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Abstract 

Background Wellington‑Dufferin‑Guelph Public Health (WDGPH) has conducted an absenteeism‑based influenza 
surveillance program in the WDG region of Ontario, Canada since 2008, using a 10% absenteeism threshold to raise 
an alert for the implementation of mitigating measures. A recent study indicated that model‑based alternatives, such 
as distributed lag seasonal logistic regression models, provided improved alerts for detecting an upcoming epidemic. 
However model evaluation and selection was primarily based on alert accuracy, measured by the false alert rate 
(FAR), and failed to optimize timeliness. Here, a new metric that simultaneously evaluates epidemic alert accuracy 
and timeliness is proposed. The alert time quality (ATQ) metric is investigated as a model selection criterion on both a 
simulated and real data set.

Methods The ATQ assessed alerts on a gradient, where alerts raised incrementally before or after an optimal day 
were considered informative, but were penalized for lack of timeliness. Summary statistics of ATQ, average alert time 
quality (AATQ) and first alert time quality (FATQ), were used for model evaluation and selection. Alerts raised by ATQ 
and FAR selected models were compared. Daily elementary school absenteeism and laboratory‑confirmed influenza 
case data collected by WDGPH were used for demonstration and evaluation of the proposed metric. A simulation 
study that mimicked the WDG population and influenza demographics was conducted for further evaluation of the 
proposed metric.

Results The FATQ‑selected model raised acceptable first alerts most frequently, while the AATQ‑selected model 
raised first alerts within the ideal range most frequently.

Conclusions Models selected by either FATQ or AATQ would more effectively predict community influenza activity 
with the local community than those selected by FAR.
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Introduction
Seasonal influenza epidemics cause significant morbidity 
and mortality each year [1], with the duration and sever-
ity of influenza epidemics varying year-to-year. Early epi-
demic detection at the regional level can be conducive 
in reducing the impact of influenza by prompting pub-
lic health authorities to implement mitigating strategies. 
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Syndromic surveillance methods focus on behaviours 
that occur due to symptoms, such as non-prescription 
drug sales [2, 3], absenteeism from work or school, and 
web queries [4, 5]. In spite of often being non-specific to 
community illness, these methods tend to have a level of 
sensitivity that can allow them to identify disease out-
breaks, or the start of a seasonal epidemic, earlier than 
typical surveillance methods that monitor laboratory-
reported cases (which are often lagged) [6, 7], thereby 
making it possible for public health agencies to respond 
quickly.

On March 11, 2020, COVID-19 was announced as a 
pandemic by the World Health Organization (WHO). 
With the availability of vaccines, and with individuals 
recovering from infections, populations of some coun-
tries and regions are moving toward “herd resistance", 
where infections continue but the protection from vacci-
nations and prior infections help prevent infected people 
from severe illness or death. COVID-19 is thought likely 
to become seasonal like influenza, and no longer pose a 
tremendous burden on the health care system or cause 
disruptions to society on the large scale seen during the 
first two years of pandemic [8]. In this case, COVID-19 
would follow the footprint of seasonal influenza, and 
methodology development on surveillance of influenza 
epidemics as we propose in this paper would shed light 
on the strategy of surveillance of the COVID-19 epidemic 
and/or mixed epidemics of different infectious diseases.

Children typically have the highest influenza infection 
rates among all age groups [9]. In general, children are 
encouraged to stay home when ill, therefore monitoring 
school absenteeism can provide early signs of community 
infection [10, 11]. The school absenteeism-based sur-
veillance program has been employed and conducted by 
Wellington-Dufferin-Guelph Public Health (WDGPH) 
since 2008. Schools within the Upper Grand District 
School Board (UGDSB) voluntarily report daily absen-
teeism using an online form. When student absenteeism 
surpasses 10% in any given school, an alert is generated 
in the data system and WDGPH follows up to determine 
if the high absenteeism is illness related and if so, advise 
on mitigating measures. School absenteeism surveil-
lance programs in other jurisdictions have used similar 
absenteeism thresholds [11–14]; however, this approach 
was found to be ineffective for schools with high baseline 
absenteeism levels and provide inadequate lead time for 
public health officials to implement mitigation strate-
gies [12]. Model-based alternatives to the 10% thresh-
old method have recently been studied, and were found 
to improve epidemic alert accuracy [10]. However, the 
model selection metrics employed were limited since 
they optimized alert accuracy using a false alert rate 
(FAR), but did not necessarily optimize the timeliness 

of the alerts raised [10]. Alerts that are accurate but not 
timely may provide insufficient time for public health 
intervention. This paper proposes a novel metric, alert 
time quality (ATQ), to evaluate alerts raised by a school 
absenteeism surveillance prediction model in terms of 
both accuracy and timeliness. Summary statistics of the 
ATQ serve as a criterion for model selection and tuning 
parameter selections when multiple statistical models 
with their associated turning parameters are considered 
for raising an epidemic alert. To assess the ATQ metric, 
school absenteeism and influenza data from WDGPH are 
used to fit models and compare alerts raised when using 
the ATQ versus the FAR metric proposed by Ward et al. 
(2019) [10].

Furthermore, as there is no available method or soft-
ware to simulate school absenteeism and influenza 
confirmed case data, in this paper we developed and 
assembled a novel simulation procedure to generate 
these data. This data simulation procedure can be fur-
ther adapted to generate school absenteeism data in 
other regions and confirmed case data for other seasonal 
infectious diseases. For example, as COVID-19 might 
become seasonal and now, official confirmed cases in 
Canada are only relying on self reported cases and posi-
tive results from PCR tests which are only available to 
vulnerable groups, our simulation model can be adapted 
to simulate COVID-19 confirmed cases. As schools were 
closed multiple times for varying durations during the 
COVID-19 pandemic (schools in different provinces and 
regions across Canada had been closed several times 
during March 2020 to January 2022 due to the surge of 
the COVID-19 infections), it was impossible to collect 
absenteeism data with acceptable quality. To address this 
gap, our developed simulation procedure can be adapted 
to generate data to facilitate research in this area. In this 
paper, our proposed surveillance methods will be fur-
ther evaluated using the data generated by our simula-
tion model that mimics absenteeism and influenza data 
observed in the WDG community.

This paper is organized as follows: description of real 
WDGPH data, statistical models for epidemic detec-
tion, the proposed ATQ and ATQ-based metrics, and our 
simulation study with the proposed data simulation pro-
cedure will be organized in the Methods section. Results 
from the analysis of real WDGPH data and simulation 
study, and the alert quality analysis, will be presented in 
the Results section. We will conclude the paper with dis-
cussions and future work.

Methods
This section includes five parts: (1) a description of 
WDGPH school absenteeism and influenza data, (2) the 
statistical models used for epidemic detection, (3) the 
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development of ATQ, (4) model evaluation using ATQ 
summary statistics, and (5) the simulation model for sim-
ulation study.

