tions [27, 39]. Cluster based approaches were shown to 
be effective in preventing superspreading events and 
help to terminate transmission chains, where done very 
promptly [27]. In the case of COVID-19, we found one 
modelling study comparing backward and forward trac-
ing methods. It suggested that primary cases identi-
fied by backward tracing may generate 3-10 times more 
infections than those identified by forward tracing [40]. 
The proportion of secondary cases thereby averted was 
estimated to two to threefold and effectively contributed 
to outbreak control. These findings are a reminder, that 
early rapid control efforts can be pivotal even in patho-
gens with high levels of infectiousness.

Table 4  Public Health recommendations as stated in reviewed publications

Public Health recommendations Count References

Non-pharmaceutical interventions in infected and exposed individuals
  surveillance and contact tracing 2 [14, 32]

  reduce delay from symptom onset to confirmation (testing delay) 2 [22, 32]

  rapid isolation of COVID-19 patients 2 [17, 31]

  rapid tracing and quarantine for contacts 3 [11, 34, 37]

  backward / retrospective tracing 1 [22]

  case isolation in dedicated hospitals and contact quarantine in medical observation centers 1 [33]

Non-pharmaceutical interventions in not necessarily infected or exposed individuals
  social distancing measures 2 [18, 32]

  target the core high-risk groups and large close contact groups 3 [11, 30, 35]

  bans on large gatherings and limit capacity in indoor spaces (e.g. target restaurants and entertainment 
sites, traditional markets, religious gatherings, and weddings)

5 [11, 22, 23, 34, 38]

  strengthen non-pharmaceutical intervention capacity 1 [31]

  wearing face masks 3 [17, 19, 32]

Vaccination 2 [31, 35]

Prevention of international spread
  prevention of long-distance dissemination, e.g. target flight passengers 1 [35]

  border controls 1 [32]
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Nevertheless, SARS-CoV-2 transmission highlighted 
the challenge for non-pharmaceutical interventions to 
specifically target risk groups and settings [11, 30, 37]. 
As demonstrated in the subgroup analysis, superspread-
ing events occurred in a large variety of settings. In ret-
rospect, heterogeneity of infectiousness was equally 
present within households and at work. Nevertheless, 
special attention should probably be paid in pandemic 
response planning to known indoor and special risk set-
tings (e.g. care facilities, prisons, food processing plants, 
cruise ships, and large gatherings [41]), as proposed by 
most of the reviewed studies.

The general observation of overdispersion in SARS-
CoV-2 transmission seems to be very robust. Estimates 
for k were reported across different countries, time 
points, populations and different viral strains. Moreover, 
different datasets and methods have been applied for cal-
culations. Together with the presence of study cohorts 
with large sample sizes, reported estimates of k seemed 
consistent and plausible overall. However, the dispersion 
parameter from one region cannot necessarily be trans-
ferred to another as populations differ in general com-
position, immunity level and control measures in place. 
Interestingly though, the age distribution of a popula-
tion on a nationwide scale was not likely to be associated 
with SARS-CoV-2 superspreading potential. In 2020, the 
median age of reviewed countries ranged from 20.3 years 
(Rwanda) to 48.2 (Japan) years [42]. The respective k esti-
mates did not correlate with median age across countries.

This study has several limitations. Firstly, the scope 
of our review did not include direct assessment of the 
quality of statistical measurements of reviewed publi-
cations or the quality of the source datasets. It was also 
beyond the scope of this work to reconstruct quantities 
of interest (e.g. for k, R0 or the 20/80 rule) that were not 
reported in the reviewed studies. These mean that we 
assumed that all the reported estimates were statisti-
cally sound and accurate. Secondly, reported estimates 
are from datasets collected in various time points in the 
pandemic under different levels of interventions and/
or behavioural changes, which could have deviated the 
estimates from the “baseline” SARS-CoV-2 dispersion 
patterns. Moreover, with a growing number of vacci-
nated individuals from the end of 2020 onward, the virus 
no longer encounters a fully susceptible population. For 
these reasons, k estimates would only reflect real-world 
conditions at the time of investigation. Thirdly, under 
lockdowns, superspreading events were by default only 
possible where people were still allowed to meet (e.g. in 
households or at work). Data on superspreading events 
in settings that were under restriction (e.g. concert halls, 
theatres) has been limited. Fourth, being conducted 
in the middle of a pandemic, the included studies were 

mostly retrospective and secondary by nature. As the 
data was primarily collected for other purposes than 
estimating k (e.g. case isolation), possible estimation 
approaches were restricted by available data types. Esti-
mates of k may have been more likely to be reported from 
settings where the collected data was incidentally suitable 
for estimation, which could be a source of bias. Estimat-
ing k is most straightforward when the distribution of the 
number of secondary transmissions per case is available, 
e.g. through contact tracing. In such instances, k can be 
estimated simply by fitting a negative binomial distribu-
tion to the observed data. Most of the studies included 
in our review used this approach and the pooled esti-
mate may have been subject to limitations associated 
with the data collection, e.g. unidentified epidemiological 
links. Although some modelling approaches could esti-
mate k from other (less informative) types of data, e.g. 
cluster sizes [7, 43], they seem to have been rarely used 
for COVID-19 data, potentially due to data access and 
technical hurdles. Finally, most studies were conducted 
before the emergence of variants of concern (VOC); only 
few studies estimated parameters for VOCs including 
Delta and Omicron. These variants might have different 
epidemiological characteristics than wild type SARS-
CoV-2. Two of the included studies analysed data con-
taining the Delta variant and only one study covered the 
Omicron variant, which left the evidence for these vari-
ants unestablished.

Taken together, our findings highlight the importance 
to consider the two key metrics of transmission poten-
tial - R0 and k – in parallel in preparing for control meas-
ures and to weigh these against each other. There is no 
“one-fits-all” approach, but in general early indications 
of overdispersed offspring distribution warrants imple-
mentation of targeted measures to mitigate pandemic 
spread and especially control superspreading events. 
Approaches for real-time monitoring of transmission 
heterogeneity and simultaneous estimation of R0 and 
k from incidence data are currently being explored [44] 
and should be fully incorporated in surveillance systems.

Conclusion
In summary, the systematic literature review for super-
spreading events in the SARS-CoV-2 pandemic with 
epidemiological characterisation of transmission pat-
terns yielded dispersion parameter estimates that were 
mostly smaller than one, indicating a high superspread-
ing potential. A combination of forward and backward 
contact tracing, timely confirmation of cases, rapid case 
isolation, vaccination, and preventive measures were 
suggested to be important measures for outbreak con-
trol and the suppression of superspreading events. Fur-
ther investigations have to be performed to analyse new 
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SARS-CoV-2 variants of concern, in particular Omicron 
subvariants, as data for heterogeneity in transmission is 
still limited here. Future research will also need to eluci-
date heterogeneity in transmission in African and Latin 
American countries for a global picture of dispersion 
patterns. It should be determined how k is affected in 
populations of partially vaccinated or recovered people, 
in particular in remaining susceptibles. Since parts of the 
population cannot be vaccinated, public health measures 
will then also have to prevent superspreading in these 
vulnerable groups.
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