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Abstract 

Background From March to June 2022, an Omicron BA.2 epidemic occurred in Shanghai. We aimed to better under-
stand the transmission dynamics and identify age-specific transmission characteristics for the epidemic.

Methods Data on COVID-19 cases were collected from the Shanghai Municipal Health Commission during the 
period from 20th February to 1st June. The effective reproductive number  (Rt) and transmission distance between 
cases were calculated. An age-structured SEIR model with social contact patterns was developed to reconstruct the 
transmission dynamics and evaluate age-specific transmission characteristics. Least square method was used to cali-
brate the model. Basic reproduction number  (R0) was estimated with next generation matrix.

Results R0 of Omicron variant was 7.9 (95% CI: 7.4 to 8.4). With strict interventions,  Rt had dropped quickly from 3.6 
(95% CI: 2.7 to 4.7) on 4th March to below 1 on 18th April. The mean transmission distance of the Omicron epidemic 
in Shanghai was 13.4 km (95% CI: 11.1 to 15.8 km), which was threefold longer compared with that of epidemic 
caused by the wild-type virus in Wuhan, China. The model estimated that there would have been a total 870,845 (95% 
CI: 815,400 to 926,289) cases for the epidemic from 20th February to 15th June, and 27.7% (95% CI: 24.4% to 30.9%) 
cases would have been unascertained. People aged 50–59 years had the highest transmission risk 0.216 (95% CI: 0.210 
to 0.222), and the highest secondary attack rate (47.62%, 95% CI: 38.71% to 56.53%).

Conclusions The Omicron variant spread more quickly and widely than other variants and resulted in about one 
third cases unascertained for the recent outbreak in Shanghai. Prioritizing isolation and screening of people aged 
40–59 might suppress the epidemic more effectively. Routine surveillance among people aged 40–59 years could 
also provide insight into the stage of the epidemic and the timely detection of new variants.
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Background
Since severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) Omicron variant was designated as a 
variant of concern (VOC) by the World Health Organiza-
tion (WHO) on 26th November 2021, it has been rapidly 
spreading and has become the dominant variant circulat-
ing globally [1]. Since the first Omicron case in Shanghai 
was reported on 20th February, the outbreak has resulted 
in more than 600,000 people being infected as of 1st June. 
Phylogenetic features of SARS-CoV-2 viral genomes from 
129 patients, and inferring their relationship with those 
available on the GISAID database, indicated that the new 
viral genomes in Shanghai were clustered into the SARS-
CoV-2 BA.2 sub-lineage [2]. To suppress the transmission 
based on the “Zero-COVID” policy, non-pharmaceutical 
interventions (NPIs) are implemented including physical 
distancing, mandatory use of face masks, mass nucleic 
acid amplification testing (NAAT)/rapid antigen testing 
(RAT) and quarantine/isolation. Even with the massive 
NAAT/RAT screening, there might have been unascer-
tained/undetected cases, which might have influenced 
the transmission dynamics.

The spatial characteristics of Coronavirus disease 
2019 (COVID-19) are of great significance for assessing 
transmission characteristics of the disease and for guid-
ing implementation of interventions [3, 4]. Infectious 
individuals are often clustered in space during the ini-
tial phase of sustained transmission, which provides an 
opportunity to make effective use of limited resources for 
intervention [5]. Estimation of the transmission distance 
between cases contribute to targeting resources both for 
control and enhanced surveillance [6].

Age dependent susceptibility to SARS-CoV-2 infec-
tion as well as the infectiousness upon infection have a 
significant impact on implementation of public health 
interventions. Most studies suggested that the suscep-
tibility of children was lower than that of adults and the 
elderly [7–10] or no significant difference in infectivity 
among different age groups [7, 8], while other studies 
found an increased transmissibility in adults or elderly 
people [11, 12]. The vaccination coverage varied with 
age, which might drive the transition of COVID-19 bur-
den [13]. Assessing age-specific susceptibility and trans-
mission risk is conductive to understand transmission 
dynamics and improve the effectiveness of interventions 
through prioritizing different interventions in different 
age groups.

