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Abstract 

Background  The spread of the COVID-19 (SARS-CoV-2) and the surging number of cases across the United States 
have resulted in full hospitals and exhausted health care workers. Limited availability and questionable reliability of 
the data make outbreak prediction and resource planning difficult. Any estimates or forecasts are subject to high 
uncertainty and low accuracy to measure such components. The aim of this study is to apply, automate, and assess a 
Bayesian time series model for the real-time estimation and forecasting of COVID-19 cases and number of hospitaliza-
tions in Wisconsin healthcare emergency readiness coalition (HERC) regions.

Methods  This study makes use of the publicly available Wisconsin COVID-19 historical data by county. Cases and 
effective time-varying reproduction number Rt by the HERC region over time are estimated using Bayesian latent vari-
able models. Hospitalizations are estimated by the HERC region over time using a Bayesian regression model. Cases, 
effective Rt, and hospitalizations are forecasted over a 1-day, 3-day, and 7-day time horizon using the last 28 days of 
data, and the 20%, 50%, and 90% Bayesian credible intervals of the forecasts are calculated. The frequentist coverage 
probability is compared to the Bayesian credible level to evaluate performance.

Results  For cases and effective Rt , all three time horizons outperform the three credible levels of the forecast. For 
hospitalizations, all three time horizons outperform the 20% and 50% credible intervals of the forecast. On the con-
trary, the 1-day and 3-day periods underperform the 90% credible intervals. Questions about uncertainty quantifica-
tion should be re-calculated using the frequentist coverage probability of the Bayesian credible interval based on 
observed data for all three metrics.

Conclusions  We present an approach to automate the real-time estimation and forecasting of cases and hospitaliza-
tions and corresponding uncertainty using publicly available data. The models were able to infer short-term trends 
consistent with reported values at the HERC region level. Additionally, the models were able to accurately forecast 
and estimate the uncertainty of the measurements. This study can help identify the most affected regions and major 
outbreaks in the near future. The workflow can be adapted to other geographic regions, states, and even countries 
where decision-making processes are supported in real-time by the proposed modeling system.
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Background
The COVID-19 (SARS-CoV-2) global pandemic was 
first reported in Wuhan, China in December 2019, and 
reached the United States in mid-January 2020 [1]. 
By February of 2020 community level transmission 
was already a concern in the U.S [1]. The spread of the 
COVID-19 and surging number of cases across the US 
have resulted in overtaxed healthcare systems. As of 
November 1, 2021, more than 46 million people in the 
United States have been infected with SARS-CoV-2, 
almost 750,000 have died, and approximately 50,000 are 
hospitalized daily [1, 2].

Different efforts to mitigate the negative impacts of 
the pandemic using public data have been done. Many 
of them have been reported in a dashboard format with 
the objective of display real-time updates [3–7]. How-
ever, limited availability and questionable reliability of 
data make this reporting difficult [8]. Therefore, outbreak 
prediction and resource planning are in need of accurate 
modelling approaches. Such prediction models provide 
tracking of the pandemic stages with the aim to improve 
decision-making process by the public health authorities.

Autoregressive and time series approaches are a com-
mon feature for many prediction and forecasting strat-
egies [9, 10]. During the early stages of the pandemic, 
simpler models used deterministic parameters for fitting 
a curve to the raw data [11, 12]. Other approaches used 
compartmental models assuming homogeneous mixing 
of the population or closed population while ignoring 
covariates affecting the infections dynamics [13–19]. Spe-
cifically, Susceptible-Exposed-Infectious-Removed (SEIR) 
model have been used to describe the spread of the virus 
and compute the number of infected, recovered, and dead 
individuals based on the number of contacts, probability 
of disease transmission, incubation period, recovery rate, 
and fatality rate [20]. SEIR models and its variants have 
been applied to different scenarios including measles in 
Niger, pertussis in the United States, and syphilis in China 
as well as estimating current COVID transmission and 
forecasting case counts [20–26].

