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Abstract 

Background The COVID-19 pandemic has highlighted the role of infectious disease forecasting in informing public 
policy. However, significant barriers remain for effectively linking infectious disease forecasts to public health deci-
sion making, including a lack of model validation. Forecasting model performance and accuracy should be evaluated 
retrospectively to understand under which conditions models were reliable and could be improved in the future.

Methods Using archived forecasts from the California Department of Public Health’s California COVID Assessment 
Tool (https:// calcat. covid 19. ca. gov/ cacov idmod els/), we compared how well different forecasting models predicted 
COVID-19 hospitalization census across California counties and regions during periods of Alpha, Delta, and Omicron 
variant predominance.

Results Based on mean absolute error estimates, forecasting models had variable performance across counties and 
through time. When accounting for model availability across counties and dates, some individual models performed 
consistently better than the ensemble model, but model rankings still differed across counties. Local transmission 
trends, variant prevalence, and county population size were informative predictors for determining which model 
performed best for a given county based on a random forest classification analysis. Overall, the ensemble model per-
formed worse in less populous counties, in part because of fewer model contributors in these locations.

Conclusions Ensemble model predictions could be improved by incorporating geographic heterogeneity in model 
coverage and performance. Consistency in model reporting and improved model validation can strengthen the role 
of infectious disease forecasting in real-time public health decision making.
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Background
In public health, forecasting has been used to predict 
infectious disease dynamics for a variety of diseases 
including influenza, dengue fever, Ebola virus disease, 
Zika fever, and most recently COVID-19, which has high-
lighted the importance of infectious disease modeling to 

help inform public health decision making [1]. Never-
theless, significant barriers remain for effectively linking 
infectious disease forecasts with public health decision 
making including a lack of model standardization and 
validation, and difficulty in successfully communicating 
model complexity and uncertainty [2]. Moreover, public 
health practitioners may need different outcomes or indi-
cators than what forecast models provide [2, 3].
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In June 2020, as part of the COVID-19 response, 
the California Department of Public Health’s (CDPH) 
COVID Modeling Team launched the California Com-
municable diseases Assessment Tool (CalCAT) to com-
pile available COVID-19 models, mostly from academic 
groups, to inform policy and public health action [4]. Cal-
CAT provides nowcasts (R-effective estimates), forecasts 
(short-term predictions for hospitalizations, ICU admis-
sions, and deaths), and longer-range scenario models for 
a variety of COVID indicators at the state, regional, and 
county scales. Some contributors are national, forecast-
ing for all states, while others focus only on California 
and may not be publicly available elsewhere (Table  1). 
The models on CalCAT have been used throughout the 
COVID-19 pandemic to evaluate current transmission 
trends and prospective hospital and intensive care unit 
capacity. This information combined with other evi-
dence and policy considerations has helped to inform the 
implementation of stay-at-home orders and statewide 
mask mandates (e.g., reinstating a mask mandate during 
the emergence of Omicron/BA.1). In addition, models 
combined with other data streams were used to inform 
metrics for the Blueprint for a Safer Economy includ-
ing the nation’s first health equity metric and to support 
planning for vaccine allocation and distribution [5].

During the COVID-19 pandemic response, many 
California local health jurisdictions communicated the 
importance of forecasts focused on the relevant scale of 
decision making (e.g., county- vs. state-level forecasts) 
because there was significant geographic heterogeneity 
in COVID-19 outcomes at regional and local levels [9]. 
A better understanding of how forecasting models have 
captured these geographical heterogeneities could help 
inform local public health decision making during future 
COVID-19 waves and enable local health jurisdictions 

to employ models judiciously given proven past perfor-
mance. Lessons learned from COVID-19 forecasting 
efforts can also be applied to future modeling for other 
diseases including influenza.

We retrospectively evaluated archived forecasting pre-
dictions from CalCAT for models that consistently pro-
vided county-level hospitalization census predictions 
across a year long period from February 1, 2021 to Feb-
ruary 1, 2022 (Table  1). Hereafter, we will use hospital 
census to refer to the number of patients currently hos-
pitalized with confirmed COVID-19 for a given county 
and date. To explore the effects of COVID-19 variants 
on model performance within that period, we also com-
pared forecasting model accuracy during three phases 
of the COVID-19 pandemic at the county and regional 
level in California (Fig. 1 A-C) with different variant pre-
dominance: Alpha (April 22- June 1, 2021), Delta (June 
21—September 1, 2021), and Omicron (December 21, 
2021—February 1, 2022). These periods also differed 
in their hospitalization burden (Fig.  1A) and epidemic 
growth rates (Fig. 1C).

