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Abstract 

Background  Child pedestrian injury is a public health and health equality challenge worldwide, including in high-
income countries. However, child pedestrian safety is less-understood, especially over long time spans. The intent of 
this study is to understand factors affecting child pedestrian safety in England over the period 2011–2020.

Methods  We conducted an area-level study using a Bayesian space-time interaction model to understand the 
association between the number of road crashes involving child pedestrians in English Local Authorities and a host of 
socio-economic, transport-related and built-environment variables. We investigated spatio-temporal trends in child 
pedestrian safety in England over the study period and identified high-crash local authorities.

Results  We found that child pedestrian crash frequencies increase as child population, unemployment-related 
claimants, road density, and the number of schools increase. Nevertheless, as the number of licensed vehicles per 
capita and zonal-level walking/cycling increase, child pedestrian safety increases. Generally, child pedestrian safety 
has improved in England since 2011. However, the socio-economic inequality gap in child pedestrian safety has not 
narrowed down. In addition, we found that after adjusting for the effect of covariates, the rate of decline in crashes 
varies between local authorities. The presence of localised risk factors/mitigation measures contributes to variation in 
the spatio-temporal patterns of child pedestrian safety.

Conclusions  Overall, southern England has experienced more improvement in child pedestrian safety over the 
last decade than the northern regions. Our study revealed socio-economic inequality in child pedestrian safety in 
England. To better inform safety and public health policy, our findings support the importance of a targeted sys-
tem approach, considering the identification of high-crash areas while keeping track of how child pedestrian safety 
evolves over time.
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Background
Road safety is a global public health concern and one of 
the leading causes of death for children over the age of 
5 years [1, 2]. Child pedestrians are particularly vulner-
able road users due to their limited physical, cognitive-
perceptual, and social development [3]. According to the 
UK Department for Transport, only in 2019 in England, 
4700 child pedestrians under the age of 15 sustained 
traffic-related injuries, out of which 1200 were killed or 
seriously injured. Ensuring children’s safety on roads is 
a major public health priority as it can prevent various 
adverse physical, mental, and social consequences and 
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can promote walking among children, increasing child-
hood physical activity.

Adopting active modes of travel, including walking 
and cycling, from early ages has positive impacts on both 
personal and planetary health. However, the number of 
children walking has in general declined over the last 
decades. For example, based on the National Travel Sur-
vey statistics, in England in 1998/2000, an estimated 49% 
of children under 16 walked to school while in 2017 this 
rate fell to 43%. Research suggests that this reduction is 
partly due to traffic safety concerns [4, 5]. To help address 
this issue and reverse this trend, it is essential that poli-
cies are geared towards making roads safer and enjoyable 
for children.

Child Pedestrian injury is a multi-faceted problem 
with many contributory factors such as driver charac-
teristics [6], vehicle features [7, 8], road configuration 
[9, 10], environmental [11], built-environment [12], and 
socio-economic and ethnic features [13–18]. In addition 
to these factors, there are geographical and temporal 
variations influenced by place- and time-specific factors 
and interventions such as reduced vehicles circulations 
around schools, implementation of 20 mph speed limit 
zones, school walking bus, School Street schemes, among 
the others.

Previous research has mainly focused on identifying 
high-crash areas and linking the risk to explanatory vari-
ables to quantify the effect of several risk factors through 
a combination of geographic information systems and 
statistical models [19–24]. Due to the nature of road 
crash data, there might be spatial and temporal depend-
encies between observations; and therefore, statistical 
models need to accommodate these dependencies [25]. 
However, considering spatial-temporal dependencies 
[26] as well as child safety [15] is relatively limited in the 
crash literature, especially in England. In this study we 
investigate the spatiotemporal patterns of child pedes-
trian safety at Lower Tier Local Authorities (LTLA) level 
in England from 2011 to 2020. In England, the LTLA is 
a subdivision of administrative boundaries that include 
local authority districts, unitary authorities, metropolitan 
districts, and London boroughs. The main aims are to (i) 
explain the association between child pedestrian crash 
frequencies and LTLA level characteristics, including a 
host of deprivation, transport, and built-environment 
variables, (ii) identify LTLAs with particularly high crash 
frequencies for child pedestrians across the study period, 
(iii) evaluate the persistence of spatial patterns of child 
crashes over time, and (iv) pinpoint local time trends for 
each LTLA.

