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Abstract 

Background  The coronavirus disease 2019 (COVID‐19) poses special challenges for societies, as the disease causes 
millions of deaths. Although the direct prevention measures affect the prevalence and mortality the most, the other 
indirect factors, including natural environments and economics, could not be neglected. Evaluating the effect of 
natural land cover on COVID-19 health outcomes is an urgent and crucial public health topic.

Methods  Here, we examine the relationships between natural land cover and the prevalence and mortality of 
COVID-19 in the United States. To probe the effects of long-term living with natural land cover, we extract county-
level land cover data from 2001 to 2019. Based on statistically spatial tests, we employ the Spatial Simultaneous 
Autoregressive (SAC) Model to estimate natural land cover’s impact and monetary values on COVID-19 health 
outcomes. To examine the short-term effects of natural environments, we build a seasonal panel data set about the 
greenery index and COVID-19 health outcomes. The panel SAC model is used to detect the relationship between the 
greenery index and seasonal COVID-19 health outcomes.

Results  A 1% increase in open water or deciduous forest is associated with a 0.004-death and 0.163-conformed-case, 
or 0.006-death and 0.099-confirmed-case decrease in every 1,000 people. Converting them into monetary value, for 
the mortality, a 1% increase in open water, deciduous forest, or evergreen forest in a county is equivalent to a 212-, 
313-, or 219-USD increase in household income in the long term. Moreover, for the prevalence, a 1% change in open 
water, deciduous forest, or mixed forest is worth a 382-, 230-, or 650-USD increase in household income. Furthermore, 
a rational development intensity is also critical to reduce the risk of the COVID-19 pandemic. More greenery in the 
short term is also linked to lower prevalence and mortality.

Conclusions  Our study underscores the importance of incorporating natural land cover as a means of mitigating the 
risks and negative consequences of future pandemics like COVID-19 and promoting overall public health.
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Introduction
The coronavirus disease 2019 (COVID‐19) has raised 
serious and urgent concerns globally [1, 2]. As of Nov. 
1st, 2021, there were almost 246.69 million confirmed 

cases and 5.00 million deaths due to COVID-19 world-
wide (Data from WHO COVID-19 Dashboard, see 
https://​covid​19.​who.​int/). In the United States (U.S.), 
the cumulative numbers of confirmed and death cases 
owing to COVID-19 are 45,665,006 and 741,650, respec-
tively, as of Nov. 1st, 2021 (Data from U.S. Centers for 
Disease Control and Prevention, CDC). Moreover, 
the county-level COVID-19 health outcomes, includ-
ing the mortality and prevalence, vary dramatically in 
the United States, ranging from 0 to 10.77 deaths/1,000 
capita and from 19.62 to 543.05 cases/1,000 capita. A 
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high prevalence means higher rates of COVID-19 infec-
tion among the population, and a high mortality indi-
cates that more people die due to COVID-19. The local 
population with a lower prevalence and mortality may 
have few other chronic diseases [3, 4] and relatively good 
mental health [5–7]. Therefore, from a positive perspec-
tive, COVID-19 is a cruel and dangerous filter that can 
identify healthy and unhealthy populations and help 
people to detect more factors affecting public health.

Investigations regarding the relationships between 
COVID-19 health outcomes and geographical factors are 
urgently needed to locate the high-risk areas, to slow the 
disease’s devastation, and to slash the risk of similar infec-
tious disease outbreaks [8–10]. Considering the current 
situation, globally, eliminating COVID-19 is impossible 
in a short time [11]. Thus, reducing its negative impacts 
and risk is a critical focus. Previous studies suggest that 
a strong immune system is a key factor in COVID-19 
patient survival [12, 13]. Chronic diseases, such as car-
diovascular disease, are associated with an increased 
risk of death in COVID-19 patients [3]. Besides, people 
experience less depression and anxiety exposed to more 
green space during the COVID-19 pandemic [5]. Natural 
environments, mainly based on natural land cover, pro-
vide ecosystem services to improve physical and mental 
health [14–17]. Hence, the analyses on the associations 
of natural land cover with COVID-19 outcomes may help 
identify the high-death-risk areas in the COVID-19 pan-
demic and develop optimal land-use policies to deal with 
other similar public health emergencies in the future [18].

Natural environments are positively related to public 
health [19–21]. The severity of the COVID-19 symptoms 
is linked to people’s living environments [22, 23]. People 
living with less greenness have more medical conditions 
[13], like cardiovascular disease [24–26], which would ulti-
mately exacerbate the COVID-19 symptom [3]. Numer-
ous researchers point out that the natural land cover in 
the local communities is associated with health outcomes 
by promoting physical exercise and social connections, 
relieving stress, and removing air pollution, noise, and heat 
exposure [27–30]. The hypothesis is that increased expo-
sure to natural land cover may strengthen the immune sys-
tem and alleviate COVID-19 symptoms, related to lower 
prevalence and mortality. In other words, an increase in 
exposure to green spaces is associated with decreased risks 
of clinical diseases. Previous studies have partially veri-
fied this assumption. Cross-sectional studies show a posi-
tive association between proximity to parks and increased 
greenness with improved health outcomes [22, 23]. Fur-
thermore, living with more greenery is linked with bet-
ter mental health during the pandemic [5]. In conclusion, 
natural environments have the potential to enhance health 
and result in reduced COVID-19 prevalence and mortality.

There is a trade-off between health benefits and eco-
nomic costs of boosting natural land cover, because the 
land is a critical resource for economic development 
and growth in developed areas. In this way, an evalua-
tion of the value of natural land cover on COVID-19 is 
imperative, yet it has been overlooked in previous stud-
ies. To estimate the monetary valuation of environmental 
goods, stated preferences and revealed preference meth-
ods are widely used [31, 32]. Stated preference methods 
need surveys to directly ask the respondents to evaluate 
the monetary values of environmental goods, which is 
obviously inconsistent with the current topic [33]. How-
ever, the revealed preference methods are more straight-
forward and do not need surveys. These methods only 
need to investigate the relationships among variables and 
then utilize the estimated coefficient to calculate the mar-
ginal substitution rate between environmental goods and 
income based on the micro-econometric public health 
functions [28, 32, 34]. In other words, these methods 
assume that an alteration in income is critical to compen-
sate for the change in environmental goods and vice versa.

