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Abstract 

Background  Using XGBoost (XGB), this study demonstrates how flexible machine learning modelling can comple-
ment traditional statistical modelling (multinomial logistic regression) as a sensitivity analysis and predictive model-
ling tool in occupational health research.

Design  The study predicts welfare dependency for a cohort at 1, 3, and 5 years of follow-up using XGB and multi-
nomial logistic regression (MLR). The models’ predictive ability is evaluated using tenfold cross-validation (internal 
validation) and geographical validation (semi-external validation). In addition, we calculate and graphically assess 
Shapley additive explanation (SHAP) values from the XGB model to examine deviation from linearity assumptions, 
including interactions. The study population consists of all 20–54 years old on long-term sickness absence leave due 
to self-reported common mental disorders (CMD) between April 26, 2010, and September 2012 in 21 (of 98) Danish 
municipalities that participated in the Danish Return to Work program. The total sample of 19.664 observations is split 
geospatially into a development set (n = 9.756) and a test set (n = 9.908).

Results  There were no practical differences in the XGB and MLR models’ predictive ability. Industry, job skills, citizen-
ship, unemployment insurance, gender, and period had limited importance in predicting welfare dependency in 
both models. On the other hand, welfare dependency history and reason for sickness absence were strong predictors. 
Graphical SHAP-analysis of the XGB model did not indicate substantial deviations from linearity assumptions implied 
by the multinomial regression model.

Conclusion  Flexible machine learning models like XGB can supplement traditional statistical methods like multino-
mial logistic regression in occupational health research by providing a benchmark for predictive performance and 
traditional statistical models’ ability to capture important associations for a given set of predictors as well as potential 
violations of linearity.
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Background
The significant growth in data across a broad range of 
fields, including biology, medicine, finance, market-
ing, and epidemiology, has paved the way for modern 
data mining techniques to extract important patterns 
and trends [1, 2]. The potential of machine learning for 
data-driven examination of predictive patterns is gain-
ing more traction among colleagues in occupational 
health research. Therefore, a demonstration of these 
novel tools and clarification on how these tools relate 
to more traditional approaches in occupational health 
research and epidemiology is warranted. The novelty of 
machine learning lies in its ability to model associations 
in data in a more automated fashion with fewer restric-
tions than a researcher explicitly or implicitly makes with 
a traditional regression approach. Machine learning can 
thus help the researcher to consider associations that the 
researcher would not otherwise have. Further, machine 
learning offers an alternative tool for assessing predictor 
importance and sensitivity analysis.

Data‑driven predictive modelling with machine learning
Machine learning is commonly applied in prediction 
problems or as an exploratory tool where inference about 
specific parameters is less critical. Flexible machine 
learning models can have high predictive performance 
across various applications [3]. However, they are often 
considered “black box” models because the relationship 
between the predictors and the outcome can be chal-
lenging to assess. Thus, even if flexible machine learn-
ing models can achieve better predictive ability, the 
researcher will often need to build simpler models that 
are easier to interpret. That could, for example, be a tra-
ditional regression model, which provides readily inter-
pretable parameters or, in some cases, after relatively 
simple transformations.

To contrast the two approaches, a flexible machine 
learning model will, in an automated fashion, attempt to 
find optimal predictive associations between the outcome 
and predictors, including interaction. Further, flexible 
machine learning models might find predictive associa-
tions the researchers have not thought of or find too chal-
lenging to model with a traditional regression approach 
[2]. On the other hand, a traditional regression approach 
needs to specify new models with interaction terms and 
rerun the regressions. Further, the traditional regression 
models will generally rely on stronger assumptions than 

flexible machine learning models. However, even for 
researchers that take the traditional regression approach, 
flexible machine learning models provide a helpful 
benchmark for the predictive ability of simpler mod-
els and allow the researcher to balance predictive ability 
against interpretability [4]. For example, suppose a flex-
ible machine learning model has significantly better pre-
dictive performance than a traditional regression model. 
This difference could indicate that the latter model does 
not adequately capture the underlying data mechanism 
[5]. Further, this could mean violations of important 
assumptions in linear models, such as linearity and addi-
tivity, which can impair predictive performance.

There is, however, an alternative to the paradigm of 
complex models first followed by simpler and more inter-
pretable models. The researcher can stick with a highly 
predictive “black-box” model and use explanatory algo-
rithms to extract how the predictors in a “black-box” 
model contribute to the predicted outcome. We illustrate 
the below by deriving SHAP-values from a “black-box” 
model.

A practical demonstration of flexible machine learning 
against traditional regression
The remaining part of the present paper will demonstrate 
how flexible machine learning can be applied for.