Absenteeism and influenza data
Two data sets were provided by WDGPH: (1) absentee-
ism data for schools within the UGDSB, and (2) labora-
tory-confirmed influenza cases within WDG. Together, 
in this study, these data sets formed the basis of the epi-
demic detection model, where the start of the annual 
influenza epidemic was defined by the influenza data, 
and this start was predicted using the absenteeism data.

Influenza and school absenteeism data were available 
from January 2008 to June 2018. In Canada, a school year 
runs from early September to late June. Therefore, the 
partial school year from January to June 2008 was omit-
ted from this analysis. Additionally, the 2009-10 school 
year was excluded from this study since the H1N1 pan-
demic occurred during this school year and was therefore 
not representative of a typical influenza season. Overall 
the study period included nine complete school years, 
from September 2008 to June 2018 with the 2009-10 
school year excluded. All data analyses and visualizations 
were performed using R version 3.5 [15].

Absenteeism data set
Collection of data from schools with the UGDSB for daily 
absenteeism surveillance had been done by WDGPH via 
an online form. The absenteeism data set obtained from 
WDGPH contained records (one per school per day) 
with information on school type (elementary or second-
ary), anonymized school identifier, anonymized school 
catchment area identifier, the number of students in each 
school (referred to herein as school size), and the num-
ber of absent students each day for participating schools. 
Daily all-cause absenteeism percentages were calculated 
by dividing the number of absent students in a school by 
the school size. Data had not been collected on days stu-
dents did not have to attend school, such as weekends, 
school holidays, and professional activity days. Follow-
ing results from a previous study, these non-school days 
were removed from the data set [10]. A total of 88 ele-
mentary schools and 14 secondary schools had reported 
to WDGPH during the study period. Because attend-
ance reporting was voluntary, not all schools within the 
UGDSB participated, and participating schools may not 
have consistently reported daily absences. In a previous 
study, models that exclusively used elementary school 
absenteeism data consistently raised influenza alerts with 
higher accuracy than those that used secondary school 
absenteeism either exclusively or in combination with 
elementary school absenteeism [10]. Therefore, the cur-
rent analysis used only elementary school absenteeism, 

and for the remainder of the study, the term “school(s)" 
refer solely to elementary school(s).

Since absenteeism data had been manually entered 
by schools, they were prone to data entry errors such 
as mistypes. For example, a school with a school size of 
500 may have accidentally reported 5000 students on a 
given day. Thus, records where a school reported a popu-
lation of fewer than 45 or greater than 820 students, the 
smallest and largest consistently reported school sizes 
respectively, were excluded from the analysis. Similarly, 
observations in which a school reported a daily absentee-
ism of 50% or more were removed for suspicion of data 
entry error. Additionally, if a school reported absentee-
ism on fewer than five days over the entire study period, 
all data for that school were excluded. If a school had 
submitted duplicate reports on a given day, the maximum 
absenteeism percent for the day was used. Mean daily all-
cause absenteeism percentage was calculated for each 
day using data from all schools reporting on that day.

Influenza data set
The influenza data set provided by WDGPH included all 
de-identified laboratory-confirmed influenza cases and 
the date on which each case was reported to the pub-
lic health unit during the study period. Influenza cases 
were aggregated by day to provide a count of the con-
firmed cases, and a binary variable was created to indi-
cate if at least one case had occurred on each day of the 
study period. For this study, the influenza season was 
defined as the period from September 1 of each year to 
August 31 of the following year. For each influenza sea-
son, the reference date was defined as the report date of 
the second of two laboratory-confirmed influenza cases 
reported within a seven day period of each other for the 
first time within an influenza season, even if both had 
been reported on the same day. The reference date was 
used to indicate the start of the actual seasonal influ-
enza epidemic within the community, as opposed to the 
sporadic cases that often occur at the beginning of an 
influenza season that might not necessarily be an indi-
cation of the start of the influenza epidemic, the situ-
ation of a rapid transmission of the disease within the 
population.

Epidemic detection models
The current practice for WDGPH is to follow-up with 
schools when school absenteeism surpasses 10% in any 
given school, to determine whether the high absen-
teeism is related to increased transmission of com-
municable diseases (including influenza) within that 
school. Since this study focused on region-wide alerts, 
aggregated, rather that school level, absenteeism data 
were used to raise a region-wide epidemic alert when 
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the mean daily absenteeism surpassed 10%. This 10% 
threshold method was compared to model-based alter-
natives, which have been investigated as a potential 
improvement upon the current 10% threshold method 
[10]. In particular, in that work, distributed lag logis-
tic regression models with fixed effects for seasonality 
and a random effect for school year consistently outper-
formed other models [10], lending itself to be the pri-
mary model type of interest.

Following the notation of Ward et al. (2019) [10], the 
region-wide seasonal mixed effects logistic regression 
model was given by:

where the outcome of interest, θtj , was the probability of 
at least one case being reported on day t in school year 
j. The main predictor variables, x(t−i)j , were the lagged 
mean daily absenteeism percentages, where lag time was 
from 0 up to l. The trigonometric functions captured the 
seasonal effect of influenza, where t∗ represented the 
calendar day of the year on which xtj was observed, and 
T ∗ = 365.25 . The random effect for the jth school year, 
γj , was assumed to follow a N (0, τ 2) distribution and 
accounted for intracorrelation among daily absenteeism 
and influenza observations within a given school year, 
but varied over different school years.

Additional models were explored to include indica-
tor covariates for the day of the week (DOW), Monday 
through Friday, to account for their effects on absentee-
ism. For all versions of the seasonal mixed effects mod-
els, lag values l = 1, . . . , 15 were considered. The glmr 
function from the lme4 package in R was used to fit the 
aforementioned models [15, 16].

Data from the first full school year available were used 
for training, and for each subsequent school year the 
model was trained on data from all prior years and Sep-
tember of the current year. Refitting the model annually 
allows for improvements in model covariate estimates as 
more data become available. Data from October to the 
reference date of the year of interest were used to raise 
epidemic alerts and evaluate model performance. Days 
with no absenteeism data reported, including weekends, 
were considered as missing values and therefore were 
removed from the analysis [10].

Alert evaluation metrics
A model was considered to generate an alert on day t of 
school year j if the predicted probability of at least one 
laboratory-confirmed influenza case, θtj , was greater 
than a threshold θ . Threshold values between 0.10 and 

(1)
logit(�tj) =�0 + �1xtj + �2x(t−1)j + ... + �l+1x(t−l)j

+ �l+2 sinj(
2�t∗

T ∗
) + �l+3 cosj(

2�t∗

T ∗
) + �j ,

0.60, in increments of 0.05, were considered. The ATQ-
based and FAR metrics were used to select an optimal 
threshold, θ∗ , and lag value, l. Any alerts raised after the 
reference date and before the beginning of the follow-
ing school year were ignored.