Materials and methods
Materials
Health outcomes of COVID‑19
Two variables, county-level prevalence and mortality, are 
used as the proxies for COVID-19 health outcomes. The 
county-level prevalence is the ratio of the confirmed cases 
to the total population in a certain county over a specific 
period, and the county-level mortality is the ratio of the 
deaths to the total population [35]. The unit of these two 
indicators is cases per 1,000 capita ( cases/1, 000cap ). The 
accumulated numbers of the confirmed cases and deaths, 
and population are from the CDC. To detect the impacts 
of long-term living with nature on COVID-19 health out-
comes, the total prevalence and mortality are employed 
based on the accumulated numbers from the first con-
firmed case recorded to Nov. 1st, 2021. Figure 1 illustrates 
the spatial distribution of the total prevalence and mor-
tality. Additionally, we calculated the quarterly preva-
lence and the quarterly mortality from the first quarter 
of 2020 to the third quarter of 2021 to examine the short-
term effects of greenery. Due to some events, such as the 
Election, in certain months in the U.S., a tremendous 
monthly variation exists. To grasp the actual impacts of 
the environment, we, therefore, use the more stable data 
set, which is quarterly. It must be noted that there are 
reductions in the accumulated numbers of confirmed 
cases and deaths in several counties on some days, which 
might be caused by misdiagnosis, duplicate recorded 
by different counties, or other reasons. In the quarterly 
data set with more than 20,000 records, there are only no 
more than 50 reductions. Therefore, to avoid the negative 
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Fig. 1  a The County-level COVID-19 Prevalence (As of Nov. 1st, 2021). b The County-level COVID-19 Mortality (As of Nov. 1.st, 2021)
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prevalence and mortality, we force to set those reduc-
tions zero. (Table S1: Cross-Sectional Data Statistic Sum-
mary, Table S2: Panel Data Statistic Summary, Table S3: 
Data Source in Supplementary Materials).

Land cover data
We extract county-level land cover data from the 
National Land Cover Dataset (NLCD). The NLCD 
archive contains eight-year data sets for the Contiguous 
United States (CONUS) from 2001, 2004, 2006, 2008, 
2011, 2013, 2016, and 2019. These data sets include 20 
land types, but there are four land types, namely, dwarf 
scrub, sedge, lichens, and moss, only in Alaska. In other 
words, in the CONUS, there are 16 other land types: open 
water, perennial ice, developed open space, low-intensity 
developed area, medium-intensity developed area, high-
intensity developed area, barren land, deciduous forest, 
evergreen forest, mixed forest, shrub, grassland, pasture, 
cultivated crops, woody wetlands, and emergent herba-
ceous wetlands (Detailed classification description, see 
https://​www.​mrlc.​gov/​data/​legen​ds/​natio​nal-​land-​cover-​
datab​ase-​2019-​nlcd2​019-​legend). This study considers 
high-intensity and medium-intensity developed areas 
as urban centers and urban areas, respectively. The dif-
ference among the four types of developed areas is the 
proportion of impervious surfaces in every grid. High-
intensity developed area has over 80% impervious surface 
and less than 20% greenery or water. Medium-intensity 
developed area, low-intensity developed area, and devel-
oped open space have 50% – 80%, 20% – 50%, and less 
than 20% impervious surface, respectively.

The average percentages of each land type in the counties 
from the eight-year data set are taken as the land cover data 
in the analyses. At first, the total areas of each land type 
in the counties are obtained by tool in ArcGIS Pro 2.5.0, 
Tabulate Area, using the boundary shapefile from the U.S. 
Census Bureau. Then, they are converted into percentages, 
and every county in the CONUS has eight-year values. 
Finally, we average the values of each county. To probe the 
impacts of natural land cover on the COVID-19 health out-
come and to get around the multicollinearity in the analy-
ses, land cover variables, including open water, developed 
open space, low-intensity developed area, medium-inten-
sity developed area, high-intensity developed area, decidu-
ous forest, evergreen forest, mixed forest, shrub, grassland, 
woody wetlands, and emergent herbaceous wetlands, are 
put into the cross-sectional regressions. (Table S1: Cross-
Sectional Data Statistic Summary).

Normalized difference vegetation index (NDVI) data
To examine the short-term impact of the natural envi-
ronment, we use the monthly NDVI data produced by 

the U.S. National  Aeronautics and  Space  Administra-
tion (NASA). The NDVI is a graphical index to describe 
whether the observed pixel contains live green vegetation. 
This index range from -1 (no live green vegetation, -100%) 
to 1 (rife with live green vegetation, 100%). Although the 
panel land cover data set is desired in our study, the high-
resolution raster is created every two years or longer, and 
there is a delay. Moreover, we also try to obtain the land 
cover data provided by NASA. However, NASA’s land 
cover products are yearly low-resolution, and 2021’s is not 
available. For these reasons, we eventually take the NDVI 
data set as the natural land cover variable in the panel 
regressions. We extract the monthly NDVI value based 
on NASA’s products, MOD13A3 (https://​lpdaac.​usgs.​gov/​
produ​cts/​mod13​a3v006/) and MYD13A3 (https://​lpdaac.​
usgs.​gov/​produ​cts/​myd13​a3v006/), with a 1-km resolu-
tion. Then, the quarterly average values of each county are 
calculated. (Table S2: Panel Data Statistic Summary).

Other potential variables
Twenty-eight other county-level potential variables are 
obtained and controlled in the cross-sectional regres-
sions. They are divided into five classes: political, demo-
graphic, socio-economic, clinical, and meteorological 
aspects. First, the political aspect includes five variables: 
the days of gatherings restrictions, the days of transport 
closing, the days of staying home restrictions, the days 
of international movement restrictions (international 
MoRe), and the days of internal movement restrictions 
(internal MoRe), from the first confirmed case recorded 
to Nov. 1st, 2021. All the political aspect confounders are 
acquired from the R package “COVID19” [36], based on 
the Oxford COVID-19 Government Response Tracker. 
Secondly, the demographic aspect includes six vari-
ables: the percentages of the population within specific 
age ranges, the percentage of black people, the percent-
age of Hispanic people, and the percentage of males. 
The U.S. Census Bureau provides the demographic data. 
Thirdly, the socio-economic aspect contains four vari-
ables: the unemployment rate, the median household 
income of counties, the poverty rate, and the percent-
age of the population without a high school diploma. 
These variables are obtained from the U.S. Department 
of Agriculture. Fourthly, there are eight variables in the 
clinical aspect: poor health rate in 2019, the average 
days of poor physical health in 2019, the average days 
of poor mental health in 2019, smoker rate in 2019, the 
obesity rate in 2019, physical inactivity rate in 2019, 
exercise opportunity rates in 2019, and the numbers of 
hospital beds. These data are acquired from the Uni-
versity of Wisconsin, School of Medicine and Public 
Health. Finally, the meteorological aspect contains five 
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https://lpdaac.usgs.gov/products/myd13a3v006/
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variables: the mean of PM2.5 value during 2000–2016, 
and means of daily temperature and relative humidity 
in summer (June to September) and winter (December 
to February) during 2000–2016. The U.S. Environmen-
tal Protection Agency provides PM2.5 values, and other 
meteorological data are downloaded and extracted from 
Google Climatology Lab. (Table S1: Cross-Sectional 
Data Statistic Summary).