1)	 Predictive modelling, and
2)	 sensitivity analysis and model adequacy assessment 

(does more flexible modelling improve model fit?)

For this demonstration, we use a case study to identify 
important predictors of welfare dependency at follow-up 
after 1, 3, and 5 years for individuals on long-term sick-
ness absence leave due to common mental disorders (not 
necessarily work-related psychological injuries). Welfare 
dependency makes an attractive outcome because data 
lets us observe welfare transfers weekly. This property 
allows us to evaluate the outcome at follow-up with high 
precision and minimum bias compared to data relying on 
monthly or yearly status. Moreover, welfare dependency 
is a proxy for return to work (RTW), assuming that most 
persons no longer on welfare have returned to work. A 
few papers use machine learning to predict RTW (e.g. [6, 
7]), and RTW from CMD has already received consider-
able attention in academic research (e.g. [8–13]). There-
fore, we relate our results to studies that use RTW as the 
outcome, although we recognize that it is not always the 



Page 3 of 17Bjerregaard ﻿BMC Public Health          (2023) 23:224 	

case that persons no longer on welfare have returned to 
work.

National statistics show that the share of persons 
with a long-term sickness absence spell to all employed 
was around 5–6 pct. (130.000–160.000 persons) in the 
year 2010–2012. Our data shows that about a third self-
report mental health as the reason for long-term sick-
ness absence. These numbers suggest that around 2 pct. 
of all employed (44.000–54.000 persons) each year in 
2010–2012 experienced a long-term sickness absence 
spell due to CMD. Additionally, mental health disorders 
are increasing in Denmark across all working-age groups 
[14]. Thus, common mental disorders (CMD) affect many 
workers and are likely to be an increasing problem if cur-
rent trends persist. This scenario makes it increasingly 
interesting to determine important predictors of welfare 
dependency from CMD. In addition, predicting individu-
alized welfare dependency risk can help job centres pri-
oritize efforts on high-risk individuals rather than those 
already likely to return to work. Further, prediction mod-
els can help distribute resources across job centres within 
municipalities. For example, suppose a disproportional 
distribution of individuals at high risk for prolonged wel-
fare dependency across job centres. In that case, munici-
palities can direct resources to job centres with higher 
proportions of high-risk individuals.

Flyvholm and Hannerz [8] describe a protocol that 
examines important predictors in welfare dependency 
using multinomial logistic regression (MLR). The present 
paper considers the same data set and demonstrates how 
the popular machine learning model XGBoost (XGB) 
can complement MLR to assess model adequacy, provide 
sensitivity analysis, and improve the predictive relation-
ship between predictors and the outcome.

At least two previous papers apply ML with Korean 
survey data to predict RTW following sickness absence 
[6, 7], which closely relates to the concept of welfare 
dependency. As an additional contribution to exist-
ing papers, the present paper provides a benchmark for 
predictive performance using administrative data. The 
reliance on administrative data limits the set of predic-
tors. However, administrative data is often relatively 
cheap to collect, and some administrative data sets can 
reduce measurement errors and bias related to self-
reports. Further, the present paper contributes to the 
existing literature by supplementing internal validation 
with geographical validation for external validation. The 
existing papers only use internal validation techniques 
(e.g. tenfold cross-validation), but external validation is 
considered to provide a better measure of the models’ 
generalizability to new settings [3]. For example, exter-
nal validation likely gives a better estimate of how well 
we can expect the models to predict welfare dependency 

in the municipalities that were not included in this study. 
Lastly, this paper contributes to the existing literature by 
demonstrating how the explanatory algorithm SHAP can 
help to examine the predictive patterns from the “black-
box” machine learning models.

Methods
The present paper takes the following three-step 
approach to demonstrate how XGB can complement 
MLR:

•	 First, benchmark the predictive ability of a multino-
mial logistic regression model against an XGB model 
in predicting welfare dependency for individuals on 
sickness absence due to CMD at 1, 3, and 5 years fol-
low-up. This step is critical to ascertain that XGB can 
reliably capture the underlying data mechanism.

•	 Second, examine the importance of the predictors 
across the two modelling approaches to see whether 
the models agree on what predictors are more impor-
tant.

•	 Third, explore whether the XGB models suggest pat-
terns that deviate from the MLR. This can provide 
guidance for new model specifications for MLR that 
can improve its predictive ability.

Study population
The study population consists of all 20–54  years old on 
long-term sickness absence leave due to self-reported 
CMD between April 26, 2010, and September 2012 in 
21 (of 98) Danish municipalities that participated in the 
Danish Return to Work program [15]. The original study 
collected data from jobs and benefits offices in each par-
ticipating municipality. Additional variables have been 
added subsequently from national registries. We ascer-
tain both deaths and emigration using the Central Person 
Registry [16].