The study by Ward et al. (2019) proposed two met-
rics, FAR (referred to as the false alarm rate) and 
accumulated days delayed (ADD), to evaluate the 
respective accuracy and timeliness of alerts raised by 
an epidemic prediction model [10]. In that study, true 
alerts were defined as alerts that are raised within the 
15 calendar day period prior to and including the ref-
erence date, while alerts raised prior to this period 
are considered false alerts [10]. Readers are referred 
to Ward et al. (2019) for details of these evaluation 
metrics, but in brief the FAR for year j was defined as:

where nf  was the number of false alerts raised in school 
year j [10]. Models that produced the smallest average 
FAR and ADD values were favoured, however simultane-
ously optimizing two separate metrics was shown to be 
difficult. Consequently, Ward et al. (2019) prioritized the 
model that had the minimum FAR, and the ADD served 
as a tiebreaker [10]. In Ward et al. (2019) true alerts were 
strictly defined as alerts raised between the reference 
date and 14 days prior, and the optimal alert was exactly 
14 days prior to the reference date [10]. An alert raised 
even one day before the optimal alert day was considered 
to be a false alert, which makes the FAR and ADD met-
rics appear too rigid in defining a true alert. These limita-
tions motivated the development of a metric which can 
account for both accuracy and timeless of raised alerts. In 
this paper, we propose a novel metric, alert time quality 
(ATQ), to provide a gradient approach to optimizing epi-
demic prediction models based on alert timeliness and 
accuracy.

Alert time quality
The proposed ATQ was developed based on the fol-
lowing principles that are relevant specifically to an 
influenza epidemic: (1) an optimal alert is raised 14 
days prior to the reference date, (2) it is preferred that 
an alert is raised during the time interval of one to two 
weeks prior to the reference date, and (3) alerts raised 
marginally before or after the optimal alert are inform-
ative but their timeliness should be penalized in com-
parison to the optimal alert. The ATQ for alert i raised 
in year j was therefore defined as:

(2)FARj =

nf
nf +1 if a true alert was raised

1 if no true alerts were raised,
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where τij was the number of calendar days before the ref-
erence date that the alert was raised. In lieu of strict true 
and false alert definitions, a power function conditional 
on when an alert was raised in relation to the optimal 
alert day ( τopt ) was used to penalize alerts raised prior to 
the optimal day more than equidistant alerts raised after 
the optimal day. Following suggestions from WDGPH, 
an alert raised two weeks (14 days) prior to the reference 
date is considered to be optimal, as this allows sufficient 
time for WDGPH to implement intervention strategies to 
mitigate the spread of disease. Therefore τopt was set to 
14. In addition, the power parameter a was set to 2, as it 
gave a reasonable increase of the penalty applied to alerts 
that are raised within a few days before and after τopt 
which, in discussion with WDGPH, were still deemed 
to be useful alerts. Since the reference date was different 
every year, the maximum possible value of the numerator 
changed every year. Thus, the ATQ was restricted to be a 
value between 0 and 1 by normalizing on a period from 
the optimal alert day, and the period must be reasonably 
wide to cover the difference between the τopt and the τij . 
For this study, the value of k = 1.5 was suggested, result-
ing in a 21 day normalizing period. Consequently, alerts 
raised in the 21 days prior to τopt , which may still be use-
ful to a public health unit, generated a (penalized) ATQ 
value. Alerts raised prior to the (k + 1)τopt = 2.5τopt 

(3)ATQij =

⎧⎪⎪⎨⎪⎪⎩

�
𝜏opt−𝜏ij

k𝜏opt

�2a

if 𝜏ij ≤ 𝜏opt�
𝜏opt−𝜏ij

k𝜏opt

�a

if 𝜏opt < 𝜏ij ≤ (k + 1)𝜏opt

1 if 𝜏ij > (k + 1)𝜏opt

,

period from the optimal alert were considered too early 
for public health officials to effectively implement mitiga-
tion strategies, and were assigned the maximum value of 
1. The ATQ yielded its minimum value of 0 when an alert 
was raised exactly on the optimal day, and increased as an 
alert was raised earlier or later than the optimal day. Vis-
ually, the ATQ embodied these principles by creating a 
valley shaped curve to assess an alert (Fig. 1). Additional 
details of the ATQ are provided in the supplementary 
information (see Supplementary Information).

Model evaluation
The ATQ assesses the quality of a single alert raised. 
In order to evaluate how a statistical model performs 
in general, a model evaluation metric should take into 
account all alerts raised over one or several years. Here, 
we propose the following evaluation metrics based on the 
summary statistics of ATQs over all raised alerts: average 
alert time quality (AATQ), first alert time quality (FATQ), 
and their weighted counter parts. Each evaluation met-
ric is also used as model parameter selection criterion, to 
select model lag, l, and threshold parameter θ∗ . A brief 
algorithm for implementing an ATQ-based approach is 
provided in the supplementary information (see Supple-
mentary Information).

Average alert time quality
The AATQ is defined as the yearly average ATQ value, 
averaged over all J years under consideration. To account 
for cases where there is no alert raised for some years, the 
AATQ is calculated as:

Fig. 1 Alert time quality values corresponding to the time than an alert was raised. Alert times are relative to the number of days prior to the 
reference date ( τij = 0)
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where J is the number of years evaluated and

with ATQij being the ATQ (Eq. 3) for the ith alert raised 
in school year j, and nj is the number of alerts raised in 
school year j.

First alert time quality
In practice, public health units would likely react and 
implement behavioural intervention strategies when the 
first alert is raised, therefore the quality of the first alert 
raised in a given year is crucial. The FATQ evaluates only 
the first alert raised in each year, with subsequent alerts not 
affecting the FATQ value. The FATQ is calculated as:

where J is the number of years evaluated and

with ATQ1j being the ATQ (Eq. 3) of the first alert raised 
in year j.