Three other variables, including surface temperature, 
nighttime light (NTL) index, and restriction stringency 
score, are controlled in the panel regression to detect the 
relationship between the county-level NDVI and the quar-
terly mortality and prevalence from the first quarter in 
2020 to the third quarter in 2021. The surface temperature 
is an average value of the monthly day-time and nighttime 
surface temperature extracted from other NASA’s prod-
ucts, MOD11C2 (https://​lpdaac.​usgs.​gov/​produ​cts/​mod11​
c2v006/) and MOD11C2 (https://​lpdaac.​usgs.​gov/​produ​
cts/​myd11​c2v006/) with a 0.05-arc-degree resolution. The 
NTL data are extracted from NASA’s products, VNP46A3 
(https://​ladsw​eb.​modaps.​eosdis.​nasa.​gov/​missi​ons-​and-​
measu​remen​ts/​produ​cts/​VNP46​A3/). The NTL data are 
widely used to represent the economic status of a specific 
region, according to the assumption that the brighter places 
are generally more affluent. Because the quarterly county-
level economic status and prosperity are difficult to acquire, 
we take the NTL index as the substitution. The restriction 
stringency scores of each country are obtained from the 
Oxford COVID-19 Government Response Tracker, which is 
calculated based on the restriction policies, including gath-
ering restrictions, transport closing policies, staying home 
policies, internal MoRe, and international MoRe. (Table S2: 
Panel Data Statistic Summary, Table S3: Data Source).

Methods
Spatial simultaneous autoregressive (SAC) model
We utilize the SAC model to explore the connection 
between natural land cover and COVID-19 health out-
comes in our cross-sectional analysis to estimate the long-
term effect of the natural environment on the COVID-19 
health outcome. The SAC model is an enhanced version 
of the basic model, ordinary least square (OLS), incorpo-
rating spatial consideration. We show the construction 
of the SAC model in a step-by-step manner to facilitate 
understanding. The following equation is the starting 
point, the OLS model, built to analyze the relationships 
between land cover variables and county-level health out-
comes while controlling for other county-level character-
istics without any additional conditions:

(1)CHOi = β0 + β1LC i + β2CON i + εi

where CHOi represents the COVID-19 health outcome, 
either prevalence or mortality, of county i , LC i represents 
a vector of land cover data of county i , CON i represents 
a vector of control variables of county i as control vari-
ables, and εi represents the error term. When mortality 
is taken as the dependent variable, CON i would contain 
the prevalence of county i . In this model β0 , β1 and β2 are 
parameters to be estimated.

To make the model more representative of reality, we 
incrementally incorporate conditions into it. According 
to the significant Breusch-Pagan test results, heterosce-
dasticity exists in the abovementioned model. Because 
COVID-19 is an infectious disease that spreads spatially, 
the residuals of the OLS might also not be spatially ran-
domly distributed. We utilize Moran’s I test for residual 
spatial autocorrelation. According to the test results, the 
significant positive values indicate spatial autocorrela-
tion in the OLS results. In other words, the residuals of 
the OLS are spatially clustered. Spatial models are neces-
sary to address the uneven distribution of residuals.

Spatial models assume the spatial correlations between 
a specific observation and its neighbors. The correlations 
might exist in the dependent variables, the independent 
variables, and/or the error terms [37]. If all these three 
correlations are significant, the OLS model, Eq.  1, will 
change to the Manski model, as follows:

where W i is the spatial weight vector, ρ is the spatial 
autocorrelation coefficient, NECHOi is a vector of the 
COVID-19 health outcome of the neighboring counties 
of county i , NELC i and NECON i are vectors of land 
cover variables and control variables of the neighbor-
ing counties of county i , � is the error spatial depend-
ence coefficient, ui is the part of error term with spatial 
dependence of the neighboring counties of county i , and 
ǫi is the part without spatial dependence. β3 and β4 are 
the parameters to be estimated, similar to β0 , β1 and β2 . 
W i is built as follows:

where Wij is the spatial weight of the neighboring 
county j to county iNEi is the number of neighboring 
counties of county i . Our spatial data are contiguous 
boundaries of each county. In this situation, if they share 
one boundary point, they are deemed as neighbors of 
each other.

(2)
CHOi = �W iNECHOi + �

0
+ �

1
LC i + �

2
CON i

+ �
3
W iNELC i + �

4
W iNECON i + (λW iui + �i)

(3)Wij =
1

NEi
andWij ǫ Wi
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https://lpdaac.usgs.gov/products/myd11c2v006/
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/VNP46A3/
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/VNP46A3/
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The Manski model can be complicated to implement. 
We, therefore, perform several spatial tests to judge 
whether the spatial items are necessary. This test is 
based on the Lagrange multiplier for the spatially lagged 
dependence and the robust Lagrange multiplier for the 
error dependence. The test result shows that both spa-
tially lagged dependence and error dependence are signif-
icant, so the items, ρW iNECHOi and �W iui , is needed 
in the regression. If β3W iNELC i and β3W iNELC i are 
also put into regression, the number of parameters and 
Akaike information criterion (AIC) will dramatically 
increase, eventually leading to overfitting. Thus, the SAC 
model is employed:

In the SAC model, the neighboring counties’ COVID-
19 status affects county i’s, but the county i ’s also 
reversely influences these neighboring counties’. There-
fore, the spatial spillover function is an infinite iterative 
calculation. However, this function is monotonically 
concave and converges towards a certain value. Accord-
ing to the theory and previous studies, 500 iterations are 
enough to estimate the parameter correctly [30, 38]. In 
our calculation, we set the number of iterations 1000 to 
ensure that the convergence value is reached. Further-
more, the parameters estimated by the models involv-
ing a spatially lagged term contain two parts, direct and 
indirect impacts. The direct impacts are the coefficients 
of relationships between a given county’s independent 
and dependent variables, which can be directly calcu-
lated by Eq. 4 without any iteration [38]. Indirect impacts 
refer to the influence that an area has on its neighboring 
areas, which then, in turn, affects the area itself. Each 
time this influence travels back and forth between itself 
and its neighbors is an iteration. The conveyed influence 
decreases with each iteration, leading to convergence of 
the indirect impacts over time. The indirect impacts are 
estimated during the iterations [30, 39]. The sums of indi-
rect impacts and direct impacts are the total impacts of 
the estimated parameters, regarded as the actual coeffi-
cients [39].