We conducted our analysis within a Bayesian frame-
work as the Bayesian approach is particularly appeal-
ing in handling spatio-temporal dependencies in the 

data, readily allowing for borrowing of strength across 
space and time that leads to more reliable estimates. 
The Bayesian approach, unlike the frequentist approach 
that obtains point estimates of parameters of interest, 
regards the unknown parameters as random variables 
and obtains posterior densities for all model parameters, 
addressing uncertainties more fully. For a discussion on 
the advantages of the Bayesian methods in the context 
of road safety analysis, see [27]. The posterior density is 
the result of data (i.e., the likelihood function) integrated 
with a prior probability distribution that represents our 
prior belief regarding a parameter of interest. When 
there is no prior knowledge of a parameter, non-inform-
ative priors can be used, allowing the data to decide the 
form of the posterior entirely. For estimating the model 
parameters, the Bayesian approach employs Markov 
chain Monte Carlo simulations [28].

Methods
Data
The outcome of interest was the annual counts of crashes 
involving child pedestrians at local authority level in Eng-
land. Crash data were obtained from the Department for 
Transport, which collects information on crashes that 
occurred on public roads, reported to the police, and 
recorded on STATS19 forms. As the focus of our study 
was to model child pedestrian crash frequencies, infor-
mation relating to the location of crashes, road user types 
(e.g., pedestrian, cyclist, driver), and age of individuals 
involved in crashes were extracted from the STATS19 
databases. We only included crashes between a motor-
ised vehicle and a child pedestrian, who was less than 
16 years old. This yielded 50,993 crashes over the period 
2011–2020. Using the geographic coordinates of the 
crashes, we obtained yearly crash counts at LTLA level. 
We removed Isles of Scilly due to the sparsity of outcome 
data and the City of London because many explanatory 
variables for the latter were missing. Isle of Scilly and the 
City of London had one and ten cases of child pedestrian 
crashes over the study period, respectively. This resulted 
in 315 LTLAs with a mean crash of 161, standard devia-
tion of 169.83, minimum of 6, and a maximum of 1808 
over the study period. The geocoded location of crashes 
is mapped in Additional File 1.

To model child pedestrian crash frequencies, we con-
sidered several sociodemographic, transport, and built-
environment features, based on literature, domain 
expertise, and data availability. As sociodemographic 
covariates, we considered percent of child (0–15 year) 
population [29], number of licensed vehicles per capita 
[30], percent of claimants, percent population who are 
White, and job density [31]. The number of licensed 
vehicles in 2020 per capita was calculated by dividing 
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the total number of registered vehicles by local authority 
population. The percent of claimants for 2011–2020 was 
defined as the proportion of residents aged 16–64 claim-
ing some form of unemployment-related benefit. From 
the annual population survey [31], we obtained yearly 
unemployment rate, and yearly percent of population in 
employment who are manager, directors, and senior offi-
cials for 2011–2020.

As transport-related variables indicating travel behav-
iour and exposure at LTLA level, we included the percent 
of adults who walk or cycle at least three times per week, 
the percent of adults who walk or cycle at least five times 
per week [32], and road density. To obtain road density, 
the latest road network data sourced from Ordnance Sur-
vey Meridian [33] was overlaid with LTLA boundaries. 
We then calculated road density by dividing the total 
length (in km) of A roads and B roads by the total land 
area (in km2) of each LTLA. The A roads are major roads 
linking town and cities and the B roads are distributor 
roads with lower traffic density than A roads and are 
intended to connect different areas [34].

Built-environment variables included the number 
of schools, the number of bus stops, and the number 
of business establishments (as a proxy of activity lev-
els) in each LTLA. School information was provided by 
the Department for Education “get information about 
schools” register (downloaded in December 2021 from 
https://​get-​infor​mation-​schoo​ls.​servi​ce.​gov.​uk/​Downl​
oads), bus stop locations were retrieved from Point of 
Interest Ordnance Survey data, and the number of busi-
ness establishments were obtained from the Office for 
National Statistics. Note that some variables were avail-
able at a yearly basis. For other variables we considered 
the latest and/or the most relevant available data. This is 
because the data availability and LTLA boundaries have 
changed over the study period. The descriptive statistics 
of the explanatory variables and data sources and spatial 
distribution of a number of covariates are reported in 
Additional File 1.