In the current study, we investigated the dynamics of 
transmission during the Omicron epidemic in Shanghai 
between March and June 2022, estimated transmission 
distance between cases and developed an age-structured 
SEIR (Susceptible, Exposed, Infectious and Recovered) 
model to reconstruct the transmission dynamics for 

the Omicron epidemic in Shanghai, to estimate the sus-
ceptibility and transmissibility of different age groups 
and assess the age prioritization of implementation of 
interventions.

Methods
Data collection
COVID-19 infection data in Shanghai from 20th Febru-
ary to 1st June 2022 were from the daily reports released 
by the Shanghai Municipal Health Commission (https:// 
wsjkw. sh. gov. cn/). Information on sex, age, residential 
address and clinical classification was only available for 
cases reported before 17th March. Parameters used in 
our model were form previous studies or estimated by 
the least square method (LSM), and were presented in 
Additional file 1: Table S1 [14–17].

Age‑structured SEIR model
An age-structured SEIR model considered age-struc-
tured differences in population mixing was developed. 
Based on the vaccination (Additional file 1: Role of vac-
cination [15, 18, 19]) and social contact characteristics 
(Additional file 1: Constructing social contact matrix [20, 
21]), the population was divided into 10 age groups ( i ): 
0–2, 3–11, 12–17, 18–29, 30–39, 40–49, 50–59, 60–69, 
70–79 and 80 + . Susceptible ( Si ) infected by infectious 
cases (asymptomatic infection: Ai , presymptomatic 
infection: Pi , and symptomatic cases: I i ) would become 
exposed ( Ei and Ei

Q ). Exposed individuals were not infec-
tious and not detected by NAAT/RAT. After the latent 
period ( α ), a proportion ( pA ) of exposed individuals 
became asymptomatic infection ( Ai , Ai

Q ), others became 
presymptomatic infection ( Pi,Pi

Q ). After a certain period 
( α2 , incubation period – latent period), a presympto-
matic infection become a symptomatic infection ( I i , I iQ ). 
All cases became recovered individuals ( Ri ) if they were 
no longer contagious. The superscript i refers to differ-
ent age groups ( i = 1, 2, . . . . . . , 10 ), subscript Q indi-
cated that the individuals were isolated/treated and could 
not infect susceptible people. Asymptomatic ( Ai ) and 
presymptomatic ( Pi ) infection would be quarantined/
isolated with positive NAAT results. In our model, we 
assumed that from 28th March to 12th April, a propor-
tion ( 1− pt ) of asymptomatic and presymptomatic cases 
who were detected through NAAT would be self-isola-
tion at home ( Ai

H , Pi
H ) due to the limitation of central-

ized isolation resources (Additional file 1: Figure S1). Ai
H 

and Pi
H would only infect their family members ( CMH ). 

The model could be described in Fig.  1 and the equa-
tions in Additional file  1: Model calibration. All param-
eters of our model were presented in the Additional file 1: 
Table S1 [14–17].

https://wsjkw.sh.gov.cn/
https://wsjkw.sh.gov.cn/
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Statistical analysis
Estimating effective reproduction number
The effective reproductive number  (Rt) was calculated 
using the method developed by Cori er al [22] in R soft-
ware version 4.1.2. The daily number of reported infec-
tions and the serial interval (mean: 3.5  days, standard 
deviation (SD): 2.4  days [17]) for the Omicron variant 
from a previous study [17] were used to estimate  Rt and 
its 95% confidence interval (95% CI) on each day via a 
7-day moving average. For sensitivity analysis, a 4-day 
moving average was used to estimate the  Rt.

Estimating transmission distance
Based on the location data of 1482 cases reported 
before 17th March and the generation time distribu-
tion (Gamma distribution with mean: 3.3  days and SD: 
3.5  days [23]), we used the method developed by Salje 
et  al. [6] to estimate the transmission distance between 
cases. We assumed the transmission distance distribu-
tion to follow a typical power law distribution, where the 
key parameter, λ, could be calculated by the mean trans-
mission distance. To compare the transmission distance 
among different variants, cases in the initial period of 
Wuhan epidemic (8th December 2019 to 14th January 

2020) were used to estimate the transmission distances. 
During the initial period of the epidemic in these two cit-
ies, few strict NPIs were implemented.