Panel SAC Model
To assess the short-term impacts of the natural environ-
ments on the COVID-19 health outcome, we use the 
panel SAC model on the panel data set. The panel model 
selection process is similar to the cross-sectional model 
selection. The only difference is that the panel model 
selection process needs to choose the basic model among 
pooled regression model (PRM), fixed effects model 
(FEM), and random effects model (REM). According to 

(4)
CHOi = �W iNECHOi + �0 + �1LC i + �2CON i + (λW iui + �i)

the F test for individual effects, FEM is better than PRM, 
as the test result is significant. The significant result of 
the Hausman test for the panel model demonstrates that 
FEM is also more rational than REM. Additionally, peo-
ple infected by COVID-19 are contagious. Even though 
having gone to hospitals, they are still able to infect other 
people in the relatively short term. Thus, the health out-
comes are associated with the situation in the previous 
period. Adding a time-lagged term to the panel models 
is required. Accordingly, the FEM is taken as the basic 
model:

where CHOit is the COVID-19 health outcome of 
county i over periodt , LCit is the NDVI indicator of 
county i over periodt , CON it is a vector of control vari-
ables of county i over periodt , CHOit−1 is a vector of the 
COVID-19 health outcome of county i over period t − 1 
(if the dependent variable is the mortality, the CHOit−1 
should encompass both the mortality and the prevalence; 
otherwise, only prevalence should be included), ai is the 
time-invariant variable of countyi , and εit is an error 
term. β1 , β2 and β3 are the parameters to be estimated. 
Similar to OLS, FEM also assumes that the variables are 
spatially independent. However, the locally robust panel 
Lagrange multiplier tests for spatial dependence show 
that both spatially lagged dependence and error depend-
ence significantly exist. Hence, the panel SAC model is 
applied:

where NECHOit is a vector of the COVID-19 health 
outcome of the neighboring counties of county i over 
period t , uit is the part of error term with spatial depend-
ence of the neighboring counties of county i over period 
t , and ǫit is the part without spatial dependence.

Monetary Value of Natural Land Cover on the COVID‑19 
Health Outcomes
The monetary values of natural land cover on the 
COVID-19 Health Outcomes are estimated to illustrate 
the values of the natural environment. An increase in 
natural land cover, such as open water and deciduous 
forest, is associated with a decrease in COVID-19 mor-
tality and prevalence. Previous studies have indicated a 
positive relationship between greenness and COVID-
19 health outcomes [22, 23]. However, there might be a 
trade-off between environmental benefits and economic 
costs. Simply boosting greenness might improve people’s 

(5)CHOit = �1LCit + �2CON it + �3CHO
it−1 + ai + �it

(6)
CHOit = �W iNECHOit + �

1
LCit + �

2
CON it

+ �
3
CHO

it−1 + ai + (λW iuit + �it)
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health, but economic development also requires more 
land for construction. The monetary values can serve as 
a benchmark for creating land use policies, as they can 
provide a framework for weighing the costs and benefits 
of different policy options. In this study, we estimate 
the monetary value of increased natural land cover on 
COVID-19 health outcomes. Assuming that only land 
cover area per capita and household income change, we 
consider the change in household income to balance the 
variation in land cover area per capita as a monetary 
reference for land use policy formation. This method is 
widely used in the implicit evaluation of environmental 
goods, taking health evaluation as the dependent variable 
[17, 31, 40].

The evaluation of monetary value is based on the rela-
tionship between household income and the change 
in land cover, using the concept of marginal rate of 
substitution:

where �LCk is the change of the k land cover, β1k rep-
resents the coefficient of the land cover k , �Incomek is 
the change of household income to offset the shift in land 
cover, and βIncome represents the coefficient of the median 
household income in counties. Assuming that the change 
of land cover is one unit, Eq. 7 is transformed as follows:

where MVk represents the monetary value of the k 
land cover, and Income is the median household income 
in counties. It must be noted that the income variable in 
the regression is a natural logarithm, so the monetary 
values should be different in each county.

Results
Long‑term Relationships between Natural Land Cover 
and the COVID‑19 Health Outcomes
Table  1 demonstrates the result of the SAC model tak-
ing mortality as the dependent variable (Model 1). The 
spatially lagged dependence coefficient (ρ) is negative, 
indicating that a specific county’s mortality is negatively 
correlated with its neighbors’. A high mortality might 
threaten a region to make people carefully prevent the 
COVID-19. The spatially error dependence coefficient 
(λ) is positive, proposing that the ignored variables are 
positively associated. The pseudo R2 of the SAC model 
is 0.598, better than the OLS’s, 0.483. Natural land cover, 
including open water, deciduous forest, evergreen forest, 

(7)
�LCk • β1k

�Incomek • βIncome
= 1

(8)MVk =
β1k

βIncome
• Income

is negatively related to COVID-19 mortality, whose total 
impacts are -0.004, -006, -0.004, respectively. The county 
with more natural land cover in the long term has lower 
mortality. Long-term living in the natural environment 
might improve physical health and immune system. 
However, the developed open space is positively associ-
ated with mortality, and its total impact is 0.020. The 
counties with a high proportion of developed open space 
usually are rural, where medical systems are relatively 
weak. A relatively higher proportion of natural land cover 
could decrease COVID-19 mortality to some degree.

Additionally, several other variables listed in Table  1 
are significant. Prevalence, unemployment rate, the ratio 
of adults without a high school diploma, poor health rate, 
average temperature in summer, average temperature in 
winter, and average relative humidity in summer are posi-
tively correlated with mortality. The positive relationship 
between prevalence and mortality is reasonable. More 
COVID-19 patients cause huge pressure on the medi-
cal systems, and this eventually leads to more deaths. 
The meteorological variables mentioned here depict the 
long-term situation rather than short-term variations. 
Moreover, transport closing restrictions, staying home 
restrictions, the proportion of population ages 15 to 44, 
the ratio of Hispanic people, the ratio of male, median 
household income, average poor mental health days, 
adult smoking rate, and the PM2.5 concentration are neg-
atively associated with the mortality. The adult smoking 
rate is absolutely not the reason for the mortality reduc-
tion. We are concerned that its impacts are masked by 
other variables. According to the correlation test between 
median household income and adult smoking rate, their 
correlation is strongly negative (-0.661). The total impact 
of median household income is much greater than the 
adult smoking rate’s. In this way, the result is still accept-
able. The situation of PM2.5 concentration is similar. The 
high PM2.5 concentration is harmful, which could not 
decrease COVID-19 mortality. There is a significantly 
strong correlation (0.516) between PM2.5 and average rel-
ative humidity in summer.

Table 2 illustrates the result of the SAC model taking 
prevalence as the dependent variable (Model 2). The spa-
tially lagged dependence coefficient (ρ) is negative, and 
the spatially error dependence coefficient (λ) is posi-
tive. The pseudo R2 of the SAC model is 0.599, better 
than the OLS’s, 0.441. The relationships between open 
water, deciduous forest, and mixed forest and the preva-
lence are negative, whose coefficients are -0.164, -0.099, 
-0.278, respectively, tallying with the previous study 
[41]. However, another type of natural land cover, emer-
gent herbaceous wetlands, is positively associated with 
the prevalence, and its total impact is 0.342. We delve 
into the spatial distribution of this land type. This land 
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Table 1  Result of the SAC Model Taking Mortality as the Dependent Variable (Model 1)

Direct Impacts Indirect Impacts Total Impacts

Open Water (%) -0.005646** 0.001527** -0.004119**

(0.002608) (0.000749) (0.001891)

Developed Open Space (%) 0.027805** -0.007519** 0.020286**

(0.013005) (0.003622) (0.00955)

Low Intensity Developed Area (%) -0.011578 0.003131 -0.008447

(0.014244) (0.003925) (0.010375)

Medium Intensity Developed Area (%) -0.019557 0.005289 -0.014268

(0.022297) (0.006103) (0.016285)