Weighted AATQ and FATQ
The epidemic prediction model for each year is trained 
using data from all its preceding years, thus prediction 
models fit for later school years have more data available 
than models fit for earlier school years. In the computa-
tion of the AATQ and FATQ, alerts raised in all predic-
tion years are weighted equally. However the epidemic 
prediction model in later school years have more data 
and because of this, could potentially fit the data better 
and have better predictions than models fit for earlier 
school years. To account for this, weighted versions of the 
AATQ and FATQ were developed. The weight applied to 
each years’ prediction is calculated based on the num-
ber of years used in its training set, divided by the total 
number of years to be predicted. For example, the weight 
applied to year j’s prediction is defined as:

(4)
AATQ =

J
∑

j=1

AATQj

J
,

(5)AATQj =

⎧⎪⎨⎪⎩

nj∑
i=1

ATQij

nj
if an alert is raised in school year j

1 if no alerts are raised in school year j,

(6)
FATQ =

J
∑

j=1

FATQj

J
,

(7)FATQj =

{
ATQ1j if an alert is raised in school year j

1 if no alerts are raised in school year j

(8)

wj =
Number of years in epidemic prediction model for year j∑n

i=1
Number of years in epidemic prediction model for year i

,

where n is the total number of prediction years in the 
study. This weight is used to compute the weighted aver-
age alert time quality (WAATQ) and weighted first alert 
time quality (WFATQ) metrics, given by:

and

The model that produces the smallest value of the eval-
uation metrics is selected as the preferred model. The 
quality of alerts raised by models selected using AATQ, 
FATQ, and their weighted counterparts are compared 
graphically to the quality of alerts raised by the model 
selected using the FAR metric proposed by Ward et al. 
(2019) [10]. Additionally, to summarize the timeliness 
of alerts raised over all prediction years, alerts are cat-
egorized as follows: too late (alert raised 0-3 days prior 
to the reference date), slightly late (alert raised 4-6 days 
prior to the reference date), ideal (alert raised 7-14 days 
prior to the reference date), slightly early (alert raised 
15-21 days prior to the reference date), and too early 
(alert raised more than 21 days prior to the reference 
date). For the purposes of this analysis, an acceptable 
alert is defined as an alert raised between 4-21 days prior 
to the reference date, encompassing alerts that are cat-
egorized as slightly early, ideal, and slightly late. Alerts 
raised in this range provide sufficient time for public 
health officials to implement mitigation strategies prior 
to the start of the epidemic, while not being so early in 
the season that residents may not feel cause to follow 
recommendations.

Simulation study
Although the performance of proposed metrics can be 
assessed using the observed yearly data, a more intensive 
simulation study is conducted to thoroughly compare the 
quality of alerts raised by the proposed ATQ-selected 
models to that of the FAR-selected models. In order to 
generate a school absenteeism-based surveillance system, 
we developed a simulation model that consists of three 
sequential parts: 1) a population of individuals is gener-
ated; 2) annual influenza epidemics are simulated over 
the population; 3) probabilistic models are applied to the 
population and epidemic to generate school absenteeism 
and laboratory-confirmed influenza case data. The fol-
lowing sections detail each part of the data simulation.

(9)WAATQ =

J
∑

j=1

wjAATQj

(10)WFATQ =

J
∑

j=1

wjFATQj .
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Population simulation
An 80 x 80 square is used to represent a given study 
region, in this case the WDG region in Ontario, Can-
ada. The region is divided into 16 equally sized square 
subregions, mimicking school catchment areas, to 
allow for heterogeneous population demographic char-
acteristics across the region. For each subregion the 
number of elementary schools and the school size are 
simulated using Gamma(α,β ) distributions. The α and 
β parameters are estimated by fitting gamma distri-
butions to the number of schools within each catch-
ment area ( ̂α = 4.313, β̂ = 3.027 ) and the school sizes 
using the absenteeism data set provided by WDGPH 
( ̂α = 5.274, β̂ = 0.014 ). The number of elementary 
schools within each subregion is drawn from the result-
ant Gamma(4.313, 3.027) distribution and rounded to the 
nearest integer. Similarly, the size of each school is drawn 
from the resultant Gamma(5.274, 0.014) distribution and 
rounded to the nearest integer.

The generated population consists of two subpopula-
tions: (1) households with children, and (2) households 
without children. Household structures are generated for 
both subpopulations using probabilistic models based on 
available demographic information from WDG’s 2016 
Census profile [17]. It is assumed that a household has a 
maximum of five people; within those five people, there 
is a maximum of three children. Subpopulation 1 is gen-
erated according to the distributions of lone or coupled 
parents, number of children by parent type, and age cat-
egories approximated by the WDG Census profile [17]. 
Each household with children would generate a parent 
type, and the number of children. However, since not all 
children within a household are elementary school aged, 
an approximation based on the census age categories is 
used to generate elementary school aged children [17]. 
Therefore the probability of a simulated child within a 
household attending an elementary school was assumed 
to be the proportion of the population under 20 years old 
(child age) that is aged 5 -14 years old (elementary school 
age). For each school, households with children would be 
generated until the schools’ size was achieved. House-
holds with children were assigned to the schools’ corre-
sponding subregion. However, only elementary school 
aged children are included in the absenteeism data. For 
example, if an elementary school in a subregion had a 
simulated size of 300, households with children would 
be generated and assigned to that school until there were 
300 children of elementary school age generated.

After subpopulation 1 is generated, subpopulation 2 is 
then generated based on the distribution of household 
size and the proportion of households without children 
from the WDG Census profile [17]. For each subregion, 
the proportion of households without children is used 

to determine how many additional households without 
children are generated. For example, if the proportion 
of households without children is 50%, and a catchment 
area had 500 households with children, then 500 addi-
tional households without children are generated for 
that subregion. For each of these households, a probabil-
istic model is used to simulate the number of household 
members. Locations of each household was generated 
by complete spatial randomness within the subregions’ 
20 x 20 boundaries. In total, 16 subregion populations 
are generated. Due to the computational cost associated 
with epidemic simulation, approximately a quarter of the 
WDG population, which is about 85,000 individuals rep-
resenting approximately 34,000 households, is simulated 
for illustrative purposes.

Epidemic simulation
Individual level models (ILMs), as outlined in Deardon 
et al. (2010) [18], have been used to model and simulate 
epidemic data. ILMs allow for individual level effects and 
can be used for modelling spatial or contact-based infec-
tions. In our simulation study, a homogeneous spatial 
ILM is used to simulate epidemics in a susceptible, infec-
tious, and removed (SIR) framework, using the epidata 
function in the EpiILM R package [19]. Model param-
eter values are selected based on the typical spread of 
influenza in the WDGPH region, and selected such that 
the resulting infection achieves its peak number of daily 
new infections within a few days of the start of the epi-
demic, and then decreases to no new daily infections over 
a few weeks, with approximately 3-11% of the popula-
tion becoming infected each year [20]. The infectious 
period is set to 4 days [21]. Epidemic curves are visually 
inspected to determine if an influenza epidemic grew and 
decayed reasonably, and unreasonable epidemics are dis-
carded. In total, 100 epidemics (10 years/replicated with 
10 replications) are simulated for our simulation study. 
Additional information on the ILM parameters and their 
values are in the supplemental information (see Supple-
mental Information).