Methods
Multiple methods exist for measuring epidemic forecast 
accuracy including metrics that evaluate specific point 
estimates and uncertainty [10]. When full predictive esti-
mates are available, metrics like the logarithmic score or 
continuous ranked probability score (CRPS) provide con-
text for probabilistic models’ predictions and uncertainty. 
When forecasts are provided in quantile or  interval for-
mats, the weighted interval score (WIS) is a potential 
alternative [10]. Since not all models incorporated into 
CalCAT provided full predictive or interval estimates, 
or did so with different reporting standards, we focused 
on the median point estimates (50th percentile) from 

Table 1 Constituent models providing county-level hospitalization census predictions that are archived on CalCAT and included in 
the analysis

Model Forecast 
update 
frequency

Forecast horizon Methods/Approach Documentation

Columbia Weekly Up to 6 weeks County level metapopulation model [6]

UCSF, COVID NearTerm Daily 2–4 weeks Bootstrap-based method based on an autoregressive model [7]

UCB LEMMA Daily Up to 4 weeks SEIR compartmental model with parameters fit using case series data 
of COVID-19 hospital and ICU census, hospital admissions, deaths, 
cases and seroprevalence

[8]

CDPH Simple Growth Daily Up to 4 weeks Assumes new cases grow exponentially according to the rate given by 
the latest ensemble R-effective. Assumes a fixed severity and average 
length of stay to generate hospitalizations

[4]

CalCAT Ensemble Daily Up to 4 weeks The ensemble forecast takes the median of all the forecasts available 
on a given date and fits a smoothed spline to the trend

[4]

CA Baseline Daily Up to 4 weeks Retroactive 7-day rolling average mean of past hospitalization values Methods
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forecasting models for hospital census at the county 
scale. In addition to these models, we retroactively cre-
ated a baseline California forecast that projected for-
ward the 7-day rolling mean from the prior week. Each 
forecast has the following properties: (1) model (m) : the 
organization or group issuing the forecast (Table  1); (2) 
location j  : the geographic location for which a forecast 
was issued (in this case, at the county-level): (3) publica-
tion date (i) : the date that the forecast was displayed on 
CalCAT; and (4) target end date (k) : the future forecast 
horizon date for which the prediction was made.

We utilized mean absolute error (MAE) and rela-
tive error at the 7-, 14-, and 21-day forecast horizons to 
evaluate the accuracy of these point estimates. To better 
compare across counties with different population sizes, 
we normalized both error types by the median hospital 
capacity of each county (14-day horizon results are high-
lighted in the main text; the remaining forecast horizons 
are provided in the Supporting Information). From the 
MAE scores, we computed a standardized ranking score 
for every forecasted observation relative to other models 
issuing a prediction for that same publication date and 

Fig. 1 Time courses of (A) California COVID-19 hospitalization census, B variant prevalence, C statewide R-effective estimate, and D California 
health officer regions. The period displayed for panels A-C corresponds to the complete period of analysis February 1, 2021-February 1, 2022 used 
for the pairwise tournament and random forest analyses. Shaded regions for panels A:C correspond to the dates of analysis for the three variant 
predominant periods: Alpha, Delta, and Omicron
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location [11]. In addition, we also conducted pairwise 
tournaments of model performance to control for the 
frequency of model participation. Finally, using a classi-
fication regression approach, we explored which county-
level epidemiological and socio-economic covariates 
could help explain the “winning” model for a given loca-
tion and date based on the lowest MAE scores for a given 
forecast horizon.

County results are grouped by health officer regions, 
which are contiguous groupings of 58 counties used for 
health mandates in California (Fig.  1D): Association of 
Bay Area Health Officers (ABAHO); Greater Sacramento 
Region Health Officers (GSRHO); Rural Association of 
Northern California Health Officers (RANCHO); San 
Joaquin Valley Consortium (SJVC); and Southern Cali-
fornia (SCAL). Some counties do not have major hos-
pitals and therefore lack forecasting predictions, actual 
numbers of hospitalizations, or both. For this reason, 
Alpine, Sierra, and Sutter Counties are not included in 
the analyses that follow.