High Intensity Developed Area (%) 0.037524 -0.010147 0.027377

(0.026059) (0.007163) (0.019078)

Deciduous Forest (%) -0.008322*** 0.00225*** -0.006071***

(0.002366) (0.000702) (0.001731)

Evergreen Forest (%) -0.005833** 0.001577** -0.004256**

(0.002968) (0.000819) (0.00218)

Mixed Forest (%) -0.00109 0.000295 -0.000795

(0.004576) (0.001245) (0.003342)

Shrub (%) 0.002565 -0.000694 0.001871

(0.002802) (0.000764) (0.00205)

Grassland (%) 0.00028 -7.6e-05 0.000205

(0.002454) (0.000665) (0.001795)

Woody Wetlands (%) 0.000195 -5.3e-05 0.000142

(0.004057) (0.001101) (0.002966)

Emergent Herbaceous Wetlands (%) -0.012675 0.003428 -0.009247

(0.007617) (0.002109) (0.005571)

Prevalence (cap/1000) 0.013011*** -0.003519*** 0.009493***

(0.000635) (0.000428) (0.000589)

Gathering Restrictions (days) -0.000167 4.5e-05 -0.000122

(0.000348) (9.6e-05) (0.000254)

Transport Closing (days) -0.000712*** 0.000193*** -0.00052***

(0.000193) (5.8e-05) (0.000141)

Staying Home (days) -0.002503*** 0.000677*** -0.001826***

(0.000677) (0.000207) (0.000491)

Internal MoRe (days) -0.00295 0.000798 -0.002152

(0.006905) (0.001871) (0.005053)

International MoRe (days) 0.008052 -0.002178 0.005875

(0.006843) (0.001864) (0.005017)

Population 15–44 (%) -0.049464*** 0.013376*** -0.036088***

(0.010133) (0.003108) (0.007561)

Population 45–64 (%) -0.004694 0.001269 -0.003425

(0.013275) (0.003608) (0.009702)

Population >  = 65 (%) 0.005111 -0.001382 0.003729

(0.009735) (0.002657) (0.0071)

Black People (%) -0.004495 0.001216 -0.003279

(0.002839) (0.000796) (0.002063)

Hispanic People (%) -0.016814*** 0.004547*** -0.012267***

(0.003767) (0.001187) (0.002739)

Male (%) -0.036678*** 0.009919*** -0.02676***

(0.010031) (0.002966) (0.007377)
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type is mainly distributed in Florida, Louisiana, Texas, 
and Minnesota, severely suffering from high COVID-
19 prevalence (Figure S1 in Supplementary Materi-
als). Additionally, the medium-intensity developed area 
strongly prevents the spread of COVID-19 since its total 
impact of the prevalence is -1.364. A rational develop-
ment intensity could ensure sufficient medical resources 
in the region and enable residents to connect with the 
natural environment.

Several other control variables are significant and make 
sense in the cross-sectional analysis of the relationship 
between natural land cover and prevalence. Among the 
significant control variables, the days of transport clos-
ing, the ratio of Hispanic people, the ratio of male, obe-
sity rate, physical inactivity rate, the ratio of people who 
have access to exercise opportunities, the numbers of 
hospital beds, average temperature in summer, and aver-
age relative humidity in summer are positively associated 

Table 1  (continued)

Direct Impacts Indirect Impacts Total Impacts

Unemployment Rate 0.04301** -0.011631** 0.031379**

(0.020824) (0.005788) (0.015261)

Median Household Income (logarithm) -1.401255*** 0.378932*** -1.022323***

(0.213768) (0.073119) (0.159606)

Poverty Rate (%) 0.012989 -0.003512 0.009476

(0.00787) (0.002165) (0.005765)

Adults Without High School Diploma (%) 0.019924*** -0.005388*** 0.014536***

(0.005513) (0.001581) (0.004098)

Poor Health Rate (%) 0.063922*** -0.017286*** 0.046636***

(0.017658) (0.00532) (0.012865)

Poor Physical Health (days) -0.184678 0.049941 -0.134737

(0.13012) (0.035925) (0.095069)

Poor Mental Health (days) -0.230416* 0.06231* -0.168106*

(0.115121) (0.032536) (0.083802)

Adult Smoking Rate (%) -0.039115*** 0.010577*** -0.028537***

(0.014334) (0.00408) (0.010518)

Obesity Rate (%) -0.006043 0.001634 -0.004409

(0.006535) (0.001789) (0.004774)

Physical Inactivity Rate (%) 0.008252 -0.002231 0.00602

(0.006747) (0.001842) (0.004942)

Having Access To Exercise Opportunities (%) -0.000961 0.00026 -0.000701

(0.000967) (0.000265) (0.000706)

Hospital Beds (bed/1000) 0.004987 -0.001349 0.003638

(0.003772) (0.001033) (0.002762)

Average Temperature In Summer 0.090952*** -0.024596*** 0.066357***

(0.025327) (0.007782) (0.018243)

Average Temperature In Winter 0.029361* -0.00794* 0.021421**

(0.015092) (0.004276) (0.010973)

Average Relative Humidity In Summer 0.019894*** -0.00538** 0.014514***

(0.007288) (0.002139) (0.005277)

Average Relative Humidity In Winter -0.010229 0.002766 -0.007463

(0.009529) (0.002606) (0.006965)

PM2.5 -0.056104* 0.015172* -0.040932*

(0.03291) (0.009117) (0.024096)

Spatially lagged dependence coefficient (ρ) -0.34506*** Log likelihood -4093.374

Spatially error dependence coefficient (λ) 0.68623*** AIC 8276.7

Number of observations 3103 R2 0.5984

Note: the standard errors of the estimated parameters are list in the parentheses
*** : p < 0.01; **:p < 0.05; *:p < 0.1
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Table 2  Result of the SAC Model Taking Prevalence as the Dependent Variable (Model 2)

Direct Impacts Indirect Impacts Total Impacts

Open Water (%) -0.231923*** 0.068225*** -0.163698***

(0.072038) (0.022512) (0.050807)

Developed Open Space (%) -0.172223 0.050663 -0.12156

(0.360558) (0.107107) (0.254136)

Low Intensity Developed Area (%) 0.480323 -0.141298 0.339026

(0.383814) (0.113723) (0.271906)

Medium Intensity Developed Area (%) -1.931861*** 0.5683*** -1.363562***

(0.590928) (0.180937) (0.422798)

High Intensity Developed Area (%) 0.8496 -0.249929 0.599672

(0.696589) (0.206108) (0.493748)

Deciduous Forest (%) -0.139624** 0.041074** -0.098551**

(0.066787) (0.0202) (0.047203)

Evergreen Forest (%) -0.080339 0.023634 -0.056706

(0.084448) (0.024909) (0.059795)

Mixed Forest (%) -0.394239*** 0.115974*** -0.278265***

(0.133787) (0.041794) (0.094123)