Nevertheless, the SEIR modeling framework are not 
consistent with all COVID-19 pandemic features and 
the outbreak dynamics are subject to various param-
eters where information is not available or incomplete 
[27]. Moreover, movement between locations, mix-
ing within location, age structure, and super-spreader 
events must be explicitly included into the model [28]. 
Model specification can be challenging since transmis-
sion rates are generally defined to be constant and does 
not account for all possible transmission pathways. Poor 
data input, wrong modeling assumptions, high sensitiv-
ity of estimates, and lack of incorporation of epidemio-
logical features are a few of the issues regarding epidemic 

forecasting [29]. SEIR models do not consider the report-
ing delay of cases and hospitalizations in the predictions. 
Therefore, estimates or forecasts are subject to uncer-
tainty and imperfect accuracy when projecting such data.

An empirical Bayes implementation has been shown to 
produce accurate forecasts [30, 31]. Furthermore, Bayes-
ian approaches has been shown to be flexible where a 
model can estimate the cross-sectional distribution for 
covariates and then forecast metrics for time series data 
[32]. However, more sophisticated modeling approaches 
are required to make the pandemic prediction and fore-
casting feasible [27].

For all modelling approaches aimed at forecasting 
SARS-CoV-2 cases and hospitalizations, uncertainty is 
propagated from all inputs [33]. These sources of varia-
tion include delay between positive test and hospitaliza-
tion, reporting delay between symptomatic and positive 
test, as well as incubation period and generation time 
[34, 35]. Predictions accounting for the uncertainty in the 
final parameter estimates are needed.

The study aims to apply, assess, and automate a work-
flow for the real-time estimation and forecasting of 
COVID-19 cases and hospitalizations using Wisconsin 
HERC regions data. Positive cases are corrected by data 
cleaning and time series smoothing using generalized 
additive models. The time-varying effective reproduc-
tion number is estimated by using a Bayesian latent vari-
able model [33, 36]. Finally, hospitalization admissions 
are estimated using a Bayesian generalized non-linear 
multivariate multilevel model. The study is designed, 
developed, and implemented to anticipate future surges 
and prevent COVID-19 outbreaks in Wisconsin using 
early prediction and accurate forecasting. Such tools 
help public health officials and other decision-makers to 
implement preventive strategies and to improve response 
measures regarding the growth and spread of COVID-19 
without overwhelming healthcare systems.

Methods
Data
The Emergency Medicine (EM) Resources and 
COVID-19 Historical Data by County for Wiscon-
sin datasets are used to estimate the cases and hos-
pitalizations [37]. The datasets include information 
including name of the geographic boundary, date 
and time when data have been last updated and pub-
lished, number of people who have tested negative for 
SARS-CoV-2 RNA, the number of confirmed cases of 
COVID-19, the number of hospital admissions with 
confirmed COVID-19. All results from diagnostic and 
confirmatory tests to detect the RNA of SARS-CoV-2 
virus causing COVID-19 for Wisconsin residents 
are reported to the Wisconsin Department of Health 
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Services (DHS), then entered and aggregated by the 
Wisconsin Electronic Disease Surveillance System 
(WEDSS). COVID-19 cases are defined by the Cent-
ers for Disease Control and Prevention (CDC) [38]. If 
a person had more than one positive result based on 
the standard diagnostic test, such cases are counted as 
a confirmed case only once. The data are preprocessed 
to clean and validate the dataset before estimating the 
effective Rt and cases. The missing values are imputed 
using linear interpolation by fitting a line between last 
and next observed values. The monotonicity issue of 
ascending cumulative cases because of removing or 
reassigning cases after receiving new information is 
remedied by retroactively correcting for decrease in 
cumulative cases. The number of new positive cases 
is smoothed using generalized additive models for 
test positivity by date based on a quasibinomial fam-
ily [39, 40]. The corrected positive cases are calculated 
by taking the product of the new positive cases and a 
correction factor described below adjusting for under-
reporting [41–43]. The correction factor is specific to 
the Wisconsin dataset and defined as the ratio of the 
smoothed test positivity for a given county on a given 
day and the 2.5 percentile of smoothed test positivities 
for all counties on the same date. The data are filtered 
to include the time period from September 20, 2020 
to December 6, 2020 corresponding to a COVID-19 
surge in Wisconsin. The data are aggregated by health-
care emergency readiness coalition (HERC) regions 
of a core group of hospitals and healthcare organiza-
tions, local and tribal public health agencies, state, 
regional, and local and tribal emergency manage-
ment, and emergency medical services, as well as addi-
tional members. Wisconsin has seven HERC regions 
that support communities during disasters and other 
health-related crises by allocating resources [44]. The 
positive cases corrected for missing values, monoto-
nicity, and test positivity are directly used to estimate 
the cases, effective reproduction number, and hospi-
talizations as illustrated in Fig. 1.