Mean absolute error
The raw mean absolute error (MAE) for each publication 
date i with associated target end dates k is calculated as: 
1
N

∑i+N
k=i

∣∣xi,k − x̂k
∣∣ where N  is the number of days into 

the future that the forecast is made, xi,k is the prediction 
made on publication date i for target end date k and x̂k is 
the actual observed value for a given target end date [11]. 
We then standardized the MAE by h , the median non-
surge hospital capacity of a given county:  MAE

h
.100

Median hospital capacity was chosen for standardi-
zation because the hospital capacity for facilities, and 
aggregated for counties, changes through time based on 
staffing and other factors. Note that not all model fore-
casts were available for all counties or all dates. A model 
only received an MAE score for a given publication date 
if it had predictions available for the target end dates of 
interest (e.g., to receive a 7-day MAE score, a model must 
have made predictions for 1–7 days ahead of the publica-
tion date). Here we used CA-state specific data [12] for 
post-hoc evaluation, whereas many model teams may 
be relying on other data sources (e.g., U.S.  Department 
of Health and Human Services) for fitting or calibration.

Relative error
The relative error for each publication date i with 
associated target end dates k is calculated as: 
1
N

∑i+N
k=i

(
xi,k − x̂k

)
 where N  is the number of days into 

the future that the forecast is made, xi,k is the prediction 
made on publication date i for target end date k and x̂k 
is the actual observed value for a given target end date 
[11]. We then standardized the relative error by h , the 

median non-surge hospital capacity of a given county: 
relative error

h
.100

Therefore, a positive relative error corresponds to a 
model overestimating the hospital census, while a nega-
tive relative error corresponds to an underestimation.

Standardized ranking score
For each publication date i and location j, we calculated a 
standardized rank for every available model m based on 
its associated MAE: srm,i,j = 1−

rm,i,j−1

ni,j
 where rm,i,j is the 

ranking of the MAE of model m out of the n other models 
that made predictions for publication date i and location 
j (adapted slightly from [11]). Thus, for a given publica-
tion date i and location j , the highest possible standard-
ized ranking score for any given model is 1 and the lowest 
is the inverse of the lowest possible ranking 

(
1/ni,j

)
 . Mod-

els not participating for a given publication date i and 
location j receive a zero, and thus, are penalized for lack 
of coverage.

Pairwise tournament
To conduct a pairwise tournament, we calculated a rela-
tive MAE for each pair of models m and m′ : 
θm,m′ = median

{
MAE(m; i,j,k)
MAE(m′; i,j,k)

}
 where θm,m′ is the median 

of the ratio of the simultaneously available MAE scores 
for model m to model m′ with shared publication dates i , 
target end dates m , and locations j [13]. Importantly, the 
common locations, publication dates, and observation 
dates may differ for each pair of models m and m′ . This 
approach varies slightly from some previous examples, as 
the order of operations is scale then aggregate rather than 
aggregate then scale [11, 14].

An overall performance score of a given model, m is 
then calculated as the geometric mean of all relative 
MAE scores: θm =

(∏M
m′=1 θm,m′

)1/M
 where M is the 

total number of all models available for comparison. At 
the county level for counties with smaller hospital capaci-
ties, there was a non-trivial probability of certain models 
achieving an MAE of zero, which leads to relative MAE 
scores of zero or infinity depending on the order of com-
parison. To eliminate these irregularities in the pairwise 
comparisons, we excluded counties with median non-
surge hospital capacities ≤ 25 (i.e., Calaveras, Lassen, 
Mariposa, Modoc, Mono, San Benito, and Trinity).

Random forest classification analysis
To explore whether the model with the lowest MAE 
score for a given location and observation date could be 
explained by county-specific epidemiological or socio-
economic factors, we conducted a random forest clas-
sification analysis. Random forest analysis is a recursive 
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partitioning method that improves classification accuracy 
by synthesizing the predictions from many classification 
trees [15, 16]. The response variable (i.e., classification 
label) was the best performing model for a given county 
and date combination based on the lowest MAE score of 
the available models. We explored the covariates (i.e., fea-
tures) of: progressive vaccination coverage at the county 
level, county-level R-effective, 7-day change in  county-
level R-effective, variant prevalence at the health officer 
region level [17], county population size, percent of 
county residents in poverty (2019), percent unemploy-
ment (2020), median income (2019), five-year average 
percentage completing college (university degree) (2015–
2019), and 2013 Rural–Urban Continuum code. All soci-
oeconomic variables were taken from U.S. Department 
of Agriculture Economic Research Service county-level 
data sets [18]. For pre-processing, data were centered 
and scaled using the caret package [19]. For model train-
ing and tuning, 70% of original data was used with K-fold 
validation (four-fold, repeated four times). The final accu-
racy of the random forest classification models were 61% 
with mtry = 7, 66% with mtry = 7, and 68% with mtry = 7 
for 7, 14, and 21 day forecast horizons respectively.