Shrub (%) -0.110582 0.03253 -0.078052

(0.087635) (0.026256) (0.061774)

Grassland (%) -0.03096 0.009108 -0.021853

(0.073891) (0.021978) (0.05206)

Woody Wetlands (%) -0.025476 0.007494 -0.017982

(0.122301) (0.0362) (0.086342)

Emergent Herbaceous Wetlands (%) 0.485201** -0.142733** 0.342469**

(0.224188) (0.066288) (0.160146)

Gathering Restrictions (days) -0.000967 0.000285 -0.000683

(0.010591) (0.003107) (0.007506)

Transport Closing (days) 0.017704*** -0.005208*** 0.012496***

(0.005734) (0.001755) (0.004088)

Staying Home (days) -0.127064*** 0.037379*** -0.089685***

(0.019363) (0.00683) (0.013912)

Internal MoRe (days) 0.157108 -0.046217 0.110891

(0.190666) (0.056357) (0.134936)

International MoRe (days) 0.052411 -0.015418 0.036993

(0.188339) (0.055714) (0.133019)

Population 15–44 (%) -1.532032*** 0.450681*** -1.081351***

(0.282925) (0.092565) (0.20586)

Population 45–64 (%) -1.875023*** 0.551579*** -1.323444***

(0.356314) (0.117443) (0.257433)

Population >  = 65 (%) -2.350508*** 0.691454*** -1.659054***

(0.27225) (0.099596) (0.207722)

Black People (%) -0.463024*** 0.136209*** -0.326815***

(0.080368) (0.027638) (0.057384)

Hispanic People (%) 0.198655* -0.058439* 0.140216*

(0.103038) (0.030637) (0.073239)

Male (%) 3.143065*** -0.924602*** 2.218463***

(0.259911) (0.112796) (0.206971)

Unemployment Rate 0.541061 -0.159165 0.381896

(0.559721) (0.165544) (0.396054)
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with the prevalence, which might favor the dispersal of 
the virus. However, the measures such as transport clos-
ing policies and the number of hospital beds do not 
increase the prevalence but rather help to control the 
spread of COVID-19. Since this analysis is cross-sec-
tional, the transport closing policies are indeed affected 
by the COVID-19 prevalence. The counties with more 
hospital beds generally have more population, which are 
likely to cause community transmission without strict 
prevention policies. Obesity and physical inactivity could 

lead to physical health issues and reduce immunity, 
increasing the infection likelihood. High temperature and 
high humidity might be conducive to keeping the virus 
alive. It must be mentioned that the geographical differ-
ences cause variations in temperature and humidity here. 
Furthermore, staying home policies, the ratios of popula-
tion ages 15 to 44, 45 to 64, and over 65, the ratio of black 
people, median household income, and poverty rate are 
negatively linked with the prevalence. Although the asso-
ciations of the prevalence with the ratios of population 

Table 2  (continued)

Direct Impacts Indirect Impacts Total Impacts

Median Household Income (logarithm) -31.956257*** 9.400638*** -22.555619***

(6.330123) (2.037901) (4.587318)

Poverty Rate (%) -0.422528* 0.124296* -0.298232*

(0.229069) (0.068364) (0.162612)

Adults Without High School Diploma (%) 0.128418 -0.037777 0.090641

(0.14871) (0.044178) (0.105023)

Poor Health Rate (%) 0.416833 -0.122621 0.294212

(0.506967) (0.150881) (0.357505)

Poor Physical Health (days) 2.526838 -0.743325 1.783513

(3.594016) (1.060744) (2.542089)

Poor Mental Health (days) -2.528876 0.743925 -1.784952

(3.319548) (0.981407) (2.34709)

Adult Smoking Rate (%) 0.119984 -0.035296 0.084688

(0.402139) (0.118423) (0.284535)

Obesity Rate (%) 0.363426** -0.10691** 0.256516**

(0.180932) (0.054371) (0.128235)

Physical Inactivity Rate (%) 0.559892*** -0.164705*** 0.395188***

(0.180067) (0.055336) (0.128256)

Having Access To Exercise Opportunities (%) 0.254658*** -0.074913*** 0.179745***

(0.025743) (0.010531) (0.019218)

Hospital Beds (bed/1000) 0.514691*** -0.151408*** 0.363284***

(0.103005) (0.033162) (0.074523)

Average Temperature In Summer 4.442997*** -1.307006*** 3.135992***

(0.774849) (0.28612) (0.528971)

Average Temperature In Winter -0.593354 0.174548 -0.418806

(0.485631) (0.144772) (0.343102)

Average Relative Humidity In Summer 0.510341** -0.150128** 0.360213**

(0.230012) (0.069217) (0.163197)

Average Relative Humidity In Winter -0.350458 0.103095 -0.247363

(0.294551) (0.087423) (0.208419)

PM2.5 1.657234 -0.487512 1.169722

(1.05481) (0.316816) (0.744562)

Spatially lagged dependence coefficient (ρ) -0.38423*** Log likelihood -14,416.31

Spatially error dependence coefficient (λ) 0.76938*** AIC 28,921

Number of observations 3103 R2 0.5990

Note: the standard errors of the estimated parameters are list in the parentheses
*** : p < 0.01; **:p < 0.05; *:p < 0.1
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ages 15 to 44, 45 to 64, and over 65 are all negative, the 
total impact of the ratio of population ages over 65 is the 
largest, followed by the ratio of population ages 45 to 
64. Older people may pay more attention to COVID-19 
prevention because they are more likely to die after the 
infection [13]. The richer counties also have a lower prev-
alence. The poverty rate is significantly correlated with 
the median household income (correlation coefficient: 
0.846), so its real impact is masked by the median house-
hold income.

Short‑term Relationships between NDVI and the COVID‑19 
Health Outcomes
Table  3 shows the result of the panel SAC model tak-
ing mortality as the dependent variable (Model 3). 
The spatially lagged dependence coefficient is nega-
tive, while the spatial error dependence coefficient is 
positive. The R2 of the panel SAC model is 0.290, lower 
than the FEM’s (0.425). However, the spatially lagged 
dependence and error dependence tests point out that 
the panel SAC model is required. We, therefore, still 
use the panel SAC model here as the primary model. 
The NDVI is negatively related to mortality, whose total 
impact is -0.003. In other words, if the live green veg-
etation in the counties increases, COVID-19 mortality 
would decrease, and more people could survive, con-
sistent with the previous study [42]. The prevalence in 
the current and previous periods causes more deaths, 
whose coefficients are 0.007 and 0.003, respectively. 