Calibrating the model and estimating the proportion 
of unascertained cases
With the number of daily reported cases, the least square 
method (LSM) was used to calibrate the model and to 
estimate the age-specific transmission rate ( β i , Addi-
tional file  1: Model calibration). Transmission rate ( β i ) 
in this study is defined as probability that one contact 
between a case and a susceptible person will result in an 
effective infection. The next generation matrix (NGM) 
was used to estimate the basic reproduction number  (R0, 
Additional file 1: Next generation matrix [24–26]).

In our model, unascertained cases refer to asymp-
tomatic cases that are not traced and not detected by 
NAAT/RAT before they are not contagious. Based on 
the calibrated model, the cumulative number of unas-
certained cases ( Cuf i ) and all cases ( Ci , ascertained and 
unascertained) in each age group were calculated accord-
ing to the following equations. The proportion of unas-
certained cases was calculated by the sum of dCuf

i

dt
 divided 

by the sum of dC
i

dt
.

Fig. 1 Flow patterns between different compartments in the model
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With the β i and SAR, we inferred the susceptibility and 
infectivity and tried to prioritize different age groups for 
centralized isolation and NAAT/RAT (Additional file  1: 
Inferring the susceptibility and infectivity).

To assess the robustness of our results, sensitivity 
analyses were carried out on the major parameters in 
the model (Additional file 1: Sensitivity analysis). Differ-
ent values of these parameters were used to recalibrate 
the model to assess their effects on age-specific trans-
mission rates ( β i ), proportion of cases found by NAAT/
RAT, SARs, cumulative incidences,  R0 and proportion of 
unascertained cases (Additional file 1: Table S2 and Fig-
ure S2). Additionally, we accessed the impacts of propor-
tion of untraced cases ( pE ), proportion of asymptomatic 
cases ( pA ) and proportion of cases found by NAAT/RAT 
( pNAAT ) on the proportion of unascertained cases.

Estimation of the transmission distance was performed 
in MATLAB 2021a. Development and calibration of the 
model, estimation of  R0, the proportion of unascertained 
cases and secondary attack rate, sensitivity analysis and 
visualization of results were performed in R software ver-
sion 4.1.2.

Results
Spatio‑temporal diffusion characteristics
From 20th February to 1st June, there were 626,825 
reported COVID-19 cases in Shanghai, and among 
whom, 94.3% (591,358/626,825) were asymptomatic. 
The first home quarantine directive was implemented in 
six districts (Chongming, Fengxian, Jinshan, Minhang, 
Pudong and Songjiang) since 28th March, and a citywide 
home quarantine with mass screening of NAAT/RAT 
was put in place on 4 April. The number of daily reported 
cases peaked on 13 April (Fig. 2A).  Rt decreased from 3.6 
(95% CI: 2.7 to 4.7) on 4th March to 1.5 (95% CI: 1.4 to 
1.6) on 16th March.  Rt increased afterwards due to mass 
screening of NAAT/RAT and stabilized at 1.7 to 2.1 dur-
ing the period from 17th March to 7th April. Since 7th 
April, the  Rt gradually decreased and fell below 1 on 18th 
April  (Rt = 0.98, 95% CI:0.97 to 0.99) (Fig. 2B). Based on 
our model,  R0 of the Omicron epidemic in Shanghai was 
7.9 (95% CI: 7.4 to 8.4). If COVID-19 vaccines were not 
available,  R0 would increase to 9.6 (95% CI: 9.0 to 10.2).

Figure  2C shows the epidemic curves of cumulative 
predicted cases and reported cases for the epidemic. The 
model predicted the epidemic to end in mid-June with 
a total of 870,845 (95% CI: 815,400 to 926,289) cases, 
but among them, 241,104 (95% CI: 201,373 to 280,835) 

dCuf i

dt
=

β i
∗Si∗pinv∗ pE∗CM∗ εAi

+εPi+I i +CMH∗ εAi
H+εPi

H
Ni

−
pt∗pNAAT ∗ Ai

+Pi

α3
−

Ai
H+Pi

H
αH

−
I i

α4

dCi

dt
=

β i
∗Si∗pinv∗ pE∗CM∗ εAi

+εPi+I i +CMH∗ εAi
H+εPiH

Ni

cases might be missed. We estimated that there had been 
99,687 (95% CI: 85,020 to 114,355) cases on 28th March 
and 81.1% (95% CI: 77.4% to 84.8%) were unascertained 
(Fig. 2D).