Without loss of generality, we set September 1 to be day 
1 ( t = 1 ) of a given school year. The date the epidemic is 
initiated is generated from a N (45, 152) distribution. A 
mean of 45 days after September 1, which is October 16, 
is used because this day is close to the mean occurrence 
day of the first influenza case observed in the WDGPH 
data. Generated start times of less than 20 days are reas-
signed to 20 days, since in a normal year the influenza 
epidemic is unlikely to begin that early within a school 
year. Epidemics are initiated by randomly infecting two 
individuals from each of the 16 subregions (32 individu-
als in total), with a random infection time that is within 
14 days after the epidemic is initiated. The maximum 
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epidemic length is set to t = 270 days to resemble the 
seasonal influenza epidemic ending by the end of May, 
however since we are primarily interested in the start of 
the epidemic the length of the epidemic is not critical in 
this study.

Laboratory case confirmation and absenteeism system
Laboratory-confirmed influenza and absenteeism 
data sets are generated based on probabilistic models, 
because not all infected individuals seek medical atten-
tion and not all student absences are due to illness. The 
true proportion of individuals infected with influenza 
each year is unknown within the WDG population, and 
thus, so is the percentage of infected individuals that 
receive laboratory confirmation. Therefore, the labo-
ratory confirmation rate is estimated as follows. We 
first estimate the number of individuals within WDG 
that would be infected with influenza using the WDG 
census population size multiplied by the conservative 
assumption of 3% of the population is infected with 
influenza each year [17, 20]. Then, the mean number of 
laboratory confirmed cases reported each year from the 
influenza data set provided by WDGPH is divided by 
the estimated number of infected individuals in WDG 
to obtain the mean proportion of infected individuals 
that receive laboratory confirmation in the region. The 
resultant estimate is about 2% of infected individuals 
receive influenza laboratory confirmation each year. 
The 2% laboratory confirmation rate is spread equally 
across the 4 day infection period, resulting in a 0.5% 
daily probability that an infected individual receives 
laboratory confirmation during their infectious period. 
Simulated laboratory-confirmed influenza cases counts 
are aggregated daily, and a binary variable is generated 
to indicate if at least one laboratory-confirmed case 
occurred on a given day. Reference dates for each epi-
demic are calculated as described in the Influenza data 
set section.

In this study, we considered two simplified scenarios 
for a child to be absent from school: (1) a child did not 
have influenza and was absent, or (2) a child had influ-
enza and was absent. Here, Scenario 1 was considered 
as the baseline absenteeism, comprised of all other 
causes of absences. Since students are unlikely to be 
absent due to influenza illness early in the school year, 
a baseline absenteeism of 5% per day was estimated 
using absenteeism data provided by WDGPH from all 
September months. When a student was infected by 
influenza, it was assumed that there was a 95% chance 
they were absent from school each day until recovered. 
Based on both sources of absenteeism, daily all-cause 
absenteeism percentage was calculated for each school. 

Mean all-cause school absenteeism percentage was 
calculated daily to generate absenteeism data sets, as 
described in Absenteeism data set section.

For the purposes of illustrating the performance of 
the proposed evaluation metric model, the epidemic 
is simulated using a simplified model. Thus, statistical 
models without school year random effects and DOW 
indicators are considered for raising alerts in the simu-
lated data set. A logistic regression model with lagged 
absenteeism and fixed seasonal terms given by:

is used to fit the simulated data. No random effect is 
included in the above model, as data are generated inde-
pendently from year to year, and we assume a closed pop-
ulation such that no infections are from outside of the 
population as the epidemic progresses. All covariates are 
as described in the Epidemic detection models section.

A total of ten replications, each consisting of ten annual 
epidemics, is simulated. For each replication, logistic 
regression models (Eq. 11) are fit to the simulated data of 
each year, and lag and threshold parameters are selected 
for each replication using the proposed evaluation 
metrics. Quality of the alerts raised by ATQ and FAR-
selected models are assessed across the ten replications.

Results
Preliminary data analysis of WDGPH data
Daily average school absenteeism over 88 elementary 
schools and daily counts of the laboratory-confirmed 
influenza cases for WDG over the study period are 
shown in Fig.  2. Among 88 elementary schools, on a 
given day there were between 0 to 40 schools report-
ing absenteeism to WDGPH, with a median of 10 
schools. Throughout the study period, only nine schools 
reported absenteeism on more than 50% of the available 
school days. In total, 1,697 out of 1,746 school days had 
recorded absenteeism data in the study period, based on 
an assumed 194 day school year. There was a mean daily 
all-cause absenteeism of 5.94% year round, whereas for 
all September months the mean was 5.29%. The Spear-
man correlation between laboratory-confirmed influenza 
case counts and mean school absenteeism was 0.371 [10], 
and cross-correlation was highest when there was a six 
day lag between school absenteeism and laboratory-con-
firmed influenza case counts (0.405) [10]. Across all study 
years, epidemic reference dates ranged from late October 
to late January, and occurred most frequently in Decem-
ber (Table 1).

(11)

logit(θtj) =β0 + β1xtj + β2x(t−1)j + ...+ βl+1x(t−l)j

+ βl+2 sinj(
2π t∗

T ∗
)+ βl+3 cosj(

2π t∗

T ∗
),
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Epidemic alerts assessment for WDGPH data
Based on the FAR, the seasonal mixed model with 
lag time l = 11 and threshold θ∗ = 0.25 (Table  2) was 
selected. Figure 2 shows the timing of alerts raised by this 
FAR-selected model, as well as all selected ATQ-based 
models, relative to daily absenteeism and laboratory-con-
firmed influenza cases in WDG. The FAR-selected model 
raised alerts for six out of eight years (Figs. 3 and 4). For 
three years (2013-14, 2014-15, and 2016-17), alerts were 
raised within the acceptable range, and for the remaining 
three years (2010-11, 2011-12, and 2017-18), alerts were 
raised too late by the FAR-selected model.

The seasonal mixed model with lag time l = 15 and 
threshold θ∗ = 0.15 was selected by the AATQ and 
WAATQ (Table  2). This model raised alerts in seven 
out of eight years (Fig. 3), whereas in four years (2010-
11, 2013-14, 2014-15, and 2017-18) the first alerts 
were raised within the acceptable range. The AATQ/
WAATQ-selected model raised more timely first alerts 
than the FAR-selected model in 2010-11 and 2017-18, 
and raised an alert in 2015-16 when the FAR-selected 
model failed to do so. In 2013-14 and 2014-15, the FAR-
selected model produced first alerts closer to the opti-
mal alert day than the AATQ/WAATQ-selected model, 
however the AATQ/WAATQ-selected model still pro-
duced acceptable alerts within these years. There were 
two years in which the AATQ/WAATQ-selected model 
raised alerts too early (2011-12 and 2016-17), of which 
the FAR-selected model raised alerts within the ideal 
range in one year, but raised an alert too late in the 
other.