Only records with self-reported CMD sickness absence 
(depression, anxiety, stress/burnout, or mental ill-health 
without further specification) are kept from the original 
sample from the RTW program. We restrict the sample 
to persons that immigrated less than two years prior to 
the sickness absence event. This restriction ensures that 
information on predictors for the number of weeks with 
social benefits or health-related benefits two years prior 
to the sickness absence spell is consistent for all observa-
tions. Further, to be able to examine welfare dependency 
at follow-up, we remove persons that emigrated less than 
5 years after the sickness absence event. Also, the sample 
is restricted to employees of ages 20–54 to avoid employ-
ees reaching 60 during follow-up, where some workers 
are eligible for early-retirement schemes. Further, we 
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want to examine the predictive importance of job skill 
level and therefore remove self-employed, which is not 
assigned a job skill level in administrative data. Remov-
ing self-employed reduces the sample size by 4 pct. Addi-
tionally, we remove records with a missing first sickness 
absence day. Finally, for workers with several sickness-
absence spells in the data, we only use the workers once 
with the predictor values that associate with the first 
sickness-absence spell. Figure  1 shows the sample size 
implications in a participant flow diagram.

Table  1 presents the variables Flyvholm and Hannerz 
[8] described in their protocol and collected after review-
ing the literature. The table provides brief descriptions of 
predictors, the expected predictive association, the pre-
dictive association’s source, and the variable’s data source 

in the present study. Below we describe a few of the vari-
ables that require further elaboration.

The outcome is one of the following three categories:

1.	 Health benefits recipient
2.	 Recipient of other benefits
3.	 Not benefit recipient

A health benefit recipient is defined as a deceased or a 
recipient of health-related social transfers. A recipient of 
other benefits is defined as one that receives other than 
health-related benefits. Aside from benefits designed 
mainly for preventing income loss, both groups 1 and 2 
also include subsidized job training programs. Persons in 
these job training programs still depend on welfare bene-
fits and are therefore assigned to these groups depending 
on the specific transfer they receive. No benefits recipi-
ents are defined as individuals who did not receive social 
transfer payments, with a few exceptions. We also assign 
maternity/paternity leave, state education grants, and 
holiday allowance to the “Not benefit recipient”-category. 
The mapping between DREAM-codes and the outcome 
categories is available in Table 2.

Welfare dependency history
The DREAM registry provides weekly information on the 
benefit transfer a person receives. Benefit transfer his-
tory is likely important information in predicting future 
benefit transfers. We reason that higher past reliance on 
health benefits is a strong predictor of reliance on health 
benefits at follow-up. In turn, past reliance on other ben-
efits is likely a strong predictor for other social benefits at 
follow-up. Therefore, we construct two predictors from 
welfare dependency history:

1)	 The number of weeks receiving health-related ben-
efits during the period two years prior to the sickness 
absence episode.

2)	 The number of weeks receiving other social benefits 
during the period two years prior to the sickness 
absence episode.

These variables match the DREAM-codes of the out-
comes “Health benefit recipient” and “Other benefit 
recipient”, respectively.

Predictors from municipality jobs and benefit offices
The Danish public sickness benefits scheme covers 
employed, unemployed, self-employed, and assist-
ing spouses with long-term sickness benefits absence 
(> 21 days in 2010–2011, > 30 days in 2012). Municipal 
jobs and benefits offices administer the system and are 
committed to following up and evaluating sick-listed Fig. 1  Participant flow diagram
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persons’ prognosis of return to the labour force contin-
uously [21]. In relation to the study, the Danish Return 
to Work program, 21 out of 98 participating munici-
palities collected data between April 26 2010 and Sep-
tember 2012. This data contains the date of the first 
visit to a jobs and benefits office, the date of the start 
of the sickness absence episode, the self-reported rea-
son for the sickness absence, RTW-intervention status, 
geographical region, employment status, and personal 
identification number. The latter enables linkage to data 
in national registers.