Pudong had the most reported infections (35.5%), fol-
lowed by Minhang (10.1%), and Jinshan had the least 
reported infections (0.2%, Additional file  1: Figure S3). 
There were substantially geographic differences in the 
cumulative incidence (Fig. 3C). In the early stage of the 
epidemic, the mean transmission distance between 
cases was estimated to be 13.4 km (95% CI: 11.1 to 15.8) 
(Fig. 3A), which was threefold longer compared with the 
wild-type virus epidemic in Wuhan (4.4 km; 95% CI: 1.5 
to 7.3; Fig. 3B). The transmission distance for the Shang-
hai epidemic varied from 12.5 km (95% CI: 11.2 to 13.9) 
on 15th March to 14.9 km (95% CI: 13.5 to 16.3) on 12th 
March. The transmission distance fluctuated around 
13.4 km before 12th March, while decreased since school 
closure and suspension of public transportation started 
on 12th March. Based on the location of cases, Fig.  3D 
and Additional file  2: Movie S1 show that as of 13th 
March, the virus had spread widely across the city. Com-
pared to the Wuhan epidemic for the date with the same 
cumulative number of cases, the size of epidemic areas 
with high risk levels was larger in Shanghai even with 
more strict intervention measures (Additional file 1: Fig-
ure S4).

Change of contact patterns and age‑specific transmission 
characteristics
Population mobility had decreased gradually since the 
start of the epidemic (Fig.  4A). During the initial phase 
of the epidemic, it declined most markedly among indi-
viduals aged 0–16 and 60 + years and to the half of the 
original level after school closure (12th March). Since 
the implementation of citywide home quarantine, mobil-
ity declined to the minimum. Comparing to the mobil-
ity before the epidemic, children and adolescents had the 
greatest decline. Figure  4B shows that the frequency of 
human contacts declined for all the age group since the 
start of the outbreak. The decline was pronounced after 
28th March, when home quarantine was implemented. 
Contact matrices at different settings over the seven peri-
ods were presented in Additional file 1: Figure S5.

Among the 870,845 cases estimated for the epidemic, 
60.5% (95% CI: 56.4% to 64.5%) were aged 30–59 years, 
6.4% (95% CI: 5.3% to 7.4%) were aged 70 years or older, 
and 0.8% (95% CI: 0.6% to 1.0%) were children under 
3  years of age (Fig.  5A, B). Compared to the wild-type 
virus epidemic of Wuhan, cases in the Omicron epidemic 
of Shanghai were younger (Additional file  1: Figure S6 
[27, 28]). Population aged 50–59  years had the highest 
cumulative incidence (519.5/10,000, 95% CI: 422.1/10,00 
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to 616.9/10,000), followed by the 40–49-year age group 
(459.7/10,000, 95% CI: 364.0/10,000 to 555.4/10,000) 
and the 12–17-year age group (389.1/10,000, 95% CI: 
309.0/10,000 to 469.4/10,000; Fig.  5C). The cumulative 
incidence was relatively low in children under 3 years of 
age (145.8/10,000, 95% CI: 111.1/10,000 to 180.6/10,000) 
and elderly people aged 70–79 years (226.7/10,000, 95% 
CI: 172.2/10,000 to 281.1/10,000). The transmission rate 
varied with age (Fig. 5D). Cases under the age of 3 years 
had the lowest transmission rate (0.008, 95% CI: 0.007 
to 0.009). The transmission rate increased with age and 
peaked at the age of 50–59 years 0.216 (95% CI: 0.210 to 

0.222) and then declined after 60  years. Figure  5E pre-
sents the model estimated SAR. The SAR was the lowest 
in children (0 to 2 years: 1.80%, 95% CI: 1.39% to 2.20%) 
and the highest in adults aged 50–59 years (47.62%, 95% 
CI: 38.71% to 56.53%). Cases of different ages were more 
likely to infect their peer groups (Fig. 5F). Cases of chil-
dren and adolescents were also more likely to infect their 
parents or other family members. Cases aged 50 to 59 
resulted in the most secondary cases (3.8 cases/day; 95% 
CI: 3.0 to 4.5 cases/day) followed by 40–49  years (3.5 
cases/day; 95% CI: 3.1 to 3.9 cases/day) and 30–39 years 
(3.4 cases/day; 95% CI: 3.1 to 3.8 cases/day).