Statistical analysis
We used a Bayesian space-time Poisson lognormal model 
to evaluate associations between various relevant con-
tributory factors and annual child pedestrian crashes, 
while accommodating dependencies between adjacent 
LTLAs and years. We initially attempted to account for 
spatio-temporal heterogeneity in the data through availa-
ble covariates. However, due to unobserved/unmeasured 
factors that affect the outcome, which can be themselves 
spatially and temporally correlated, there remains resid-
ual autocorrelation. We dealt with the residual auto-
correlation through specifying random effects that can 
account for the spatial and temporal dependencies and 

act as surrogate for unobserved/unmeasured covariates, 
affecting the outcome. This is achieved by including spa-
tial, temporal, and spatio-temporal weight matrices that 
specify the neighbourhood structure, which allows us 
to exploit information sharing between neighbouring 
LTLAs and years.

After accounting for the covariates, we incorporated 
residual spatial variability through spatially structured 
random effects represented by a conditional autore-
gressive (CAR) prior [35]. The residual spatial term 
accounts for the dependencies between neighbouring 
LTLAs, which are conceptualised as LTLAs that share a 
common border. To account for the temporal depend-
ency, we included temporally structured random effects 
using a random walk of order 1 (RW1), which captures 
the national temporal trend. Additionally, we included 
a space-time interaction term modelled as independent 
random walk for each LTLA [36]. The interaction term 
adds additional flexibility to the model and allows cap-
turing local temporal deviations from the national (over-
all) time trend. Therefore, the temporal patterns in each 
LTLA are assumed to be temporally smooth but inde-
pendent across space.

Model specification
In our model specification, the number of observed 
crashes involving child pedestrians yit in LTLA i (i = 1, 
…,315) and year t (t = 1,..,10) follows a Poisson distribu-
tion with the mean μit. We then decompose the log (μit) 
as

where exp(α) represents the overall expected child pedes-
trian crash frequency (i.e., an intercept term), φi are spa-
tially structured random effects that capture the main 
spatial patterns and ξt are temporally structured ran-
dom effects to describe the global temporal pattern of 
crashes (i.e., national time trend) in England. The term 
δit represents a space-time interaction term and allows 
each LTLA to have a temporal trend deviating from 
the national one. The term Xit represents the covariate 
matrix of the ith LTLA in time t and β are their respective 
regression coefficients. The spatially structured random 
effects φi are assigned a CAR prior as in

where φ−i is the set of φi except for the ith LTLA, ni is the 
number of adjacent neighbours sharing a boundary to 
area i, and σ 2

φ is the variance of spatially structured ran-
dom effects. The temporally structured random effects ξt 

(1)log (µit) = α + Xitβ + φi + ξt + δit

(2)φi | φ−i ∼ Normal
1

ni
j �=i

φj ,
σ 2
φ

ni

https://get-information-schools.service.gov.uk/Downloads
https://get-information-schools.service.gov.uk/Downloads
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are modelled using a random walk of order 1 (RW1) and 
is described as

where σ 2
ξ  is the variance of temporal effects. In addition 

to the main temporal effects, we were interested in iden-
tifying localised departures. This was achieved by includ-
ing a space-time interaction structure δit defined as

As for priors, we assigned a Gamma (0.5, 0.005) 
to the inverse of variances σ 2

φ , σ 2
ξ  , and σ 2

δ  , a flat prior 
uniform(−∞,+∞) to α, and a Normal (0,1000) to the 
regression coefficients β. All explanatory variables were 
centred to improve the convergence of the model. For 
better interpretability of the explanatory variables, we 
obtained the magnitude of the effects of various covari-
ates on child pedestrian safety in terms marginal effects 
[37] given by

where subscript p refers to explanatory variables, here 
p = 6, and N is the number of observations.