Data and code availability
The forecasts and R-effective values analyzed in this 
paper are available from CalCAT [4]. California-specific 
hospitalization data is available on the California Open 
Data Portal [12]. Because of reporting delays and backfill-
ing, datasets used in the analysis may represent a snap-
shot of what was available at that point in time. All data 
and code used for analysis and figure generation is avail-
able in the public repository: https:// doi. org/ 10. 5281/ 
zenodo. 78512 80. Analyses were performed in R (v 3.6.0) 
[20].

Results
Model performance varied across locations 
and under different periods of variant predominance
Model performance was heterogeneous across counties 
and during different periods of variant predominance 
(Figs. 2A, 3A and 4A), in part reflecting that the number 
of models available for a given publication date and loca-
tion varied through time; fewer models were available 
during the Omicron variant period and for less populous 
health officer regions such as RANCHO (Supplemen-
tary Figures 3, 11, 15). For example, in Trinity County – 
one of California’s least populous counties – the Simple 
Growth model had the lowest 14-day normalized MAE 
for most forecast publication dates during the Alpha 
and Omicron predominant periods (Figs.  2A  and  4A), 
whereas the Columbia model had the lowest 14-day nor-
malized MAE during the Delta period (Fig.  3A). In San 

Diego County, California’s second most populous county, 
the LEMMA model had the lowest 14-day normalized 
MAE during the Alpha period (Fig. 2A), and the COVID 
NearTerm model had the lowest 14-day MAE for the 
most days during Delta and Omicron periods (Fig.  3A 
and  4A). Overall, the Simple Growth model performed 
particularly well in the RANCHO region during the 
Omicron period as demonstrated by a lower 14-day MAE 
for many counties in that region (Fig. 4A). The LEMMA 
model had the lowest 14-day MAE across many regions 
during the Omicron period on or after January 13, 2022 
(Fig. 4A). In general, the range of the relative error distri-
butions increased with longer time horizons and during 
the Omicron period (Supplementary Figs.  1–2). During 
the Omicron period, most relative error distributions 
were right skewed with median relative error values less 
than zero, indicating a tendency for underprediction, but 
a non-zero probability of sizeable overprediction (Sup-
plementary Fig. 1).

The sum of the standardized rank score (�srm,i,j) in 
each county, j, rewards both performance (model accu-
racy) and frequent participation (model coverage). Dur-
ing the Alpha period, the LEMMA model had the highest 
score in 20/55 counties and, the Ensemble model was a 
close second with the highest score in 17/55 counties 
(Fig.  2B). During the Delta period, the Ensemble model 
had the highest score in 21/55 counties (Fig. 3B). During 
the Omicron period, the Ensemble model had the highest 
score in 22/55 counties, and the Simple Growth model 
was a close second with 20/55 counties (Fig. 4B).

The density distributions of standardized rank 
(
srm,i,j

)
 

allow for comparison of model performance while con-
trolling for frequency of model participation (Figs. 2C, 3C 
and  4C). Although COVID NearTerm did not have the 
highest sum of the standardized rank score in any coun-
ties, it had the highest median standardized rank score 
during the Alpha and Delta periods (Figs.  2C and  3C). 
The LEMMA model had the highest median standard-
ized rank score during the Omicron period (Fig.  4C). 
The same pattern of ranking was present for 7-day MAE 
(Supplementary Figs. 4–6). For 21-day MAE, the COVID 
NearTerm model had the highest median standardized 
rank score during the Alpha and Omicron periods (Sup-
plementary Figs. 16 & 18), while the LEMMA model had 
the highest median rank scores during the Delta period 
(Supplementary Fig. 17).