Using the FATQ, the selected model was the seasonal 
mixed model with lag l = 15 and threshold θ∗ = 0.25 
(Table 2), a larger lag value than the FAR-selected model 
and a larger threshold value than the AATQ-selected 
model. This model raised alerts for six out of eight years 
(Fig.  4). In four of these years (2011-12, 2013-14, 2014-
15, and 2016-17), the first alert was raised within the 
acceptable range. The FATQ-selected model raised first 
alerts with timing better than (2011-12 and 2017-18), or 
equal to (2010-11, 2013-14, 2014-15, and 2016-17) that of 

Fig. 2 Daily average elementary school absenteeism and laboratory‑confirmed influenza cases in WDG based on WDGPH data with alerts raised by 
selected models. Each panel represents a school year. Daily average absenteeism is plotted as grey bars, laboratory‑confirmed influenza case counts 
are overlaid with black bars, and the epidemic reference day is indicated by the dashed orange lines. Coloured squares below the X‑axis represent 
the date an alert was raised by each of the selected models

Table 1 Reference dates for each year of the WDGPH data, 
representing the beginning of each seasonal influenza epidemic. 
A reference date is defined as the date of the second laboratory‑
confirmed influenza case within a seven day period for the first 
time within an influenza season

School Year Reference Date

2008‑09 January 20, 2009

2010‑11 December 14, 2010

2011‑12 January 9, 2012

2012‑13 October 26, 2012

2013‑14 November 27, 2013

2014‑15 December 8, 2014

2015‑16 November 17, 2015

2016‑17 December 15, 2016

2017‑18 December 6, 2017
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the FAR-selected model. In addition, the FATQ-selected 
model generally produced more alerts in these years, 
potentially providing more confidence to public health 
officials in predicting an imminent epidemic.

When using the WFATQ metric, the selected model 
was the seasonal mixed DOW model with lag time 
l = 11 and threshold θ∗ = 0.25 (Table 2). The WFATQ-
selected model raised alerts for six out of the eight 
years (Fig. 5). The WFATQ-selected model raised alerts 
with timing equal to or better than that of alerts raised 
by the FATQ-selected model in later years.

Overall, the performance of a model-based approach 
using either ATQ-based or FAR evaluation metrics is 
much better than that of the current 10% threshold 
approach. As illustrated in Fig.  6, the 10% absenteeism 
threshold approach either failed to raise an alert or raised 
the first alert too late or too early. The AATQ and FATQ-
selected models raised the most first alerts that were 

within the acceptable range, while the FAR and FATQ-
selected models tied for the most first alerts raised within 
the ideal range throughout the eight years (Table  3). 
None of the selected models raised alerts for the 2012-13 
school year. Alerts raised by the WAATQ and WFATQ-
selected models were not included in Fig.  6, since by 
design they do not perform as well as the unweighted 
metrics for earlier school years but may outperform the 
unweighted metrics in the later school years.

Epidemic alerts assessment for the simulation study
For illustration purposes, the ATQ of alerts raised by 
the AATQ and FAR-selected models for one simulated 
replication are displayed in Fig.  7. For this particular 
replication, the AATQ and FATQ metrics selected the 
same model lag and threshold parameters, however 
this was not consistent across replications. Table 4 and 
Fig.  8 summarize the frequency of first alerts raised 

Fig. 3 Alert time comparison between the AATQ and FAR‑selected models based on WDGPH data. Alert times are relative to the reference date 
( τ = 0 ). Each school year is represented in its own panel. The vertical black dashed line represents the optimal alert time ( τ = 14 ). The vertical grey 
dashed lines represent the boundaries for acceptable alerts ( τ = 21 and τ = 4)

Table 2 Models selected by each metric based on the WDGPH data, and its lag and threshold values. Bold values indicate the 
minimum value of the given metric

Model Parameters FAR AATQ FATQ WAATQ WFATQ

Seasonal Mixed l = 11, θ∗ = 0.25 0.3125 0.3545 0.3208 0.3512 0.3123

Seasonal Mixed l = 15, θ∗ = 0.15 0.6043 0.2171 0.3312 0.1694 0.2912

Seasonal Mixed l = 15, θ∗ = 0.25 0.4583 0.3186 0.2923 0.3224 0.2912

Seasonal Mixed, DOW l = 11, θ∗ = 0.25 0.3750 0.3351 0.3021 0.3227 0.2747
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within each time window for models selected using 
ATQ-based and FAR evaluation metrics over all repli-
cations. Overall trends of the simulation study showed 
that the first alert raised by AATQ and FATQ-selected 
models were often more timely than the first alert raised 

by the FAR-selected model. Additionally, the FAR-
selected model failed to raise an alert or raised the first 
alert too late more frequently than all ATQ-selected 
models (Fig.  8, Table  4). The unweighted ATQ-based 
and FAR-selected models raised their first alert within 

Fig. 4 Alert time comparison between the FATQ and FAR‑selected models based on WDGPH data. Alert times are relative to the reference date 
( τ = 0 ). Each school year is represented in its own panel. The vertical black dashed line represents the optimal alert time ( τ = 14 ). The vertical grey 
dashed lines represent the boundaries for acceptable alerts ( τ = 21 and τ = 4)

Fig. 5 Alert time comparison between the FATQ and WFATQ‑selected models based on WDGPH data. Alert times are relative to the reference date 
( τ = 0 ). Each school year is represented in its own panel. The vertical black dashed line represents the optimal alert time ( τ = 14 ). The vertical grey 
dashed lines represent the boundaries for acceptable alerts ( τ = 21 and τ = 4)
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the ideal range more frequently than in any other time 
category. Using the conventional 10% absenteeism 
threshold method, no alerts were raised prior to the 
first simulated influenza case for any of the replications. 
Overall, the FATQ-selected model had the highest pro-
portion of first alerts raised within the acceptable time 
range (53%). The proportion of first alerts raised within 
the acceptable time range was comparable between 
the AATQ and FAR-selected models, at 45% and 47% 
respectively. However, the AATQ-selected model had 
the most first alerts raised within the ideal time range 
(27%), but also raised first alerts too early more fre-
quently than the models selected by FAR and FATQ. 

Generally, no alerts were raised, or the first alert was 
raised outside of the acceptable time range, in school 
year 2, evidenced by higher mean and median metric 
values than those in later school years regardless of the 
model selection criterion used (Table 5).

Comparison between the weighted and unweighted 
ATQ-selected models is not suggested for overall years 
since both the weighted and unweight method do not 
perform well for earlier school years due to smaller sam-
ple sizes in training the prediction models. Instead, the 
quality of alerts raised by the weighted and unweighted 
ATQ-based methods for the last five years of each rep-
lication are compared and summarized in Table 5. The 

Fig. 6 First alert categorization frequencies based on WDGPH data, under selected models. Alerts are categorized as follows: too late (alert raised 
0‑3 days prior to the reference date), slightly late (alert raised 4‑6 days prior to the reference date), ideal (alert raised 7‑14 days prior to the reference 
date), slightly early (alert raised 15‑21 days prior to the reference date), and too early (alert raised more than 21 days prior to the reference date). An 
acceptable alert is an alert categorized as slightly late, ideal, or slightly early

Table 3 First alert categorization frequencies based on WDGPH data, under selected models

Optimized Metric No Alert Too late 0-3 days 
before ref.