Estimated cases by date of infection and time‑varying 
effective reproduction number Rt
The time-varying effective reproduction number Rt is 
estimated using a Bayesian latent variable model from a 
range of open-source tools and current best practices [33, 
36]. The model assumes that limited time series data for 
case counts are available by date of symptom onset and 
instead uses date of report. The data are then imputed to 
case counts by date of infection using a frequency distri-
bution for the reporting delay and incubation period as 
described below. Binomial upscaling was used to increase 
the estimated numbers of case onsets close to the present 
to account for right truncation. Time-varying estimates 
of the reproduction number are estimated by date of 
infection including uncertainty from a frequency distri-
bution for the generation time as described below. The 
time-varying reproduction number is forecasted 7-days 
forward in time to remain constant. The Rt and the corre-
sponding case forecasts are implemented in the R pack-
age EpiNow2 [45].

The initial number of infections is estimated using a 
prior distribution based on the initial number of cases. 
Previous infections are weighted by the generation time 
probability mass function (w), summed, and multiplied 
by the Rt for the infections at time t ( It ). A log normal 
prior distribution with mean 1 and standard deviation 
1 is used for the reproduction number ( R0 ). The infec-
tion trajectories are used to calculate mean reported 
cases ( Dt ) for each incubation period and report delay 
distribution (convolved into ξ ). Observed reported cases 
( Ct ) are generated from a negative binomial distribution 
with a mean Dt multiplied by a day of the week effect 
( ω(t mod 7) ) and an overdispersion parameter φ . An expo-
nential prior distribution with mean 1 is used to gener-
ate the overdispersion parameter φ . Lastly, randomness 
is introduced using an approximate Gaussian process 
with a squared exponential kernel (GP) [33, 36]. The 
equations for estimating the time-varying reproduc-
tion number Rt and nowcasting reported infections are 
defined below.

Fig. 1  Workflow for estimating and forecasting cases and hospitalizations by Wisconsin HERC region
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A log-normal distribution is fit to estimate the report-
ing delay with appropriate uncertainty using 100 sub-
sampled bootstraps of a log-normal distribution of µ = 6 
and σ = 1 [41–43]. For computational purposes, the 
maximum allowed delay is set to be 30 days. Each date 
is rounded to the nearest day and truncated to the maxi-
mum observed delay accounting for left and right censor-
ing. The generation time follows a gamma distribution 
with a mean of 3.6 days and a standard deviation of 3.1 
days and the incubation period follows a log-normal dis-
tribution with a mean of 1.6 days and a standard devia-
tion of 0.418 days [34, 35]. 

The time-series is truncated to include the last 28 days 
of data and a rolling average for the prior of 7 days is 
taken based on reported cases. The effective Rt is fitted 
every week and forecasted over a 1-day, 3-day, and 7-day 
time horizon, then transformed into a case forecast. 
The parameters of the Gaussian process kernel are esti-
mated during model fitting. The prior on the magnitude 
is standard normal. Each timeseries is fit independently 
using Markov-chain Monte Carlo (MCMC). Two chains 
are used with a warmup of 200 each and 1000 samples 
post warmup. Convergence is assessed using the R hat 
diagnostic.