The predictor,  “participation in Danish RTW inter-
vention”,  is divided into three groups: intervention, 
control, and not eligible. The intervention and con-
trol group consists of persons who are not expected to 

Table 1  Variables, Expected predictive association, and sources

Data access is limited to researchers that have been granted access to Danish administrative data through Statistics Denmark’s research server

Variable Expected predictive association Source Data source

Outcomes
  Health benefit recipient
  Recipient of other benefits
  Not benefit recipient

The Danish Register for Evaluation of Mar-
ginalisation

Predictors
  Job group skill level (last recorded during 
a two-year period preceding baseline)

Faster RTW for higher job skill level [12, 13, 17] Income Statistics Registry

  Industrial sector (last recorded during a 
two-year period preceding baseline)

Slower RTW for the educational and training 
industry

[11] Employment Classification Module

  Reason for sickness absence (self-
reported)

Slower RTW for increasing severity [9] Local jobs and municipality offices

  Gender Inconclusive [9] Central Person Registry

  Age (at baseline) Slower RTW for higher age [9] Central Person Registry

  Family type (in the calendar year preced-
ing baseline)

Slower RTW for having a partner
No reports for children

[9] Central Person Registry

  Employed at baseline (vs unemployed) Faster RTW for employed [18] Local jobs and municipality offices

  Unemployment insurance (in the calendar 
year preceding baseline)

Inconclusive due to selection effect of UI [19] The Danish Register for Evaluation of Mar-
ginalisation

  Danish citizenship Faster RTW​ Central Person Registry

  Calendar year (at the start of the con-
cerned sickness absence episode)

None Local jobs and municipality offices

  Time passed between the first day of 
sickness absence and the baseline visit at the 
jobs and benefits office

Slower for longer TTV [20] Local jobs and municipality offices

  Participation in Danish RTW-program None Local jobs and municipality offices

  Number of weeks with healt- related 
social transfer payments during a two-year 
period prior to the baseline sickness absence 
episode

Slower RTW for more history as health 
benefit recipient

[9] The Danish Register for Evaluation of Mar-
ginalisation

  Number of weeks with other social trans-
fer payments (except for state educational 
grants and maternity/paternity leave ben-
efits) during a two-year period prior to the 
baseline sickness absence episode

Slower RTW for more history as other social 
benefit recipient

[18] The Danish Register for Evaluation of Mar-
ginalisation

Data-split variable
  Geographical region Local jobs and municipality offices

Table 2  Mapping between outcome groups and DREAM-codes

Outcome category label DREAM-code

Not benefit recipient 881

651, 652, 661

121 Empty field

Health benefit recipient 750, 753, 754, 755, 756, 757, 758

760, 763, 764, 765, 766, 767, 768

771, 775, 781,783, 785

810, 813, 814, 815, 816, 817, 818

890, 893

Other benefit recipient All other codes



Page 6 of 17Bjerregaard ﻿BMC Public Health          (2023) 23:224 

RTW within 3 months but are considered to gradually 
RTW or participate in RTW activities. The group “not 
eligible” contain both persons considered able to RTW 
within 3 months and persons that are not able to RTW 
within 3 months nor able to gradually RTW or partici-
pate in RTW activities due to serious illness, hospitali-
zation or the like [15].

Geographical region is not included as a control vari-
able, as is the case in the protocol by [8]. We use the geo-
graphical region to split data into a development set and 
a test set. This prohibits us from using the geographical 
region as a predictor.

Table  3 provides descriptive statistics for both the 
development and test set.

Statistical methods
We trained two learners to predict welfare dependency, 
namely a multinomial logistic regression and an XGBoost 
model. XGboost is one of many flexible machine learn-
ing models but has several beneficial “off-the-shelf” 
properties that make it apt for the present application. 
Most importantly, XGboost is easy to model and have 
been shown to have high predictive performance across 
several different application. In addition, we computed 
SHAP-values for the XGB models to assess the impact of 
each variable in the models on the predicted outcome to 
help us interpret the models.

Multinomial logistic regression (MLR)
Multinomial logistic regression is a generalization of 
binary logistic regression that adapts to situations with 
multiple outcome categories but no natural ordering [22]. 
The multinomial regression is performed in R using the 
nnet-package [23].

XGBoost (XGB)
XGB belongs to the class of boosting algorithms that 
starts with a weak model and then sequentially boosts 
performance by adding new models that try to fix the 
mistakes made by previous models. This forms an ensem-
ble of models that combines results into a single pre-
diction [24]. XGB based on decision trees inherits the 
advantages of this class of learners. Thus, XGB can incor-
porate a mixture of continuous and categorical variables. 
Further, XGB is invariant under strictly monotone trans-
formation of individual predictors, insensitive to outliers, 
and internally performs feature selection. By boosting 
low-accuracy decision trees, boosting algorithms can 
increase performance dramatically without sacrificing 
many of the benefits of decision trees [1]. These “off-the-
shelf” properties make XGB useful for various problems. 

Table 4 displays the hyperparameters applied in a grid 
search, indicating the scope of different XGB-models 

cross-validated before deciding on a final model. XGB is 
trained in R using the XGboost-package [25].