Slightly late 4-6 
days before ref.

Ideal 7-14 days 
before ref.

Slightly early 15-21 
days before ref.

Too early 22+ 
days before 
ref.

10% Threshold 5 2 0 0 0 1

FAR 2 3 0 2 1 0

AATQ 1 1 1 0 3 2

FATQ 2 2 0 2 2 0

WAATQ 1 1 1 0 3 2

WFATQ 2 2 0 3 1 0
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WAATQ-selected model had a lower mean and vari-
ance of AATQ j value in three of the last five years of 
the simulation study when compared to the unweighted 
AATQ-selected model. The WFATQ-selected model 
had a lower mean FATQ j in three of the last five years 
and the variances were consistently smaller for those 
selected by WFATQ models. This shows that models 
selected by weighted metrics generally outperform their 
unweighted counterparts in later years.

Discussion
In this study, we proposed a novel metric, ATQ, to simul-
taneously evaluate the accuracy and timeliness of alerts 
raised by a school absenteeism-based syndromic surveil-
lance system. With the proposed ATQ for each raised 
alert, the summary statistics of the ATQ such as AATQ 
and FATQ were proposed to be used as model selection 

criteria when historical data (previous years’ data) are 
available for training a prediction model to raise an alert. 
These metrics were shown to be useful and practical for 
selecting a model that raised an alert for an approach-
ing seasonal influenza epidemic in a timely manner, and 
were shown to generally select a model that raised more 
quality alerts than the FAR-selected model or the 10% 
absenteeism threshold method. A simulation study was 
conducted with two primary objectives: to investigate 
the performance of the proposed metrics in a simulated 
data set, which was not subject to the inherent uncertain-
ties commonly found in observed data, and to develop an 
infectious disease/school absenteeism simulation frame-
work which can be adopted for simulation studies associ-
ated with other infectious diseases and regions.

Measures such as sensitivity and specificity have 
commonly been used to evaluate the performance of 

Fig. 7 Alert time comparison between the AATQ and FAR‑selected models based on one simulated replication. Alert times are relative to the 
reference date ( τ = 0 ). Each school year is represented in its own panel. The vertical black dashed line represents the optimal alert time ( τ = 14 ). 
The vertical grey dashed lines represent the boundaries for acceptable alerts ( τ = 21 and τ = 4)

Table 4 First alert categorization proportions based on simulated data, under selected models over 10 replications of 9 prediction 
years

Model No alert Too late 0-3 days 
before ref.

Slightly late 4-6 days 
before ref.

Ideal 7-14 days 
before ref.

Slightly early 15-21 
days before ref.

Too early 22+ 
days before 
ref.

10% Threshold 1.00 0.00 0.00 0.00 0.00 0.00

FAR 0.21 0.19 0.13 0.24 0.09 0.13

AATQ 0.18 0.17 0.08 0.27 0.11 0.20

FATQ 0.19 0.14 0.12 0.24 0.17 0.13

WAATQ 0.18 0.16 0.11 0.20 0.13 0.22

WFATQ 0.20 0.18 0.13 0.19 0.13 0.17
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surveillance systems [22]. These measures are usu-
ally combined into a single metric characterized by the 
area under the receiver operating characteristic (ROC) 
curve, to be used for comparisons across models. How-
ever, these measures do not capture the timeliness of an 
alert, which is crucial for surveillance [22]. Kleinman 
and Abrams extended the ROC curve to include time-
liness [23], but this extension defines a true alert as the 
one that overlaps with an epidemic, and measures time 
between the beginning of the epidemic and the first alert. 
That means their defined true alert will not occur before 
the epidemic start and therefore loses the sense of being 
an early warning alert. In contrast, our proposed ATQ 
would help to train a more precise epidemic detection 
model using previous years’ reported influenza cases and 
school absenteeism data for raising an alert prior to when 
the epidemic would be declared. This approach provides 

a practical solution to public health agencies for laying 
out timely interventions in order to slow the epidemic 
or reduce the number of infections. To the best of our 
knowledge, there are no other metrics available yet that 
can evaluate the accuracy and timeliness of alerts simul-
taneously, and prior to the start of an epidemic.

While the ATQ-based metrics outlined in this study are 
successful in selecting an epidemic detection model that 
raises higher quality alerts than the FAR-selected model, 
there are limitations. Since the AATQ averages all alerts 
within a year, in the extreme case, for example, when an 
alert is raised everyday until the epidemic reference date 
in a given year, the AATQ would produce a value less than 
1 (the maximum or worst value of AATQ) for that year 
despite the poor specificity of this model. The FATQ does 
not have the same limitation since its calculation uses the 
first alert raised in a given year, and therefore would give 

Fig. 8 First alert categorization frequencies based on simulated data, under selected models. Each of the 10 replications include 9 prediction years. 
Alerts are categorized as follows: too late (alert raised 0‑3 days prior to the reference date), slightly late (alert raised 4‑6 days prior to the reference 
date), ideal (alert raised 7‑14 days prior to the reference date), slightly early (alert raised 15‑21 days prior to the reference date), and too early (alert 
raised more than 21 days prior to the reference date). An acceptable alert is an alert categorized as slightly late, ideal, or slightly early

Table 5 Evaluation metric measures of variability for each year of the simulated data, under selected models over 10 replications of 9 
prediction years

Model Measure Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

FAR j Mean 0.6973 0.2250 0.2300 0.5875 0.3625 0.3911 0.2500 0.3500 0.3395

Variance 0.1590 0.1451 0.1512 0.2562 0.2276 0.2552 0.1806 0.2250 0.2104

AATQ j Mean 0.4218 0.1656 0.1707 0.3894 0.2898 0.2250 0.2671 0.3649 0.1335

Variance 0.1740 0.0890 0.0876 0.1793 0.1466 0.0801 0.1522 0.1933 0.0115

WAATQ j Mean 0.4310 0.3623 0.1761 0.3996 0.1995 0.3058 0.0780 0.3809 0.1254

Variance 0.1790 0.1959 0.0867 0.1729 0.0857 0.1404 0.0032 0.1839 0.0134

FATQ j Mean 0.5699 0.2607 0.1428 0.5086 0.3322 0.3375 0.1510 0.3340 0.2749

Variance 0.2207 0.1760 0.0946 0.2211 0.2141 0.2127 0.0939 0.2134 0.1576

WFATQ j Mean 0.5852 0.4114 0.3669 0.4679 0.2046 0.2583 0.1886 0.3534 0.1760

Variance 0.2035 0.2257 0.2216 0.1851 0.1166 0.1570 0.0891 0.2029 0.0981
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its maximum value of 1 to penalize the given model. In 
addition, the AATQ would favour an epidemic detection 
model that raises one alert at the optimal time over any 
other model, including an alternative case that a model 
raises an alert every day during the ideal range. In the case 
that the model raises an alert every day within the ideal 
range, these alerts intuitively provide more confidence to 
public health agencies to implement interventions. How-
ever, in terms of quality assessment, raising multiple alerts 
results in non-zero ATQ for those not raised on the opti-
mal day and thus increases the AATQ. With this limita-
tion, the AATQ would favour the model that produced 
one single alert at the optimal time. However based on our 
study results, subsequent alerts often follow shortly after 
the initial alert and multiple alerts raised after the optimal 
time would increase the AATQ no matter what.