When controlling for participation, some models 
outperformed the ensemble, but pairwise model rankings 
varied across counties
When matching across all locations and all obser-
vation dates, two models– COVID NearTerm and 

https://doi.org/10.5281/zenodo.7851280
https://doi.org/10.5281/zenodo.7851280
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LEMMA– performed better in pairwise comparisons 
relative to the Ensemble model for 14-day MAE (Fig. 5A 
& B). However, pairwise rankings were quite variable 
when disaggregated by county and also highlighted the 
differences in coverage and availability across locations 

for different models (Fig. 5C). For example, although the 
Simple Growth model came fourth in the overall pairwise 
ranking (Fig. 5A), it came first in twelve individual coun-
ties. Similarly, the Columbia model came last in the over-
all pairwise ranking (Fig.  5A) and generally performed 

Fig. 2 Forecasting accuracy results at the county level during the Alpha wave in California as measured by mean absolute error (MAE). A Heat 
map of the best daily performing model for a given prediction date as measured by 14-day MAE. Each cell in the heat map corresponds to a 
normalized MAE calculated for the day that a model forecast was published. Counties are grouped into panels by California health officer regions. B 
A summary map of California where the color of the county corresponds to the model with the highest sum of the standardized rank score for that 
period (�srm,i,j) . Note that by using the summation of the standardized ranking score, models are penalized for lack of participation. C A density 
distribution of the standardized rank score  (srm,i,j) that depicts the median (dashed) and mean (solid) as vertical lines for each model distribution. A 
standardized rank score of one indicates that a model came in first relative to other participating models for a given date and location, values closer 
to zero indicate that a model had a lower ranking compared to other participating models, and a value of zero corresponds to no participation
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worse than average (θm > 1) , but performed better than 
average (θm < 1) in Plumas and Inyo counties (Fig. 5C).

Overall pairwise rankings were robust to forecast hori-
zon length for the complete analysis period (Supplemen-
tary Figs.  5A & 17A). However, overall pairwise rankings 

were more unstable during specific periods of variant 
predominance, particularly for shorter forecast horizons 
(Supplementary Figs. 6–8, 10–12, 18–20) and for county-
specific rankings (Supplementary Figs.  7C-9C, 12C-14C, 
19C-21C).

Fig. 3 Forecasting accuracy results at the county level during the Delta wave in California as measured by mean absolute error (MAE). A Heat 
map of the best daily performing model for a given prediction date as measured by 14-day MAE. Each cell in the heat map corresponds to a 
standardized MAE calculated for the day that a model forecast was published. Counties are grouped into panels by California health officer regions. 
B A summary map of California where the color of the county corresponds to the model with the highest sum of the standardized rank score for 
that period (�srm,i,j) . Note that by using the summation of the standardized ranking score models are penalized for lack of participation. C A density 
distribution of the standardized rank score  (srm,i,j) that depicts the median (dashed) and mean (solid) as vertical lines for each model distribution. A 
standardized rank score of one indicates that a model came in first relative to other participating models for a given date and location, values closer 
to zero indicate that a model had a lower ranking compared to other participating models, and a value of zero corresponds to no participation
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Epidemiological traits, county population size, and variant 
traits best predicted forecast “winners”
For the entire analysis period (February 1, 2021-Feb-
ruary 1, 2022), time-varying vaccine coverage at the 
county-level, local transmission dynamics (R-effective 
and 7-day change in R-effective), county population 

size, and regional proportion of variants, were most 
important in predicting which model had the lowest 
MAE for a given county on a given publication date 
(Supplementary Fig.  23). Other static socio-economic 
variables like income, percent unemployment, percent 
of residents with a university degree, and percent of 

Fig. 4 Forecasting accuracy results at the county level during the Omicron wave in California as measured by mean absolute error (MAE). A Heat 
map of the best daily performing model for a given prediction date as measured by 14-day MAE. Each cell in the heat map corresponds to a 
standardized MAE calculated for the day that a model forecast was published. Counties are grouped into panels by California health officer regions. 
B A summary map of California where the color of the county corresponds to the model with the highest sum of the standardized rank score for 
that period (�srm,i,j) . Note that by using the summation of the standardized ranking score models are penalized for lack of participation. C A density 
distribution of the standardized rank score  (srm,i,j) that depicts the median (dashed) and mean (solid) as vertical lines for each model distribution. A 
standardized rank score of one indicates that a model came in first relative to other participating models for a given date and location, values closer 
to zero indicate that a model had a lower ranking compared to other participating models, and a value of zero corresponds to no participation
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residents in poverty were less important for predicting 
model outcomes. These variable importance rankings 
were robust to the forecast horizon used for MAE cal-
culations (Supplementary Fig. 23).