SHapley Additive eXplanation (SHAP)
The SHAP value estimates the impact of each variable on 
the predicted outcome based on game theory, where each 
predictor is considered a player. SHAP fairly attributes 
predictive performance to each variable, which explains 
each predictor’s contributions for a single observation. 
The observation-specific SHAP-values can be averaged 
and evaluated using graphical SHAP summary plots to 
assess overall predictor importance. In addition, SHAP 
dependence plot can evaluate non-linear effects of pre-
dictors. We will use this approach to interpret how XGB 
predicts welfare dependency. Other studies have used a 
similar approach to interpret the prediction mechanism 
of XGB in breast cancer survival [26], melanoma risk pre-
diction [27], and freight truck related crashes [28]. SHAP 
values are computed using the XGBoost-package.

Bagged trees
We use the bagged trees algorithm for imputation. With 
this algorithm, we create a decision tree for each of 5 
bootstrap samples using all predictors. The bagged trees 
then impute the majority predicted class for categorical 
values and the mean of continuous values. This imputa-
tion algorithm is more powerful but also more compu-
tationally expensive than median imputation [4] but 
relatively easy to implement with the caret-package that 
we use.

Missing data
Job group skill level and industrial sector were the only 
variables with a relatively large fraction of missing val-
ues. These variables are not registered for unemployed 
unless a person has been employed at some point dur-
ing the year. For employed, this information can be miss-
ing because small companies (< 10 employees) are not 
required to register the information on which these vari-
ables are based. To deal with this, we impute job group 
skill level or industrial sector using last observation car-
ried forward going a maximum of two years back in time. 
The remaining missing values are categorized as unstated 
(8.7 pct. for job skill level and 0.5 pct. for industrial sec-
tor). However, there is still a risk that this strategy can 
lead to suboptimal prediction if low job skills are over-
represented in the “unstated” group. Therefore, we also 
test whether model-based single imputation with bagged 
trees can improve the predictive ability to the dummy-
based strategy. Case-wise deletion was applied to four 
observations with missing family type and citizenship.
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Table 3  Descriptive statistics

Characteristic Development, 
N = 9,756

Test, N = 9,908

Status 1 year after sickness absence leave

  Not benefit recipient 5,517 (57%) 5,253 (53%)

  Other benefit recipient 2,333 (24%) 2,095 (21%)

  Health benefit recipient 1,906 (20%) 2,560 (26%)

Status 3 years after sickness absence leave

  Not benefit recipient 6,319 (65%) 5,827 (59%)

  Other benefit recipient 2,049 (21%) 2,019 (20%)

  Health benefit recipient 1,388 (14%) 2,062 (21%)

Status 5 years after sickness absence leave

  Not benefit recipient 6,487 (66%) 5,965 (60%)

  Other benefit recipient 1,588 (16%) 1,491 (15%)

  Health benefit recipient 1,681 (17%) 2,452 (25%)

Age 38 (31, 45) 38 (31, 45)

Age groups

  20–29 1,830 (19%) 2,020 (20%)

  30–39 3,531 (36%) 3,493 (35%)

  40–49 3,261 (33%) 3,192 (32%)

  50–54 1,134 (12%) 1,203 (12%)

Time passed between the first day of sickness absence and the baseline visit at the jobs and benefits office 55 (42, 64) 45 (35, 56)

Time passed between the first day of sickness absence and the baseline visit at the jobs and benefits office (grouped)

  < 30 1,026 (11%) 1,765 (18%)

  31–60 5,616 (58%) 6,616 (67%)

  > 60 3,114 (32%) 1,527 (15%)

Period

  Before 2012 7,803 (80%) 8,076 (82%)

  2012 1,953 (20%) 1,832 (18%)

Family type in the calendar year preceding the baseline

  Couple with resident children 3,790 (39%) 4,843 (49%)

  Couple without resident children 1,505 (15%) 1,670 (17%)

  Single with resident children 1,471 (15%) 1,182 (12%)

  Single without resident children 2,986 (31%) 2,213 (22%)

  Missing 4 (< 0.1%) 0 (0%)

Weeks receiving health-related social benefits during a two-year period prior to the baseline of sickness absence 
episode

0 (0, 7) 0 (0, 9)

Weeks receiving health-related social benefits during a two-year period prior to the baseline of sickness absence episode (grouped)

  A: 0 weeks 5,738 (59%) 5,443 (55%)

  B: 1–26 3,064 (31%) 3,226 (33%)

  C: > 26 954 (9.8%) 1,239 (13%)

Weeks receiving non-health related social benefits during a two-year period prior to the baseline of sickness 
absence episode

0 (0, 16) 0 (0, 17)

Weeks receiving non-health related social benefits during a two-year period prior to the baseline of sickness absence episode (grouped)