Fig. 2 Epidemic curve of COVID-19 cases (A, C), effective reproductive number  (Rt, B) and time-varying proportion of unascertained cases (D) in the 
epidemic of Shanghai. A shows the epidemic curve of reported COVID-19 cases, key events, and public health interventions. B shows the effective 
reproductive number calculated from daily reported cases with 7-day moving average. C shows the epidemic curve of cumulative predicted cases 
and reported cases estimated by the model. D is the daily proportion of unascertained cases
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Fig. 3 Cumulative incidence (C), time varying transmission distance (A, B) and the size of areas with infection risks (D). A and B is the time varying 
transmission distance of Shanghai and Wuhan respectively. Dashed grey line and the red shadow in A and B is the mean transmission distance and 
95% confidence interval (95% CI) of mean transmission distance. Solid black line in A and B is smoothed with locally weighted regression. Central 
areas in C were: ① Yangpu, ② Hongkou, ③ Jing’an, ④ Putuo, ⑤ Changning, ⑥ Huangpu. D show the areas at potential risk of infection as of 1, 4, 
7, 10, 13 and 16 March 2022 with 13.4 km transmission distance (the radius of each circle)

Fig. 4 Mobility trends and estimated contract matrices in Shanghai. A shows the change of mobility trends for individuals aged 0–15, 16–17, 
18–29, 30–39, 40–49, 50–59 and 60 + , relative to the baseline period 20–28 February, 2022. B shows the estimated social contact matrices for 
Shanghai population mixing during different periods
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According to the susceptibility and infectivity of dif-
ferent ages, we analyzed the priority of centralized 
isolation and implementation of NAAT/RAT for differ-
ent age groups. Prioritizing the centralized isolation of 
cases aged 50 to 59 years could reduce the largest num-
ber (28.8%, 95% CI: 23.3% to 34.3%) of secondary cases, 
followed by 30 to39 years (23.5%, 95% CI: 19.0% to 
28.0%). Prioritizing the centralized isolation of children 
(0.05%, 95% CI: 0.04% to 0.06%) or elderly cases aged 
above 80 (1.0%, 95% CI: 0.8% to 1.3%) had less impact 
on reducing the number of secondary cases caused by 
self-isolation at home (Fig.  5G). Lifting mass NAAT/
RAT for those aged 30 to 49 could result in more cases 
(30–39: 1,219,758, 95% CI: 1,115,473 to 1,324,042; 
40–49: 1,323,445 95% CI: 1,185,313 to 1,461,577), 
while lifting mass NAAT/RAT for those aged 0–17 and 
70 years above only had a slight influence on the cumu-
lative number of cases (Fig. 5H).

Sensitivity analysis
To assess the impact of different moving average on the 
estimation of  Rt, a 4-day moving average was used to esti-
mate the  Rt (Additional file  1: Figure S7).  Rt estimated 
from 4-day moving average were similar to that estimated 
from 7-day moving average.  Rt estimated from 4-day 
moving average fell below 1 on 18th March.

To explore the robustness of our model and results, the 
relative transmissibility rate of asymptomatic cases to 
symptomatic cases ( ε ), proportion of asymptomatic cases 
( pA ), period of self-isolation at home ( αH ) and recov-
ery period of asymptomatic cases ( γA ) were included in 
the sensitivity analysis (Fig. 6). The model was well cali-
brated with different values of these parameters (Addi-
tional file 1: Figure S8). Most of the outcomes were not 
sensitive to the changes of these parameters. Transmis-
sion rate ( β i ) and SARi increased with the decreasing of ε , 
but were stable to the change of other three parameters. 
Proportion of cases found by NAAT/RAT was stable to 