Less populated counties have ensemble predictions 
with higher median MAE and more variable MAE
When comparing 14-day MAE normalized by hospital 
capacity, counties with smaller population sizes typi-
cally had a higher median MAE score and more variable 
MAE distributions compared to more populous coun-
ties (Supplementary Fig. 24B). Based on a linear regres-
sion, the logarithmic of the normalized MAE score 
was negatively correlated with county population size (
coefficient estimate : 1.7 · 10−7

; p-value < 2 · 10−16
)
 . 

This relationship held true regardless of the forecast hori-
zon used for MAE calculations (Supplementary Fig. 24 A 
& C).

Discussion
Ensemble model could be improved by incorporating 
geographic heterogeneity in model coverage 
and performance
Echoing other analyses of COVID-19 forecast perfor-
mance that have described a large variation in model accu-
racy by location [11, 21], forecasting models performed 
differentially across California counties and regions and 
for different periods of variant predominance during the 
COVID pandemic (Figs.  2, 3,  4  and 5C, Supplementary 
Figs.  4–6, 16–18). Moreover, location-specific features 
like local transmission dynamics or county population 
size helped explain model performance (Supplementary 
Fig. 24). This geographic variation in model performance 
points to the importance of location-specific model evalu-
ation in order for local health jurisdictions to best employ 
forecasts for public health decision making.

In general, combining multiple models into ensembles 
allows for better performance [11, 20, 22–24]. However, 
in this case, COVID NearTerm and LEMMA consistently 
outperformed the Ensemble model when controlling for 
frequency of participation (Figs. 2, 3, 4C and 5), although 
pairwise ranking scores remained variable at the county 
level (Fig. 5C). The higher performance of individual mod-
els over the Ensemble model combined with the vari-
ability in performance at the county-level suggests that the 
Ensemble model does not have to be applied uniformly 

across all locations; public health decision making could 
benefit from model selection and ensemble weighting that 
reflects location-specific past performance as well as local 
transmission trends [25].

Lower forecast coverage in less populated counties 
weakens evidence‑based decision making
One interesting question from a public health decision 
making context is whether model coverage (i.e., frequent 
issuing of forecasts across all potential locations) and 
model accuracy should be weighed equally when estab-
lishing the criteria for a “winning” forecast. In this analy-
sis, there was typically a mismatch between raw model 
performance based on availability as measured by the 
sum of standardized ranking (Figs. 2, 3 and 4) and model 
performance when controlling for participation via pair-
wise tournaments (Fig.  5). In part, this disagreement 
reflects that not all models provided estimates for all 
counties, especially for less populous regions or counties 
(Supplementary Figs. 1, 9, 13). For example, the COVID 
NearTerm model ranked first in the pairwise ranking but 
provided no coverage for any counties in the less popu-
lous RANCHO region (Fig. 5C). In contrast, the Ensem-
ble model came first in the majority of counties during 
the Delta and Omicron periods as measured by sum of 
the standardized rank score for that period 

(
�srm,i,j

)
 

(Figs.  3B and  4B), but was generally outperformed in 
pairwise ranking evaluations both overall and for individ-
ual counties (Fig. 5). Although the Ensemble model in less 
populous counties exhibited a higher median normalized 
MAE and a more variable normalized MAE regardless of 
the forecast horizon (Supplementary Fig. 22), this obser-
vation may be a direct result of calculating MAE from 
median point estimates rather than accounting for fore-
cast uncertainty, since stochastic effects likely contribute 
more significantly to the forecast predictions for counties 
with smaller population sizes.

While maximizing model accuracy is important, a fore-
cast cannot add value if it is not available for decision 
making. As county-level contributors are lost to attrition, 
ensemble estimates may further decrease in accuracy or 
may not be possible in these less populous counties. Policy 
and public health decision makers should evaluate what 
investments or innovations in modeling are needed to 
improve results for underserved counties with lower fore-
cast coverage. In addition, decision makers could seek to 

(See figure on next page.)
Fig. 5 Pairwise tournament median rankings of models for the whole analysis period for 14-day MAE. A Overall median rankings (θm) across 
all locations and observation dates. B Median pairwise rankings (θm,m′) comparing each model m relative to every other model m’. The grid is 
symmetrical, so the ratio of model m: model m’ is the inverse score of the ratio of model m’: model m. C Overall median rankings for all available 
observation dates disaggregated by county
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Fig. 5 (See legend on previous page.)
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incentivize the best-performing models to serve smaller 
counties that neither have the resources to do this work in-
house nor have academic partners readily available.