  A: 0 weeks 5,846 (60%) 5,757 (58%)

  B: 1–26 1,959 (20%) 2,226 (22%)

  C: > 26 1,951 (20%) 1,925 (19%)

Sickness absence reason

  Anxiety 379 (3.9%) 289 (2.9%)

  Depression 3,693 (38%) 4,449 (45%)

  Mental ill health without further specification 1,028 (11%) 1,169 (12%)

  Stress/burnout 4,656 (48%) 4,001 (40%)
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Assessment of predictive ability
We evaluate apparent performance (training and valida-
tion on development data) and the mean of tenfold cross-
validation for internal validation. To this end, we use the 
caret-package in R [29]. We use a cross-validation pro-
cedure to reduce the risk of overfitting data and thereby 
improve the models’ ability to generalize to new “unseen” 
data. In practice, we train the model on 9 folds of the 
training data and evaluate model performance on the 
remaining fold of training data. We repeat this procedure 

n (%); Median (IQR)

Table 3  (continued)

Characteristic Development, 
N = 9,756

Test, N = 9,908

Skill level

  Highest 1,252 (13%) 1,216 (12%)

  Medium 2,207 (23%) 2,348 (24%)

  Basic 4,386 (45%) 4,457 (45%)

  Few or no 1,066 (11%) 1,018 (10%)

  Unstated 845 (8.7%) 869 (8.8%)

Industry

  Accommodation and food service activities 299 (3.1%) 274 (2.8%)

  Agriculture 100 (1.0%) 106 (1.1%)

  Construction 591 (6.1%) 621 (6.3%)

  Courts and prisons, Police, Fire Departments 111 (1.1%) 113 (1.1%)

  Education 731 (7.5%) 842 (8.5%)

  Human health and social work activities 2,596 (27%) 2,761 (28%)

  Manufacturing, mining and quarrying 893 (9.2%) 888 (9.0%)

  Other branches 2,288 (23%) 2,110 (21%)

  Public administration 336 (3.4%) 306 (3.1%)

  Transporting and storage 548 (5.6%) 553 (5.6%)

  Unstated 47 (0.5%) 54 (0.5%)

  Wholesale and retail trade, repair of motor vehicles and motorcycles 1,216 (12%) 1,280 (13%)

Unemployment insurance (in the calendar year preceding the baseline)

  Insured 8,413 (86%) 8,716 (88%)

  Not insured 1,343 (14%) 1,192 (12%)

Citizenship

  Danish 9,188 (94%) 9,544 (96%)

  Not Danish 564 (5.8%) 364 (3.7%)

  Missing 4 (< 0.1%) 0 (0%)

Participation in the Danish RTW program

  Control 1,771 (18%) 2,075 (21%)

  Intervention 2,568 (26%) 2,241 (23%)

  Not eligible 5,417 (56%) 5,592 (56%)

Employment status at baseline

  Employed 7,479 (77%) 7,670 (77%)

  Unemployed 2,277 (23%) 2,238 (23%)

Gender

  Men 6,886 (71%) 6,836 (69%)

  Women 2,870 (29%) 3,072 (31%)

Table 4  Hyperparametergrid for XGBoost

XGBoost grid from XGBoost package in R

nrounds 100 to 1.000 by 100

eta 0.025, 0.05, 0.1, 0.3

max_depth 2, 4, 6

gamma 0

colsample_bytree 1

min_child_weight 1

subsample 1
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10 times, so each fold is used 9 times to train the model 
and once for model evaluation. We evaluate external per-
formance by splitting the data by geographical location. 
The model is developed on data from two regions (Capi-
tal and Zealand), and external validation is performed 
on the test set comprising three other regions (Southern 
Denmark, Central Jutland, and Northern Jutland). This 
approach provides a better estimate of external validity to 
procedures that use a random split [3].

The Brier score assesses the models’ overall perfor-
mance. Higher Brier scores associate with worse perfor-
mance. The Brier score range between 0 and a maximum 
score that depends on the incidence in the outcome 
groups. Therefore, we report the scaled Brier score, 
which indicates the improvement over the maximum 
Brier score. The maximum Brier score is the Brier score 
from a model that predicts the average values for each 
outcome category in the training data. For example, at 
3 years follow-up, the maximum Brier score is based on 
predicting 65 pct. for “Not benefit recipient”, 21 pct. for 
“Other benefit recipient”, and 14 pct. for “Health benefit 
recipient” for all observations. The scaled Brier score is 
on a scale from 0–1, where 0 represents no improvement, 
and 1 represents perfect prediction. Thus, higher values 
are better on the scaled Brier score. The Area Under the 
Curve Receiver Operating Characteristics (AUC-ROC) 
assesses discrimination, the models’ ability to assign a 
higher probability to events vs non-events. AUC-ROC 
ranges between 0.5 (no ability to discriminate) and 1 
(perfect discrimination). As a rule of thumb, the dis-
crimination for AUC-ROC between 0.5–0.7 is considered 
poor, 0.7–0.8 is acceptable, 0.8–0.9 is excellent, and > 0.9 
is outstanding [30]. However, these cut-points are a bit 
arbitrary and more conservative accounts only consider 
models with values above 0.8 to be useful [31]. Finally, we 
examine calibration, which helps to evaluate how closely 
the risk prediction of a model agrees with the observed 