When analyzing the WDGPH data, no selected mod-
els were successful in raising an alert for the 2012-13 
school year. Of all the years included in our data, the 
2012-13 school year had the earliest epidemic reference 
date (October 26, 2012; Table  1), and there were only 
two preceding school years’ data available to train the 
detection model for that year. It is not surprising that 
the trained model failed to detect the incoming epi-
demic when the epidemic started unusually early, and 
there was limited training data. Similar results were 
found in the simulation study, where the models trained 
by only the first year and the September of the second 
year’s data failed to detect the start of the epidemic or 
raised poor quality alerts in the second year. The qual-
ity of alerts was improved for later years in which there 
were more preceding school years’ data included for 
training the detection models.

The quality of absenteeism data also plays an impor-
tant role in training models for raising high quality 
alerts. The absenteeism data provided by WDGPH 
relied on the voluntary completion of the online forms 
filled by schools in the UGDSB that serves the WDG 
region. Only 5 out of 88 participating elementary 
schools consistently reported absenteeism informa-
tion over the entire study period, leaving a substantial 
amount of missing data. Since daily absenteeism was 
averaged across all reporting schools, whether or not 
an alert would be generated would depend on the loca-
tion of the reporting schools and might not be reflec-
tive of the whole region. For example, if initial influenza 
infected cases occurred in Wellington county but only 
schools within Guelph provided absenteeism data, the 
resulting alert might be raised too late for the whole 
WDG region. To enable reliable school absenteeism-
based surveillance, it is important for all or most area 
schools to consistently report daily absenteeism data. 
Reducing the amount of missing data would improve 

the model fitting and possibly allow for a more accu-
rate selection of an epidemic detection model for the 
entire region. This is particularly true for characterizing 
the baseline absenteeism in the trained models, such 
that the trained model would have a higher sensitivity 
to detect unusual absenteeism patterns due to influenza 
illness. Our simulation study was based on a scenario 
with no missing data, more closely mimicking a sys-
tem with mandatory absenteeism reporting, although 
in reality, school absenteeism can only be collected on 
school days and thus will always be missing weekends 
and holidays. The difference in data quality, combined 
with an additional year of data and replications of a ten 
year study period, resulted in a more consistently better 
performance of the ATQ-based metrics over the FAR 
approach. This emphasizes the need for good quality 
absenteeism and influenza data over multiple years for 
training a model that raises better quality alerts using 
the ATQ-based metrics. However despite this discrep-
ancy, both the WDGPH study and the simulation study 
led to similar results in general.

WDG is a predominantly rural region, with the excep-
tion being the City of Guelph, a relatively small area of 
WDG where approximately half of the region’s total 
population is located [17, 24]. Due to the wide spa-
tial dispersion of the population, and of schools, in the 
rural areas, alerts raised by the influenza surveillance 
system may only pertain to a specific area of the greater 
region. Thus, if spatial parameters are incorporated into 
the epidemic detection models, localized rather than 
generalized alerts can be raised. While spatial locations 
of reporting schools were not provided for confidential-
ity reasons, school catchment area identifiers could be 
obtained without loss of anonymity, and might provide 
a suitable spatial approximation for localized epidemic 
detection improvement. However, in this study there 
was insufficient data to study catchment area alerts due 
to the small number of consistently reporting schools. 
Future work could incorporate catchment areas into the 
modelling when more complete data are available. Fur-
thermore, with those data, our simulation model could 
be modified to generate data that incorporates catchment 
area information to evaluate the performance of selected 
models in terms of raising localized alerts. Finally, the use 
of a seasonal logistic regression model does not directly 
account for any spatial or spatiotemporal dependence 
between disease cases. The year-varying random effect 
included in this model will, to some extent, indirectly 
account for infections from outside the region or other 
unknown sources of variability. However, incorporating 
a more specific spatiotemporal component into the sea-
sonal logistic regression model to directly account for 
these effects should be investigated in future work.
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The simulated absenteeism and influenza laboratory 
confirmation system might not have been able to fully 
capture the dynamics of a real influenza epidemic. For 
example, studies have shown that students are more likely 
to be absent on Mondays and Fridays, and that school 
absence episodes often last a single day [25]. Addition-
ally, the level of influenza transmission varies between 
weekdays and weekends [26]. Thus, a more refined simu-
lation procedure to account for this variation by days of 
week may help to generate more realistic absenteeism 
data. Finally, our simulation study was based on the col-
lective estimates of population parameters, such as the 
absenteeism rate and the rate at which individuals seek 
medical attention, that were specific to the WDG popula-
tion. As such, the results of this study are specific to the 
WDG region and the spread of influenza. Extending the 
approach proposed here to another public health unit 
and/or a different infectious disease may result in differ-
ent preferred metrics on which to optimize the proposed 
model, appropriate to a particular health unit’s objectives 
or the corresponding disease dynamics. Our simulation 
model can be applicable to generate data that are suitable 
for other regions or diseases by using estimates of param-
eters from the respective regions or disease components. 
Future work could include a thorough sensitivity analysis 
of the proposed metrics using simulation studies based 
on populations from different public health units with 
different population characteristics, or different infec-
tious diseases with varying disease dynamics.

Based on the results of the analysis of both the real data 
and the simulated data in this study, we believe that the 
proposed ATQ metric is suitable to evaluate accuracy 
and timeliness of an alert raised by a given school absen-
teeism surveillance system for influenza and other respir-
atory virus activity. For the WDG region, we recommend 
the selection of a model that minimizes the FATQ. This 
approach raised the first alert within the acceptable time 
range most frequently in both the real data and simula-
tion study. It is also suggested that the selected model, 
and its parameters, be updated annually to incorporate 
yearly influenza and school absenteeism data. In addition, 
our proposed ATQ metric can be modified to be used for 
other seasonal infectious diseases such as COVID-19, 
if that disease ultimately becomes seasonal, or it can be 
adapted for use in a different public health region.
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