Inferences were performed through Markov Chain 
Monte Carlo (MCMC) simulations in the NIMBLE 
Package in R [38]. We checked the convergence of the 
parameters using the Gelman-Rubin statistic [39] and 
visually using trace plots. In total, 20,000 post burn-in 
samples were obtained from the posterior distribution 
of the model parameters. In addition to the above-
described model, we fitted other competing mod-
els with different specifications for space, time, and 
space-time effects, and compared the model fit using 
the Watanabe–Akaike information criterion (WAIC). 
However, these models did not improve the fit. Details 
of the competing models and their WAIC are reported 
in additional file 2.

We report the posterior summary of the magnitude 
of the effects of various covariates on child pedestrian 
safety in terms of marginal effects [40]. Marginal effects 
provide a more straightforward interpretation of the 
effect of covariates on safety, revealing the change in 
expected (mean) child pedestrian crashes following one 
unit change in each covariate. To check the goodness 
of fit of the model, we conducted posterior predictive 
checks and estimated Bayesian p-values [41], which 
is based on quantifying the discrepancies between 
predicted data, using the proposed model, and the 
observed data.

(3)ξt | ξt−1 ∼ Normal
(

ξ t−1, σ 2
ξ

)

(4)δit ∼ Normal
(

δt−1, σ 2
δ

)

(5)

∂E
(

y|x
)

∂xp
= E

(

y|x
)

βp =
1

N

N
∑

i=1

exp (α + Xitβ + φi + ξt + δit)βi,p

Identifying high‑crash areas (hotspots), spatial distribution 
of residuals and area‑specific time trends
Using the expected crash frequency, we identified high-
crash areas, where safety improvement programmes are 
most warranted. We classified LTLAs based on the poste-
rior probability of the exponential of the spatial residuals 
in each LTLA being above one. If a probability was larger 
than 0.9 for an LTLA, it was classified as an LTLA with 
excess child pedestrian crash frequency (after account-
ing for explanatory variables that are in the model). Such 
areas are where other unknown/unmeasured risk factors 
(other than those in the model) have a negative impact on 
child pedestrian safety. Therefore, further investigation is 
needed to identify the reasons behind this, which in turn 
helps improve safety in those areas.

The inclusion of the space-time interaction term 
allowed each LTLA to have its own specific temporal 
trend, which is composed of the sum of the national tem-
poral trend and the space-time interaction term. Similar 
to the approach adopted by Boulieri et al. [42], we report 
the probability that the estimated incidence of child 
pedestrian crashes in an LTLA represents an increase 
compared to the national one.

Results
LTLA factors affecting child pedestrian safety
Table  1 reports the estimated model parameters, 
including regression coefficients and parameters relat-
ing to our space-time interaction specification. We 
retained only statistically important covariates, con-
sidering those that were not highly correlated with 
each other, and that improved model fit. Child popu-
lation, unemployment-related claimants, road density, 
and the number of schools were found to be positively 

Table 1  Posterior summary of regression parameters

Statistically important explanatory 
variables

Mean 95% credible 
interval

2∙5% 97∙5%

Child population 0∙11 0∙08 0∙14

Unemployment-related claimants 0∙03 0∙01 0∙05

Licensed vehicles per capita − 0∙55 − 0∙83 − 0∙26

Road density 0∙69 0∙52 0∙87

Adults who walk/cycle 3 times per week −0∙01 − 0∙02 − 0∙002

Number of schools 0∙08 0∙07 0∙09

Model parameters

exp(α) 11∙22 11∙09 11∙35

  σ 2
φ (Variance of structured spatial effect) 0∙535 0∙446 0∙644

  σ 2
ξ  (Variance of structured temporal effect) 0∙022 0∙010 0∙066

  σ 2
δ  (Variance of the interaction term) 0∙004 0∙003 0∙005
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associated with child pedestrian crash frequencies. 
However, licensed vehicles per capita and levels of 
walking and cycling were negatively associated with 
child pedestrian crash frequencies. With respect to 
model performance, we estimated Bayesian p-values for 
checking model adequacy. These being satisfactory are 
reported in the Additional File 3.

To interpret the regression coefficients, Table 2 reports 
the magnitude of the impact of explanatory variables on 
child pedestrian crash frequencies in terms of marginal 
effects, indicating the magnitude of change in child crash 
frequency due to one unit change in an explanatory 
variable.