Fig. 5 Epidemic curves (A, B), cumulative incidence (C) and distribution of transmission rates (D) in different ages. E shows the secondary attack 
rates (SARs) in different ages calculated based on the model estimated infections. Grey dashed line in E was the overall SAR (24.17%, 95% CI: 23.09% 
to 25.25%). F shows the age distribution of daily secondary cases infected by index cases in different ages. G is the number of secondary cases 
infected by index cases that are self-isolated at home. Ref in G is the scenario that all age groups of cases were self-isolated at home; other scenarios 
prioritize centralized isolation of cases in different age groups. H shows the distribution of the cumulative number of cases if the NAAT/RAT is lifted 
in each age group. Ref in H is the scenario that NAAT/RAT are implemented in all age groups
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the change of these parameters. Cumulative incidence 
decreased with the increasing of γA . Basic reproduction 
number  (R0) was sensitive to αH and γA . Proportion of 
unascertained cases decreased with the reducing of pA 
and with the increasing of γA . Additionally, we accessed 
the impacts of proportion of untraced cases ( pE ) and 
proportion of cases found by NAAT/RAT ( pNAAT ) on the 
proportion of unascertained cases by sensitivity analysis. 
Results suggested that the proportion of unascertained 
cases increased with the increasing of pE , but declined 
with the increasing of pNAAT (Additional file  1: Figure 
S9).

Discussion
Based on the epidemic of Shanghai, we estimated that 
the  R0 of Omicron variant was 7.9, comparable to the 
results of previous studies [29]. At the beginning of the 
epidemic,  Rt was estimated to be 3.6, consistent with 

the results of previous studies (2.43 to 5.11) [29–31]. 
For both  R0 and  Rt, Omicron variant were 3- to fourfold 
higher than these of Delta variant [29–31]. Increasing 
basic/effective reproductive number of Omicron vari-
ant have led to a rebound of the epidemic in numerous 
countries. The Omicron variant is highly transmissi-
ble with a high growth advantage over other variants, 
which is mainly driven by immune evasion [1, 32, 33]. 
From the reported data, the proportion of asymptomatic 
cases in the epidemic of Shanghai reached 90%. People 
infected with the Omicron variant have milder symp-
toms and fewer hospitalizations than those with other 
variants [34, 35], which lead to high covertness of this 
variant. The cumulative number of cases in the Omicron 
epidemic of Shanghai was estimated to be 870,845, and 
only 72.2% of them would have been ascertained. We 
estimated that there were 85.1% cases that were unas-
certained, before the implementation of home quaran-
tine directive on 28th March. A previous study of the 

Fig. 6 Impacts of the relative transmissibility rate of asymptomatic cases to symptomatic cases ( ε , A1-A4), proportion of asymptomatic cases ( pA , 
B1-B4), period of self-isolation at home ( αH , C1-C4) and recovery period of asymptomatic cases ( γA , D1-D4) on the transmission rates ( β , first row), 
proportion of cases found by NAAT/RAT ( pNAAT  , second row), secondary attack rates ( SAR , third row), cumulative incidences (fourth row), basic 
reproduction number ( R0 , E) and proportion of unascertained cases (F). Grey dashed line in E is the  R0 reported in main analysis (7.9). Grey dashed 
line in F is the proportion of unascertained cases estimated in main analysis (27.7%)
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Wuhan epidemic indicated that 86% of all the infections 
were unascertained before the 23rd January 2020 travel 
restrictions [36], where suspension of public transporta-
tion and NAAT/RAT were not implemented before travel 
restrictions in Wuhan [27]. Additionally, it took 46 days 
in Wuhan and 36  days in Shanghai from the first case 
reported (8th December 2019 in Wuhan [37] and 20th 
February 2022 in Shanghai) to reach the same proportion 
of unascertained cases. Due to the highly transmissible 
and covert nature of the Omicron variant, mass vaccina-
tion and appropriate measures are necessary to decrease 
transmission and reduce mortality.

The Omicron variant also appeared to be spreading 
more widely, reflected by the mean transmission dis-
tance. During the initial period of the epidemic, the 
mean transmission distance of the Omicron epidemic 
in Shanghai was threefold longer than that of the wild-
type virus epidemic in Wuhan. The longer transmission 
distance may indicate a more rapid spatial transmission 
of Omicron variant than the wild-type virus. The trans-
mission distance of the epidemic in Shanghai decreased 
slightly since school closure and suspension of pub-
lic transportation started on 12th March, reflected the 
impacts of NPIs on controlling the transmission of virus. 
Before 7th March, the spread of the virus was relatively 
localized and had not yet affected the entire city. These 
results suggested that earlier implementing NPIs may 
contribute to curbing the spatial transmission of the virus 
and reduce infections. The spatial spread of the virus can 
be determined by the estimation of the transmission dis-
tance, which contributes to targeting resources both for 
control and enhanced surveillance [6].