Estimated hospitalization by date of admission
The number of hospitalization admissions is estimated 
using a Bayesian generalized non-linear multivariate 
multilevel model implemented in the R package brms 
[46]. A log-normal distribution is fit to estimate the hos-
pitalization ( Ht ). A flat prior for each region µt is used. 
The model is fit with a smoothing term for the date ψt 
to estimate the local linear trend and a random effect 
term for day of the week γt to estimate the seasonal pat-
tern. The prior on the random effect term is defaulted to 
student-t with a mean of 0, a standard deviation of 2.5, 
and 3 degrees of freedom. For computational purposes, 
the time-series is truncated to include the last 28 days of 
data by date of admission and the hospitalization is fit-
ted every week and forecasted over a 1-day, 3-day, and 
7-day time horizon. Each timeseries is fit independently 
using Markov-chain Monte Carlo (MCMC). Two chains 
are used with a warmup of 1000 each and 1000 samples 
post warmup. Convergence is assessed using the R hat 

Rt ∼Rt−1 ×GP

It =Rt

τ

wτ It−τ

Dt =

τ

ξτ It−τ

Ct ∼NB Dtω(t mod 7),φ

diagnostic. The equations for nowcasting hospitalization 
admissions are defined below.

Computed coverage probability of the Bayesian credible 
interval
The Bayesian credible interval is the range of values from 
the posterior distribution containing the credible prob-
ability, given the observed data at a specific level. The 
coverage probability is the proportion of values for Rt , 
cases, and hospitalizations that are contained in the fore-
casted credible interval [47]. The Rt , cases, and hospitali-
zations are forecasted over a 1-day, 3-day, and 7-day time 
horizon using the last 28 days of data, and the 20%, 50%, 
and 90% Bayesian credible intervals of the forecasts are 
calculated. The credible probability of the Rt and cases 
is the proportion of the Bayesian credible interval that 
contains their respective estimated median values. The 
estimated median values for Rt and cases are computed 
for the dates of interest using the model fitted the data 
14 days later. In contrast, the credible probability of the 
hospitalizations uses their observed values instead of the 
estimated median values.

Software requirements
All analyses are performed using the statistical pro-
gramming language R version 4.0.3 [48]. The analy-
ses include estimating the effective Rt , cases, and 
hospitalizations by date of infection as well as auto-
mating the workflow and building an interactive for 
the effective Rt time series data by Wisconsin HERC 
regions. The EM Resources and COVID-19 Historical 
Data by County datasets are retrieved from the Wis-
consin Department of Health Services and cleaned 
prior to calculating the adjusted case counts and 
plotting the effective Rt , cases, and hospitalizations 
using the R package tidyverse version 1.3.0 [49]. All 
real-time case counts and time-varying epidemio-
logical parameters are computed by means of the R 
package EpiNow2 version 1.1.0 [45] implementing a 
Bayesian latent variable approach using Stan. Cor-
recting reported cases for under-reporting is per-
formed using the R package mgcv version 1.8-33 [50]. 
All real-time hospitalization counts are computed by 
means of the R package brms version 2.15.0 [46, 51] 
fitting a Bayesian regression model using Stan. All 
visualizations are created using the R package ggplot2 
version 3.3.2 [52] and translated to add interactivity 
by means of the R package plotly version 4.9.2.2 [53] 
powered by the JavaScript library plotly.js. The two R 

Ht =µt + γt + εt

µt =µ+ ψt + ηψ ,t
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packages are used to apply the consistent and expres-
sive interface for exploring statistical summaries 
across Wisconsin counties. Geofaceting of the HERC 
regions map for the state of Wisconsin is performed 
using the R package geofacet version 0.2.0 [54]. All 
analyses described above are updated daily for each 
region and the visualization is implemented as a web-
page: https://​data-​viz.​it.​wisc.​edu/​cases-r-​hosp-​geofa​
cet-​wi-​region/ [55].