In relation to deprivation, Fig. 1 displays that number 
of child pedestrian crashes (on log scale) in 2011 and 
2019 in relation to the percent of population claiming 
some sort of unemployment-related benefit. Since 2020 
included lock down periods and major shift in travel 
behaviour due to the COVID-19 pandemic [43, 44], we 
restricted our comparison to 2011 and 2019 as the two 
extremes of the study period. As shown in Fig.  1, the 
expected number of crashes was positively associated 
with the deprivation level. The slope of the 2019 line, 
however, is slightly larger than that of 2011, suggesting 
that as the percentage of unemployment-related claim-
ants increases, crash frequencies increase at a higher 

Table 2  Posterior summary of marginal effects

Statistically important explanatory variables Mean (sd) 95% credible interval

2.5% 97.5%

Child population 1.80 (0.22) 1.35 2.23

Unemployment-related claimants 0.48 (0.17) 0.16 0.81

Licensed vehicles per capita − 8.98 (2.34) −13.35 −4.18

Road density 11.01 (1.47) 8.45 13.91

Adults who walk/cycle 3 times per week −0.18 (0.08) − 0.34 −0.04

Number of schools 1.27 (0.07) 1.11 1.42

Fig. 1  Expected crash frequency in relation to deprivation
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rate in 2019 than in 2011. This implies socio-economic 
inequalities in child pedestrian safety increased in 2019 
compared to 2011, highlighting the importance of the 
need for addressing inequity issues in this context.

High‑crash locations
Figure  2 displays the spatial distribution of yearly 
expected child pedestrian crashes over the study period 
(the darker the colour, the higher the expected value). 
There is a relatively considerable spatial variation in 
expected child pedestrian crashes across England which 
remains visible across the years while we can also see the 
temporal evolution of child pedestrian safety in England 
over the last decade. Although we expect that urban areas 
have higher expected crash values, Fig. 2 can be used by 
local authorities to prioritise safety interventions and to 
inform resource allocation across England. For exam-
ple, in 2019, Birmingham had the highest expected child 
pedestrian crash, followed by Leeds, Bradford, Liverpool, 
and Croydon, which all are characterized by low socio-
economic status.

Overall spatial and temporal effects
Figure  3a shows the map of exceedance probabilities of 
spatial residuals being greater than 1. This allows us to 
identify LTLAs with excess child pedestrian crash (shown 
in darker colour where the probability of exceedance is 
> 90%), after adjusting for the effect of the covariates. We 
found that 36% of the LTLAs (114 LTLAs) experienced 
excess crash from 2011 to 2020. These are mainly located 
in urban areas, especially in Northern England: Yorkshire 
and the Humber regions.

Figure  3b shows the posterior median, including the 
95% uncertainty band of the temporal trend, over the 
study period, representing the average national time 
trend. We observed a decreasing time trend, with year 
2020 showing a much steeper decline compared to the 
other years, perhaps reflecting the effect of the Covid19 
pandemic and its associated lockdown and work from 
home policies in England. Note that such policies 
resulted in reduced exposure (traffic volume, and walking 
and cycling) in general [45]. Between the years 2013 and 
2017, we observed a relatively moderate but consistent 
decreasing trend. Figure 4 confirms a non-linear behav-
iour of temporal patterns over time.

LTLA‑specific time trends through space‑time interaction
By specifying a space-time interaction term as an inde-
pendent random walk for each LTLA, we were able to 
capture local time trends. Such local trends are due to 
the fact that the effects of some unknown highly local-
ised variables vary smoothly over time while operating 
independently with respect to their locations. In fact, 

previous research in the field of road safety indicates 
that the effect of contributory factors may vary over 
time [46]. In the presence of missing localised variables 
(e.g., climate), the interaction term can act as a surrogate 
measure for these unmeasured/unknown variables. This 
allows us to capture their effects to some extent, thereby 
addressing unobserved heterogeneity more fully. The 
time trend for all LTLAs exhibited downward trend (sim-
ilar to the national trend shown in Fig. 3b) with different 
degrees of deviation from the national trend (see Addi-
tional File 4). The decline in crash incidence was slower 
in some local authorities when compared to the national 
trend.