risk [31]. We assess calibration visually where the calibra-
tion curve is smoothed using cubic splines.

Predictor importance
We evaluate predictor importance from MLR by calculat-
ing χ2 minus degrees of freedom from a likelihood ratio 
test that compares the full model with the full model 
minus the predictor of interest. For XGB, we evaluate 
predictor importance by the mean SHAP-value for each 
outcome.

Data mining of predictive associations from XGB using 
SHAP
We examine deviations from linearity by inspecting par-
tial and two-way plots of SHAP values against predictors. 
Data mining may imply that some of these patterns are 
not generalizable beyond the development data.

Results
Table  5 shows that validation results are largely similar 
for XGB and MLR across performance measures and 
types of validation for any given follow-up year. The AUC 
scores are very similar and around 0.7 for both models 
across the different follow-up periods. By some stand-
ards, 0.7 is acceptable, but neither models are great at 
discriminating outcomes. The scaled-Brier scores indi-
cate that the models improve the predictive performance 
over the maximum Brier score in the range of 0.08–0.15. 
This shows that modelling can improve predictive perfor-
mance but also that it is difficult to improve substantially.

We also tried to improve the performance of the mod-
els by applying single imputation with bagged trees. In 
addition, we applied a ridge penalty to the coefficient 
(from 0–1 by 0.1) in the MLR models. Although models 
with some penalty did better than none, the improve-
ments were too small to detect with two decimal points. 
This is not too surprising since penalized regression is 

Table 5  Validation results

MLR Multinomial logistic regression, PMLRim Penalized multinomial logistic regression (ridge penalty) with single imputation, XGB XGBoost, XGBim XGBoost with single 
imputation

Follow-up 1 year 3 years 5 years

Model MLR PMLRim XGB XGBim MLR PMLRim XGB XGBim MLR PMLRim XGB XGBim

AUC-ROC

  Apparent 0.71 0.71 0.73 0.72 0.70 0.70 0.72 0.72 0.71 0.70 0.72 0.72

  tenfold-cv 0.71 0.71 0.71 0.71 0.69 0.70 0.70 0.69 0.70 0.70 0.70 0.70

  Test set 0.71 0.70 0.71 0.71 0.70 0.70 0.71 0.71 0.70 0.70 0.71 0.70

Brier-scaled

  Apparent 0.13 0.13 0.15 0.15 0.10 0.10 0.12 0.12 0.10 0.08 0.10 0.12

  tenfold-cv 0.11 0.11 0.13 0.13 0.09 0.09 0.10 0.10 0.10 0.10 0.10 0.10

  Test set 0.12 0.12 0.14 0.14 0.12 0.12 0.13 0.12 0.12 0.12 0.10 0.12
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more important when models are based on small data-
sets [3]. Imputation also made no discernable difference. 
We only imputed values for job skill level and industry, 
but, as we present briefly, these predictors have very lim-
ited importance. Therefore, we focus on the results for 
the XGB and MLR without penalty and imputation.

Figure 2 shows the calibration curves smoothed using 
cubic splines for XGB and MLR for each model at each 
follow-up period on the test set. When the calibration 
curve is below the 45-degree line, the model assigns a 
too high probability of an event (overpredicts). In con-
trast, the model assigns a too low probability of an event 
(underpredicts) if the calibration curve is above the dot-
ted line [31]. For recipients of other benefits, both MLR 
and XGB are well-calibrated where the density of data is 

high (confidence intervals narrow) after 1 and 3 years of 
follow-up. However, after 5 years of follow-up, the MLR 
overpredicts increasingly for higher predicted probabili-
ties. MLR under-predicts the risk of being on a health 
benefits recipient and overpredicts the probability of not 
receiving benefits and increasingly so at longer follow-
up. XGB underpredicts the risk of being a health benefit 
recipient at 3 and 5 years follow-up for predictions in the 
range of 0 to 40–50 pct. but to a lesser degree than MLR. 
However, at 3 and 5  years follow-up, XGB overpredicts 
not being a benefit recipient to the same degree as MLR. 
From Table  3, we note that the test set generally has a 
higher share of health benefit recipients and a smaller 
share of non-benefit recipients at follow-up than the 
development set, which might explain these results. This 

Fig. 2  Calibration (agreement between observed and predicted probability smoothed using cubic splines)
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emphasizes the need for (semi-)external validation to get 
a realistic assessment of the model’s validity.