Results
All models are fitted every week and forecasted over a 
1-day, 3-day, and 7-day period during the peak of the 
epidemic from September 20, 2020 to December 6, 
2020 (Figs.  2, 3 and 4). The plots are geofaceted such 
that the panels in the grid are arranged by the geo-
graphic orientation of the regions. The forecasted 
median values of the measures are encoded by the blue 
lines and the estimated median value of the measures 
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Fig. 2  Geofacet of time series data for estimated and forecasted cases. Geofacet of time series data for estimated and forecasted cases by Wisconsin 
HERC region generated from September 20, 2020 to December 6, 2020
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Fig. 3  Geofacet of time series data for estimated and forecasted effective Rt . Geofacet of time series data for estimated and forecasted effective Rt 
by Wisconsin HERC region generated from September 20, 2020 to December 6, 2020
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for the respective dates are encoded by the red points. 
The 20%, 50%, and 90% Bayesian credible intervals of 
the forecasts are depicted by the dark gray, medium 
gray, and light gray respectively. For cases, the respec-
tive coverage probabilities is greater than all three 
credible levels for all three forecasts (Fig. 2). The 7-day 
period (20% CrI: 0.324, 50% CrI: 0.707, 90% CrI: 0.986) 
performs slightly better than both the 1-day period 
(20% CrI: 0.302, 50% CrI: 0.683, 90% CrI: 0.968) and the 
3-day period (20% CrI: 0.302, 50% CrI: 0.677, 90% CrI: 
0.979). Overall, the credible intervals underestimates 
the coverage where the forecasts are more accurate 
than expected such that reported intervals are much 
wider than necessary.

Similarly, for effective Rt , the respective coverage prob-
abilities is greater than all three credible levels of the 
forecast for all three forecasts (Fig. 3). The 7-day period 
(20% CrI: 0.263, 50% CrI: 0.705, 90% CrI: 0.970) overall 
performs slightly better than the 1-day period (20% CrI: 
0.254, 50% CrI: 0.698, 90% CrI: 0.968) and 7-day period 
(20% CrI: 0.270, 50% CrI: 0.698, 90% CrI: 0.968). Like-
wise, the credible intervals underestimate the coverage 
for effective Rt similar to cases.

For hospitalizations, a Bayesian generalized non-lin-
ear multivariate multilevel model is fitted using region 
and day of the week and smoothing over date. The best 
model is determined by coverage probability of the 
90% credible interval of the forecast. The respective 
coverage probabilities is greater than the 20% and 50% 
credible interval of the forecast for all three forecasts 

(Fig. 4). However, the 1-day and 3-day period underper-
forms the 90% credible interval. Only the 1-day period 
(20% CrI: 0.631, 50% CrI: 0.762, 90% CrI: 0.905) outper-
forms all three credible level of the forecast and per-
forms considerably better than the 3-day period (20% 
CrI: 0.575, 50% CrI: 0.702, 90% CrI: 0.845) and 7-day 
period (20% CrI: 0.563, 50% CrI: 0.689, 90% CrI: 0.847). 
Note, the vast majority of hospitalizations are admitted 
in the Southeast HERC region during the time period 
of interest. The addition of other population-associ-
ated measures including cases by age groups generated 
slight worse results based on coverage probability and 
omitted from further analysis.

However, the 20%, 50%, and 90% credible intervals 
underestimate the true coverage probabilities for cases, 
Rt , and hospitalizations and 1-day, 3-day, and 7-day 
horizons except for two of the forecasts. The under-
estimation of the coverage probabilities by the cred-
ible intervals correspond to the data points above the 
dashed gray line in Fig. 5. Only the 90% credible inter-
val overestimate the true coverage probabilities for only 
hospitalizations at 3-day and 7-day horizons and cor-
responds to the two data points below the dashed gray 
line in Fig.  5. Therefore, the question of uncertainty 
quantification should be restated as the frequentist 
coverage probability of the Bayesian credible interval 
based on the observed data. Consequently, a coverage 
probability of 0.90 on the y-axis corresponds to a cred-
ible level of 0.80 for cases on the x-axis interpolated 
between the credible levels of 0.50 and 0.90.
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Discussion
Publicly available data are used for real-time estimation 
of key metrics and visualizations to support decision 
making processes in public health [3–7, 56]. Tradition-
ally, compartment models are used for modeling infec-
tious diseases and many public health decision making 
tools do not use real-time data or require user-defined 
inputs of key model parameters [13–19, 57–60]. Other 
decision tools provide real-time estimates of epidemic 
parameters such as the cumulative number of infections, 
but no uncertainty measure [13, 14, 59].