Figure 4 displays the map of the probability that, after 
accounting for the covariates, the incidence of child 
pedestrian crashes is higher than the national one in 
each LTLA in each year. The incidence of child pedes-
trian crash in North Lincolnshire was below the aver-
age national incidence between 2011 and 2013, but it 
exceeded the national value (with probability > 80%) after 
2018. This trend suggests that there are specific risk fac-
tors in North Lincolnshire that contribute to the deterio-
ration of road safety for children, which requires further 
in-depth investigations. In contrast, the crash incidence 
in the local authority of Bournemouth, Christchurch 
and Poole in 2011–2013 resulted higher than the average 
national, but child pedestrian safety improved over the 
recent years such that after 2017 the incidence of crash 
became less than the average national child pedestrian 
crash incidence. For a detailed visualisation, the time 
trend for the highlighted local authorities (shown blue 
and red colours) in comparison to the national trend is 
illustrated in the Additional File 4.

Discussions
Association between LTLAs characteristics and child 
pedestrian safety
Identifying contributory factors affecting zonal-level 
child pedestrian safety can provide useful insights 
toward designing and implementing effective large-scale 
countermeasures. For example, based on our findings, 
increased levels of walking and cycling helps increase 
road safety for children. This is an interesting finding 
that, in accordance with previous research (see; e.g., 
Stoker et  al., [47] and Jacobsen et  al., [48]) indicates 
that the higher the prevalence of walking and cycling in 
LTLAs, the safer the road network for child pedestrians. 
Also, this could be attributed to motorists adjusting their 
driving behaviours (e.g., by lowering driving speeds) in 
the presence of increased numbers of pedestrians and 
cyclists [49–51].

Specifically, based on marginal effects reported in the 
section of results, we found that one unit increase in 



Page 7 of 13Shoari et al. BMC Public Health          (2023) 23:215 	

Fig. 2  Spatial distribution of expected child pedestrian crash frequencies from 2011 to 2020
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Fig. 3  a Mapping posterior probability of spatial residuals being larger than 1. The map of Greater London is enlarged for better visualization. b 
Posterior median and 95% credible intervals of the overall (national) temporal trend
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Fig. 4  Probability of LTLA- specific time trend exceeding the national trend over the study period
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road density can lead to an additional 11.01 child pedes-
trian crashes annually. Road density can act as a proxy 
exposure measure for motorised traffic, which is known 
to have a deteriorating effect on pedestrian safety [52]. 
Our finding regarding road density is consistent with 
the results of previous studies [53]. One unit increase in 
child population, on average, resulted in 1.8 additional 
child pedestrian crashes per year. For every 10 additional 
schools, expected child pedestrian crash frequencies 
increased by 1.27 per year. One potential explanation is 
that an increase in child population and the number of 
schools leads to an increase in exposure [26, 49, 54]. In 
terms of deprivation, one unit (here, 1 %) increase in 
unemployment-related claimants resulted in 0.48 addi-
tional child pedestrian crashes per year. In contrast, one 
unit increase in the number of licensed vehicles per cap-
ita decreased child pedestrian crash frequencies by 8.98 
crashes per year. One explanation for this finding could 
be that children in areas with higher number of licensed 
vehicles are more likely to travel by car rather than walk-
ing, reducing their exposure. Also, the latter two varia-
bles often relate to deprivation and previous studies have 
also found similar results [15, 26]. Finally, 1 % increase 
of adults who walk or cycle at least three times per week 
decreased expected child pedestrian crash frequencies by 
0.18 crashes per year.

One important factor is deprivation which has a nega-
tive impact on road safety. The socio-economic dispari-
ties in child pedestrian crashes might be partially driven 
by exposure disparities as children in deprived areas 
are more likely to walk to school [55, 56] Therefore, 
road safety policies need to target more deprived areas 
through safety improvement programmes such as reduc-
ing traffic volume and speed, designing walking-friendly 
infrastructures, education, and training programmes. In 
addition, whilst child pedestrian crash frequencies have 
declined over the last decade, its association with dep-
rivation over time has not changed substantially. If road 
safety interventions successfully target deprived areas, 
the association between deprivation and child crash 
frequency would weaken in the future. With increas-
ing interest in policies to encourage children to walk, 
efforts to improve child pedestrian safety is successful 
only when a system approach is adopted, emphasising on 
data-informed engineering interventions in conjunction 
with interventions that address deprivation.