The mortality in the previous period is negatively asso-
ciated with the mortality in the current period, whose 
coefficient is -0.084, indicating that the public could 
notice the caveats from the high mortality, and the gov-
ernments might reallocate medical resources to pre-
vent a further increase in deaths. The strict restriction 
is seemingly linked with more deaths. Of course, the 
higher mortality also leads to more stringent restric-
tions. The short-term average temperature is nega-
tively correlated with mortality. It must be noted the 
short-term average temperature here is different from 
the temperatures used in Model 1. The variations in 
the temperatures used in Model 1 are mainly caused 
by geographical and spatial differences of the counties. 
For example, a county in Florida is generally warmer 
than a county in North Dakota. Yet, the variation of the 
temperatures shown here is induced by temporal differ-
ences. For instance, in a county, the average tempera-
ture during the summer season is typically higher than 
in the winter. Thus, the negative relationship between 
temperature and mortality could be explained that the 
COVID-19 patients are more likely to die in the win-
ter. The NTL indicates the prosperity of counties. The 
NTL should be higher if the counties return to the life-
styles of pre-COVID-19 from the restrictions. If com-
munity transmission exists in those counties, it would 
be an outbreak, and the mortality would dramatically 
increase.

Table 3  Result of the Panel SAC Model Taking Mortality as the Dependent Variable (Model 3)

Note: the standard errors of the estimated parameters are list in the parentheses
*** : p < 0.01; **:p < 0.05; *:p < 0.1

Direct Impacts Indirect Impacts Total Impacts

Prevalence (cases/1000) 0.012166*** -0.00549*** 0.006676***

(0.000291) (0.000177) (0.00017)

Restriction Stringency -0.000899* 0.000406* -0.000493*

(0.000477) (0.000216) (0.000261)

NDVI (%) -0.005547*** 0.002503*** -0.003044***

(0.001112) (0.000507) (0.000608)

Temperature (℃) -0.028789*** 0.012991*** -0.015798***

(0.002458) (0.001142) (0.001359)

NTL 0.022852*** -0.010312*** 0.01254***

(0.003825) (0.001748) (0.002094)

Time Lag of Prevalence (cases/1000) 0.004716*** -0.002128*** 0.002588***

(0.000319) (0.000152) (0.000176)

Time Lag of Mortality (cases/1000) -0.153623*** 0.069323*** -0.084301***

(0.006957) (0.003522) (0.003843)

Spatially lagged dependence coefficient (ρ) -0. 692,590*** R2 0.2895

Spatially error dependence coefficient (λ) 0. 8,325,688***

Number of observations 18,612 (N:3102)
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Table 4 lists the result of the panel SAC model taking 
prevalence as the dependent variable (Model 4). Differ-
ent from the abovementioned results, in this result, the 
spatially lagged dependence coefficient is positive. In the 
short term, the COVID-19 virus spreads spatially with-
out too much prevention because the short-term preva-
lence of a specific county is strongly positively correlated 
with its neighbors’. Moreover, the negative spatially error 
dependence coefficient indicates a negative association 
of ignored variables. The R2 of the panel SAC model is 
0.867, much better than the FEM’s (0.470). The negative 
NDVI total impact (-0.076) means the natural environ-
ment is associated with fewer patients. The high mortality 
leads to strict restrictions, so their relationship is positive 
(0.716). The low temperature reduces the infected peo-
ple, whose coefficient is -2.544, aligning with the previous 
study [43]. The lagged prevalence is also negatively linked 

with the current prevalence. The high prevalence warns 
people to prevent the disease actively. The busy counties 
have a high NTL, and their residents have more chance 
of getting infected due to the unrigorous prevention.

Impacts and Monetary Values of Natural Land Cover
With adequate natural land cover, mortality is lower. 
According to Model 1, a 1% increase in the ratio of 
open water in a county is associated with a 0.004-death 
decrease in the deaths due to COVID-19 per 1,000 capita 
in that county, shown in Table 5. Moreover, a 1% increase 
in the ratio of deciduous or evergreen forests is linked 
with a 0.006- or 0.004-death decrease in the deaths per 
1,000 capita, respectively. However, a 1% increase in the 
ratio of developed open space is related to 0.020-death 
in deaths per 1,000 capita. Moreover, natural land cover 
and rational development intensity are also associated 

Table 4  Result of the Panel SAC Model Taking Prevalence as the Dependent Variable (Model 4)

Note: the standard errors of the estimated parameters are list in the parentheses
*** : p < 0.01; **:p < 0.05; *:p < 0.1

Direct Impacts Indirect Impacts Total Impacts

Restriction Stringency 0.074928*** 0.640949*** 0.715876***

(0.00503) (0.047759) (0.052521)

NDVI (%) -0.023987*** -0.205187*** -0.229173***

(0.007182) (0.061738) (0.068894)

Temperature (℃) -0.266258*** -2.277629*** -2.543887***

(0.01654) (0.160078) (0.175634)

NTL 0.268543*** 2.297171*** 2.565714***

(0.023367) (0.21224) (0.234801)

Time Lag of Prevalence (cases/1000) -0.068076*** -0.582332*** -0.650408***

(0.004417) (0.042491) (0.046665)

Spatially lagged dependence coefficient (ρ) 0.8325688*** R2 0.8673

Spatially error dependence coefficient (λ) -0.692590***

Number of observations 18,612 (N:3102)

Table 5  The Impacts of Natural Land Cover Change on the Health Outcomes

Model Land Cover Variable Health Outcome Impacts of Health 
Outcome

95% Confidence Interval

Model 1 Open Water (%) Mortality -0.00412 (-0.00782—-0.00041)

Developed Open Space (%) 0.02029 (0.00157—0.039)

Deciduous Forest (%) -0.00607 (-0.00946—-0.00268)

Evergreen Forest (%) -0.00426 (-0.00853—2e-05)

Model 2 Open Water (%) Prevalence -0.1637 (-0.26328—-0.06412)

Medium Intensity Developed Area (%) -1.36356 (-2.19225—-0.53488)

Deciduous Forest (%) -0.09855 (-0.19107—-0.00603)

Mixed Forest (%) -0.27826 (-0.46275—-0.09378)

Emergent Herbaceous Wetlands (%) 0.34247 (0.02858—0.65636)

Model 3 NDVI (%) Mortality -0.00304 (-0.00424—-0.00185)

Model 4 NDVI (%) Prevalence -0.22917 (-0.3642—-0.09414)
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with fewer confirmed cases, aligning with the previ-
ous study [41]. A 1% increase in the ratio of open water, 
medium intensity developed area, deciduous forest, or 
mixed forest is correlated with a 0.164-, 1.364-, 0.099-, or 
0.278-case(s) decrease in the COVID-19 confirmed cases 
per 1,000 capita, based on Model 2. But a 1% increase 
in the ratio of emergent herbaceous wetlands is asso-
ciated with a 0.342-case increase. Furthermore, a 1% 
short-term increase in NDVI, namely greenery, leads to a 
0.003-death decrease in the deaths per 1,000 capita over 
a certain period, according to Model 3. A 1% short-term 
increase in NDVI causes a 0.229-case decrease in the 
confirmed cases per 1,000 capita.