We estimated 60.1% cases were aged 30–59 years, 5.4% 
were children under the age of 12 years, and 2.4% were 
aged 80  years or older. The age for the cases of Shang-
hai epidemic tended to be younger than those in the 
epidemic of Wuhan [27, 28] and other localized out-
breaks[38]. Cases infected with Omicron variant were 
found to be younger than cases infected with other vari-
ants [35], partly due to COVID-19 vaccination [13]. The 
overall SAR of the epidemic was estimated to be 24.17% 
(95% CI: 23.09% to 25.25%), which was consistent with 
previous studies [39–42]. Compared to observational 
studies, our SARs of children, adolescents, adults aged 
60 years and above are lower, while SARs of adults aged 
18–60  years are higher. SARs from observational stud-
ies might be biased by the ability of close contact track-
ing and detection of infections. For children and elderly, 
the number of close contacts they report is likely to be 
underestimated, which may result high SARs. Besides, 
it is difficult to detect all infections even massive nucleic 
acid testing was implemented. The underestimated num-
ber of infections might lead to a low SAR. In our analysis, 

if the SARs was calculated using the number of detect-
able cases (reported cases), the overall SAR reduced to 
17.49% (95% CI: 16.25% to 18.71%, Additional file 1: Fig-
ure S10).

There seems to be no consensus about infectivity of 
different ages. Some studies indicated that the differ-
ences of infectivity among different age groups were not 
significant [7, 8], while the other studies reported an 
increased transmissibility among adults and elderly peo-
ple [11, 12]. Besides, previous studies suggested that the 
susceptibility increased with age [8, 11, 43]. In this study, 
both transmission rate and SAR increased with age and 
peaked for people aged 50–59 years. People aged 50–59 
report higher daily contacts, even during the lockdown 
period [21], which might lead to higher risk of infectivity 
and susceptibility. Additionally, patients aged 50–64 yeas 
seemed to have the long viral shedding time [44, 45] and 
higher viral load [46], which may associate with higher 
transmission rate.

Age-specific transmission rate and SAR are crucial to 
guide policymakers in implementing targeted COVID-
19 control measures. Although the transmission rate 
and SAR in children and adolescents were lower, the 
transmissibility of them to other household members is 
not negligible. Extending vaccination to children aged 
3–11 years would protect them from infection and reduce 
the transmission of this age group [13]. Cases with self-
isolation at home could still infect susceptible people, 
such as their family members or neighbors [7, 47]. Prior-
itizing the isolation of cases aged 30–59 years and imple-
mentation of NAAT among population aged 30–49 years 
might curb the virus transmission and reduce the num-
ber of cases more efficiently. Routine surveillance among 
people aged 40–59 years could also provide insight into 
the stage of the epidemic and the timely detection of 
new variants. Promoting vaccination, encouraging mask-
wearing and physical distancing, particularly among 
people aged 30–49  years, are still effective measures to 
reduce COVID-19 transmission and mortality.

This study was limited by the absence of detail infor-
mation of the cases. The age distribution of cases in the 
early stage of the epidemic was used in the model calibra-
tion, which might result in biased estimation, especially 
for the age-specific transmission rate. We used the social 
contact matrix that was produced during 2019, and peo-
ple’s contact habits might be reshaped by the COVID-
19 pandemic and some intervention measures. Many 
parameters used in the model are assumed to be con-
stant respect to time and age, but our sensitivity analysis 
suggested that our model and results were stable to the 
changes of these parameters. Detail information of cases 
and time-varying/age-specific parameters could allow 
us to provide a better reconstruction of the Shanghai’s 
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Omicron epidemic and reduce the biases of results. 
Besides, the transmission distances may be affected by 
people’s activities and the development level of the city. 
To further explore the regularity of the COVID-19 spa-
tial transmission, more cities and variables should be 
included in the future studies.

Conclusions
The Omicron variant presented a higher transmissibility 
and spread more widely and quickly than other variants, 
which might have resulted in about one third positive 
cases undetected in this wave of epidemic in Shanghai. 
People aged 50–59  years had the highest transmission 
risk and secondary attack rate. Prioritizing centralized 
isolation and screening of people aged 40–59 years might 
have suppressed the epidemic more effectively. Rou-
tine surveillance among these age groups may also pro-
vide insight into the stage of the epidemic and the timely 
detection of new variants.
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