The lack of coverage in smaller counties also points to 
the inherent complexities of interpreting in hospitaliza-
tion burden—since hospitalizations are typically recorded 
via hospital location rather than patient residency [26]. As 
others have suggested, forecasting at the geographic unit of 
hospital referral networks could be another solution to low 
model coverage in less populous counties [26].

Continuity of contributors, forecast structure, 
and documentation helps real‑time public health decision 
making and post‑hoc analysis
The overall continuity of forecasting contributions has 
proved challenging for post-hoc evaluation. Although 
CalCAT has had roughly ten unique forecast contributors 
through time, many of these groups have ceased contrib-
uting as the COVID-19 landscape has increased in com-
plexity (e.g., emerging variants, prior immunity, boosters). 
Although less relevant to forecasting hospitalizations, 
changes in case ascertainment and testing practices make 
retrospective analyses more challenging. Interruptions to 
forecast continuity can also limit post-hoc evaluation. For 
example, some modeling groups paused forecasts in order 
to reset or recalibrate for new variants like Omicron.

While initiatives like the COVID-19 Forecast Hub have 
worked to standardize forecast output and reporting [11], 
one additional challenge for this analysis was that the 
reporting across external forecast contributors differed. 
For example, across three of the externally contributed 
forecasts they all produced interval estimates at different 
cutoff points: COVID Nearterm (10, 20, 30, 40, 50, 60, 70, 
80, and 90 percentiles), Columbia (2.5, 25, 50, 75 and 97.5 
percentiles), and LEMMA (5, 50, 95 percentiles). This dis-
crepancy precluded the use of more robust measures like 
CRPS or WIS and means that that our results are much 
more sensitive to the median point estimates [10]. Chang-
ing repository structures, file nomenclature, and data for-
matting can also disrupt the archiving process necessary 
for ensemble generation and subsequent post-hoc review. 
This analysis is a snapshot of what was available on Cal-
CAT—and therefore to the general public and public 
health decision makers—and may not entirely reflect what 
model contributors would intend to be their contributing 
forecast at all times. The CalCAT team updated data and 
results iteratively as often as possible, but not all model 
changes were announced. As the COVID-19 pandemic 
necessitated rapid changes in data reporting and data 
infrastructure, other information technology issues may 
have introduced unintended errors.

The current classification regression analysis in this 
manuscript does not include model-specific traits. In order 

to truly evaluate whether underlying model traits and 
assumptions help to explain performance for specific loca-
tions through time, it would be necessary to have a larger 
number of forecasting contributors and consistent meta-
data on both the changes in model construction and the 
timing of those changes. Therefore, another potential area 
of documentation might include not just existing model 
assumptions and structure but how those characteristics 
have changed over time. This analysis may be easier to do 
at a state or national scale, where more model contributors 
are available, and reporting is better standardized through 
initiatives like the Forecast and Scenario Hubs.

Reporting and communicating infectious disease fore-
casting results, with all their inherent uncertainty and 
complexity, remain areas for improvement and growth 
for public health departments and their academic and 
industry collaborators to support evidence-based public 
health policy planning and decision making. Importantly, 
forecasting models may also serve as a communication 
tool to influence behavior change by the general public. 
One phenomenon not explored in this analysis is the 
potential for forecasts to alter human behavior, and sub-
sequently model accuracy.

Conclusions
Major progress in infectious disease forecasting has been 
made during the COVID-19 pandemic, while ongoing 
challenges, such as those around data and communi-
cation, have persisted. We retrospectively investigated 
hospitalization census  forecast model performance at 
the county level in the state of California. Model perfor-
mance and ranking varied through space and time and 
by metric, highlighting the difficulty of making blanket 
recommendations for which models to use for individ-
ual counties, including an ensemble approach. Calibrat-
ing based on past model performance may help improve 
ensemble forecast generation, and counties may benefit 
by considering which individual model contributors have 
historically served them the best. Going forward, closer 
collaboration between forecasters, researchers, and poli-
cymakers may create positive feedback loops that inform 
the ongoing COVID-19 response and other future public 
health action.
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