The value of improving natural environments is still 
challenging to be understood by the public without pro-
fessional knowledge. To make well inform them, the coef-
ficients of natural land cover are converted into monetary 
values. According to Model 1, a 1% increase in the ratio 
of open water, deciduous forest, or evergreen forest in a 
county is equivalent to an about 212-USD, 313-USD, or 
219-USD increase in household income in that county, 
respectively, listed in Table 6. A 1% increase in the ratio 
of developed open space is associated with a rough 1045-
USD decrease in household income. Based on Model 2, 
a 1% increase in the ratio of open water, medium inten-
sity developed area, deciduous forest, or mixed forest is 
related to an approximately 382-USD, 3183-USD, 230-
USD, or 650-USD, respectively. However, a 1% increase 
in emergent herbaceous wetlands correlates with a 799-
USD decrease in household income.

Discussion
Several natural land types are negatively associated 
with the spread of COVID-19 and the reduction in 
deaths due to COVID-19. Our results indicate that 
the presence of more open water and deciduous for-
ests is linked to a lower spread of COVID-19 and fewer 
deaths caused by the disease in the long term. Moreo-
ver, a county with more evergreen forests and mixed 

forests is apt to have fewer confirmed cases or deaths. 
However, emergent herbaceous wetlands are seem-
ingly positively correlated with the prevalence because 
of their spatial distribution. The development intensity 
also affects the county-level prevalence and mortality. 
To confirm whether these relationships happen to be 
statistical correlations, we further delve into the rela-
tionship between the COVID-19 health outcome and 
short-term average greenery, namely NDVI. The results 
suggest that a high NDVI in a country is associated with 
lower prevalence and mortality of COVID-19 in the 
short term, confirming the positive impact of natural 
environments on COVID-19 health outcomes. Further-
more, the relatively better status, such as more green-
ery and high household income, in a county may have a 
lower likelihood of experiencing COVID-19 cases and 
deaths, but it might also attract more people, including 
patients, because their direct and indirect impacts are 
in the opposite direction. Therefore, effective restric-
tion policies are needed to reduce COVID-19’s impacts, 
even though the basic conditions in a specific place are 
better than the average level.

Several recent studies argue that green space may be a 
critical factor in the COVID-19 pandemic. An increase in 
urban vegetation is associated with a decrease in cumula-
tive COVID-19 cases in the U.S. [23, 41]. The presence 
of parks and green spaces encourages physical activity, 
positively associated with human health [22, 44]. The 
COVID-19 infection is related to the ecological environ-
ment in South Korea [45]. However, previous studies 
mainly focus on a single index, such as NDVI or dis-
tance to park, and are primarily cross-sectional [22, 23]. 
In contrast, our study incorporates all types of land and 
employs a panel data set to analyze the impact of green-
ness on COVID-19 health outcomes, providing a more 
comprehensive and nuanced view that can inform land-
use policies.

The importance of natural environments in the 
COVID-19 pandemic is illustrated in our research. 

Table 6  The Monetary Values of Natural Land Cover Change on the Health Outcomes

Model Land Cover Variable Health Outcome Monetary Value 95% Confidence Interval

Model 1 Open Water (%) Mortality 212 (-274—698)

Developed Open Space (%) -1045 (-1531—-559)

Deciduous Forest (%) 313 (-173—799)

Evergreen Forest (%) 219 (-267—705)

Model 2 Open Water (%) Prevalence 382 (-104—868)

Medium Intensity Developed Area (%) 3183 (2697—3669)

Deciduous Forest (%) 230 (-256—716)

Mixed Forest (%) 650 (164—1136)

Emergent Herbaceous Wetlands (%) -799 (-1286—-313)
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According to our analyses, the natural environment 
may play a practical part in cutting down COVID-19 
prevalence and mortality. In a way, our finding pro-
vides evidence for the previous perspectives and stud-
ies [15, 44, 46, 47]. Greenspace has effects on physical 
activity, obesity, mental health, cardiovascular out-
comes [27], air pollution [48], and even human well-
being [17, 49], especially in people living or working 
in high-intensity developed areas. These factors are 
associated with the possibility of several medical con-
ditions, like cardiovascular and respiratory diseases, 
which may ultimately aggravate the severity of symp-
toms after being infected by the COVID-19. Based 
on these findings, policymakers could make the pre-
vention and control measures more flexible to reduce 
the negative impacts of those strategies. An increase 
in natural land cover may improve public health but 
negatively affect the economics. To provide a clearer 
understanding of the trade-off between health benefits 
and economic cost, we estimate the monetary value of 
the land cover on health outcomes. To sum up, adding 
more green spaces to living environments should be 
considered in future urban planning, achieving several 
Sustainable Development Goals (SDGs) [50, 51].

An increase in natural land cover in living environ-
ments might not directly prevent the spread of COVID-
19, but it improves public health status. In other words, 
with more natural land cover, people may have fewer 
clinical factors associated with a high risk of death 
infected by COVID-19 [13]. Therefore, these strategies 
would also prevent outbreaks of other diseases in the 
future. In this way, an increase in green space and reduc-
ing development intensity at least help achieve SDG 3 
(good health and well-being) and 11 (sustainable cities 
and communities).

There are some limitations worth noting in this study. 
Firstly, some potential factors may be overlooked or 
unable to be obtained, although we have already con-
trolled 28 county-level variables in the cross-sectional 
analyses. Secondly, the resolution of land cover and 
the lag of these data increase the uncertainty because 
the latest land cover data are from 2019, with a resolu-
tion of 30  m [52, 53]. Thirdly, the COVID-19 data are 
county-level data, possibly resulting in an ecological 
fallacy. Fourthly, since the models are based on FEM, 
all variables should be panel data with temporal varia-
tions in the panel analyses. So only a fewer variables are 
controlled. Future studies are better to use finer-scale 
or even individual-level data to detect the causal inter-
pretation of the associations discussed in this article. 
The physical mechanisms that natural land cover affects 
the spread of contiguous diseases, similar to COVID-
19, should be deeply investigated. Additionally, the 

specific costs and benefits of increasing natural land 
cover to achieve SDGs need further estimations.

Conclusion
Our results indicate that natural land cover could reduce 
COVID-19 prevalence and mortality in both the long 
and short terms. A 1% increase in the ratio of open 
water, deciduous forest, or evergreen forest is linked 
with a 0.004-, 0.006-, or 0.004-death decrease in mortal-
ity, equivalent to a 212-, 313-, or 219-USD increase in 
the household income, respectively. Moreover, in terms 
of prevalence, a 1% increase in the ratio of open water, 
deciduous forest, or evergreen forest is worth 382, 230, or 
650 USD, respectively. A rational development intensity of 
residential areas is also an effective approach to cut down 
deaths and confirmed cases. The relationships between 
short-term variations of greenery and COVID-19 health 
outcomes strength that natural environments could help 
prevent the spread of COVID-19 and reduce mortal-
ity. A 1% increase in quarterly NDVI is associated with a 
0.003-death and 0.229-confirmed-case decrease per 1,000 
people. Our research highlights that governments can 
mitigate the impacts and risks of future pandemics and 
improve public health by increasing the presence of natu-
ral land types such as open water and deciduous forest.
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