Spatio‑temporal variations in child pedestrian safety
Since 2011, child pedestrian crashes have decreased by 
more than 50% in England. However, some local authori-
ties still struggle to improve road safety conditions for 
children. Overall, the southern part of England has expe-
rienced higher levels of improvement in child pedestrian 

safety over the last decade compared to the northern 
regions.  Local authorities of Birmingham, Leeds, and 
Bradford had consistently the highest expected child 
pedestrian crash frequency throughout England over 
the study period. In 2011, there was a difference of 218.3 
[95% CrI 197.1–240.9] crashes between the LTLA with 
the lowest (Rutland) and the highest child pedestrian 
crash frequencies (Birmingham). Although road safety 
has in general improved over the study period, in 2020, 
there was a gap of 112.22 [98.9–125.4] expected annual 
crashes between LTLAs (Rutland and Birmingham) with 
the highest and the lowest expected crash frequencies.

Estimating the LTLA-specific time trends suggests 
the presence of localised risk factors or may reflect the 
impact of local interventions and policies, which requires 
further in-depth investigations. This can be particu-
larly important from a public health perspective and for 
implementing cost-effective safety interventions. We 
noticed a major reduction in expected child pedestrian 
crash frequencies in most local authorities in 2020, which 
is expected due to the recent pandemic (see, for exam-
ple, the work by Katrakazas et  al. [57] for a discussion 
on the effect of the Covid-19 pandemic on road safety). 
However, the expected child pedestrian crash frequency 
was less affected in certain regions such as Cornwall and 
Northumberland.

From a policy insight perspective and with the aim of 
improving child pedestrian safety across England, our 
results can be used to prioritise safety interventions and 
to inform resource allocation across England.. This can 
be achieved based on the identification of high-crash 
local authorities (so called hotspots), understanding fac-
tors affecting child pedestrian safety, and tracking how 
safety conditions, in terms of child pedestrian safety, at 
different local authorities have evolved over the study 
period.

Strengths and limitations of the study
We accommodated spatial dependencies that could 
potentially account for similarities in unobservable fac-
tors and travel patterns (e.g., children mobility and traffic 
volume) in neighbouring local authorities. Our specifica-
tion of space-time interaction allowed each local author-
ity to have its own temporal pattern. Consequently, this 
specification not only led to more reliable statistical 
inferences but also allowed us to provide further insights 
with the same set of data.

A limitation of our study is that we could not use some 
other potentially useful variables such as traffic volume 
and land use characteristics in our analysis as their LTLA 
boundaries did not match the boundaries associated 
with our outcome of interest. However, we showed that 
our model performs very well in replicating the observed 
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data so this would not cause any major issue in this study. 
This is partly because we indirectly accounted for these 
omitted variables in the model. For example, we included 
road density as a proxy measure for traffic volume. Due 
to lack of data availability, we removed Isles of Scilly and 
City of London. However, since the number of observed 
crashes in these two local authorities was very small, we 
do not expect that their removal substantially affects the 
results.

Conclusions
To our knowledge, this study is the first to explore 
spatial-temporal patterns of child pedestrian crashes 
at local authority level in England over a long-time 
span,10 years (2011–2020). We used a Bayesian spatio-
temporal model where we included relevant covari-
ates, accounted for spatial and temporal dependencies 
in the data as well as allowing for a spatio-temporal 
interaction. This enabled us to (i) identify statisti-
cally important area-level variables that can explain 
child pedestrian safety, (ii) reveal spatial patterns and 
national trend in child pedestrian crashes across Eng-
land over the last decade, and (iii) understand how road 
safety conditions evolved in each local authority over 
the study period. The results indicate that child pedes-
trian crashes have been gradually declining in England 
over the last decade. Some local authorities (mainly 
in urban areas of northern England) exhibited higher 
child crash frequencies than national average over the 
study period. More deprived local authorities have 
been experiencing a higher number of child pedestrian 
crashes and there is no evidence suggesting that soci-
oeconomic-related inequality gap has narrowed from 
2011. Efforts to improve child pedestrian safety would 
be more successful if emphasise is given to areas where 
safety improvements are most warranted and to evi-
dence-based policy making in conjunction with inter-
ventions that can address social inequalities.
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