Reliable forecasts are necessary to support health care 
organizations and public health agencies before health-
related crises by allocating essential resources [61–64]. 
We used a Bayesian framework to generate robust esti-
mates for small, real-time data without having any extra 
prior knowledge [63, 65]. Given a Bayesian framework, 
we do not make assumptions about the population under 
study. On the contrary, deterministic models assume 
homogeneous mixing of the population or closed popu-
lation with no migration, births, or deaths from causes 
other than the epidemic [66]. The parameters in tradi-
tional compartmental models do not readily quantify the 
uncertainty of the model parameters. Although no model 
can perfectly forecast the future, the workflow provides 
accurate estimates for use in forming public policy [66].

The Bayesian latent variable model is based on the best 
practices to measure the effective reproductive num-
ber Rt using a range of open-source tools implemented 
in EpiNow2 [33, 36, 45]. The tool is used to explore the 

sensitivity of Rt estimates to different data sources and 
the transmission of COVID-19 for different population 
sub-groups in England [67]. Additionally, the implemen-
tation is used to provided probabilistic real-time fore-
casts of COVID-19 cases and deaths in Germany and 
Poland during the second wave [68].

The Bayesian latent variable model takes into account 
the generation time, incubation period, and reporting 
delay directly. Firstly, the reproduction number is related 
to the observed growth rate through the generation inter-
val distribution [69]. For each subsequent time step, the 
previous imputed infections are summed, weighted by 
an uncertain generation time probability mass function, 
and combined with an estimate of the Rt to give the inci-
dence [36, 45]. Biases in the Rt estimate from misspeci-
fication of the generation interval is a significant source 
of over- or underestimation when the true values is sig-
nificantly greater than or less than 1 [33]. Rt estimates 
are affected by the mean generation time as well as the 
variance and shape of the generation interval distribution 
[33]. The intrinsic generation interval is used to link the 
Rt and incidence of infections [69]. However, the intrinsic 
generation interval is rarely observed in the real world. 
Therefore, the generation interval is estimated from the 
serial interval [33].

Secondly, the infection trajectories are mapped to 
mean reported case counts using the incubation period 
and reporting delay distributions [36, 45]. If the dis-
tribution of the incubation period is known, the time 
lag between infection and symptom onset is taken into 
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account [70]. The uncertainty of the reproduction num-
ber is exacerbated with significant variability of the time 
between infection and symptom onset [70].

Finally, time-series data of the number of new infec-
tions is used to estimate the Rt . These values are inferred 
based on assumptions regarding the delay time between 
infection and onset of symptoms. The accuracy is 
improved by inferring the unlagged time series of infec-
tions or within an Rt estimation model [33]. The time 
series could simply be shifted by the mean delay to onset 
of symptoms, but would be significantly less accurate. 
If the delay to onset of symptoms is constant and the 
mean delay is known, then the shift of the observed time 
series is sufficient. However, the shift would not take into 
account the uncertainty or individual variation in delay 
times [33].

We sample from the delay distribution to impute indi-
vidual times of infection from times of observation. How-
ever, the sampling strategy can smooth the underlying 
incidence curve and limit the ability of the estimates and 
predictions to rapidly reflect instantaneous changes in Rt 
[33]. The present model can be modified to account for 
changes in the delay from symptom onset to notification 
about cases over the course of an outbreak. Additional 
data are needed for this purpose [36].

Delay distributions, interval specification, and trun-
cation are required to infer the infection time series 
from recent observations and describe epidemic 
dynamics [33]. The workflow can explore how outbreak 
dynamics differ between particular sub-populations 
such as high-risk COVID-19 patients and how it can 
bias Rt [36]. The current model can be used to charac-
terize the relationship between a primary and second-
ary observation. For example, hospital admissions can 
be used to predict deaths or bed occupancy. Alterna-
tive model specifications can expand the scope of the 
study. A wide range of distributions and link functions 
is supported together with modeling options including 
non-linear and smoothing terms in addition to auto-
correlation structures [46]. This results in a flexible 
modeling approach.

The Bayesian regression model includes region, day of 
the week, and date smoothed for seasonal patterns. The 
models can be extended to account for other cofactors 
or comorbidities adjusting for previously described risk 
factors for severe diseases. For example, age, sex, race, 
obesity, hypertension, arrhythmia, metabolic syndrome, 
cardiovascular disease, and chronic respiratory disease 
have been association with hospitalization [71]. Under-
standing risk factors for hospitalization helps facilitate 
targeted prevention messaging and forecasting and prior-
itization of clinical and public health resource needs [71]. 

Bayesian regression models can be extended to other 
problem settings and model systems in addition to dif-
ferent health outcomes and risk factors for new, emerg-
ing infectious diseases such as SARS, H1N1, and Ebola in 
West Africa [72–75].

Alternative implementations of the current model 
can estimate and forecast cases and hospitalizations for 
COVID-19. For example, the R package EpiNow2 esti-
mates a secondary observation from a primary observa-
tion correcting for delay distributions and truncation of 
data [45]. Similarly, the R package bsts samples from the 
posterior distribution of a Bayesian structural time series 
model while accounting for predictor variables [76–78]. 
The bsts model uses the local linear trend, seasonal pat-
tern, and regression component. For the purposes of the 
workflow presented in this study, the R package brms 
implements a wide range of distributions and link func-
tions in a multilevel context [46]. Autocorrelation of the 
response variable and user-defined covariance structures 
represent other options. Prior specifications of covariates 
of the brms models are flexible and model fits can eas-
ily be assessed [46]. brms allows the user to benefit from 
Stan for great modeling flexibility while using a simple, 
lme4-like formula syntax.

There are limitations on the quality and availability of 
the data and the assumptions of the model. COVID-19 
data still underestimate the true burden of the epidemic 
in some counties, particularly in those with limited 
resources. Similarly, there is still limited information 
to determine the exact lag time in incubation period, 
reporting delay, and testing delay, particularly for coun-
ties where data are made available infrequently [79]. The 
use of reported cases as an input is an ongoing issue for 
assessing the quality of control measures and the trac-
ing of epidemics where the frequency of asymptomatic 
infections, non-specific symptoms of mild disease, and 
limitations in testing capacity can lead to underreporting 
[80–83]. Consequently, parameter estimates and fore-
casts for models based on case data can be susceptible to 
uncertainty.

Conclusions
We present an approach to estimate and forecast cases 
and hospitalizations for COVID-19 in addition to the cor-
responding uncertainty while using publicly available data. 
The workflow is able to infer short-term trends consist-
ent with reported cases and hospitalizations at the HERC 
region level. Additionally, the workflow is able to accurately 
forecast and estimate the uncertainty of the measurements 
and provided Bayesian credible intervals. However, all three 
credible intervals of the three time horizons underestimate 
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the true coverage probabilities for all three metrics and at 
least one of the horizons. We conclude that the uncertainty 
quantification should be reformulated as the frequentist 
coverage probability of the Bayesian credible interval.

Currently, the workflow generates daily updates about 
cases and hospitalizations to support decision making 
processes. The resulting tool assists in the containment of 
public health crises and aids in implementation of public 
health interventions. This workflow can be applied and 
automated to provide information regarding the growth 
and spread of COVID-19. The model anticipates surges of 
cases and hospitalizations a few critical days in advance. 
It has many advantages for those deciding where to direct 
prevention implementations and response improve-
ments. We believe this study elucidates the geographical 
regions are most affected and the regions will encounter 
outbreaks.
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