Predictor importance
Figure  3 shows the results at 1  year follow-up where 
larger values of χ2 minus degrees of freedom associate 
with larger importance. The two predictors with welfare 
dependency history are the most important, followed 
by reason for sickness absence. Industry, job skill level, 
period, unemployment history and gender are the least 
important predictors.

For XGB, we visualize the mean absolute SHAP value. 
The larger this value, the larger the impact of the predic-
tor in the prediction model. Figure 4 illustrates that pre-
dictors are not equally important in predicting the type 
of outcome. However, the overall pattern is that past wel-
fare dependency and reason for sickness absence remain 
among the most important predictors. Job skill level and 
industry rank higher in the XGB-model compared to 
MLR but remain less important predictors alongside gen-
der, period, unemployment insurance, and citizenship. 
Similar figures for 3 and 5  years follow-up corroborate 
this finding (not shown).

Data mining results
For the data mining section, we focus on prediction pat-
terns derived from XGB that conflict modelling using 

MLR. Figure 5 shows the SHAP values in the test set at 
1 year follow-up for the variable, indicating the number 
of weeks with health benefits the two years before sick-
ness absence leave. The dense grey cloud in each fig-
ure displays the SHAP value for all observations. The 
clouds show a narrow distribution of the SHAP values 
around each week. A cubic spline smooths the relation-
ship between the number of weeks and the assigned 
SHAP value to predict one of the three outcomes. Addi-
tionally, the figures show that an increasing number 
of weeks increases the associated SHAP value (risks) 
of being a health benefit recipient at follow-up. Con-
versely, an increase in the number of weeks decreases 
the SHAP value of not receiving benefits. Weeks on 
health benefits neither increase nor decrease the risk 
of being a non-health benefit recipient. This contrasts 
the MLR-approach (see Table  6), where the number of 
weeks as health or other benefit recipient is modelled 
as a step-wise effect by grouping the variables into three 
categories.

Figure  6 shows an interesting pattern for the mean 
SHAP values for self-reported “mental ill-health without 
further specification” by job skill level. The SHAP values 
are markedly higher for persons with a basic job than 
other job skill levels for the health benefit outcome. Con-
trary, the SHAP value for basic job skill level is not higher 
than other job skill categories when we assess the mean 

Fig. 3  Predictor importance for MLR
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SHAP value for other self-reported reasons for sickness 
absence (figures not shown). Therefore, the analysis of 
SHAP values suggests an interaction effect between basic 
job skill level and self-reported “mental ill-health with-
out further specification”. Moreover, this interaction pre-
dicts a higher risk of being a health benefit recipient at 
follow-up.

Discussion
MLR and XGB showed similar performance in predicting 
welfare dependency from mental health-related sickness 
absence at follow-up after 1, 3, and 5 years. The scaled-
Brier scores indicate that the prediction models improve 
the predictive performance by 0.08–0.15 over average 
probabilities. While this represents an improvement over 
average probabilities, this improvement is modest. Indus-
try and job skills, along with citizenship, unemployment 

insurance, gender and period, had limited importance 
in predicting welfare dependency in both models. Wel-
fare dependency history and reason for sickness absence 
were, on the other hand, strong predictors. Finally, SHAP 
analysis demonstrated that XGB and MLR relied on dif-
ferent predictive associations. In particular, XGB used a 
linear or curvilinear relationship to model the association 
between welfare dependency and the number of weeks 
receiving health-related or other types of benefits during 
the previous two years before sickness absence leave. In 
contrast, these variables were grouped into three catego-
ries in the MLR models. Also, XGB modelled interaction 
effects, whereas the MLR models only modelled main 
effects.

We expected XGB’s predictive ability to outperform 
MLR based on the praise for XGB’s predictive perfor-
mance in machine learning competitions across a broad 

Fig. 4  Predictor importance for XGB at 1 year follow up
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range of prediction problems [24]. In this study, XGB 
and MLR had a similar predictive ability, although the 
former model can learn more subtle and non-linear 
patterns. Thus, the two models’ comparative predic-
tive performance suggests that MLR could capture 
the most important patterns even if XGB were able to 
model more complex patterns. In other words, with the 
application of XGB to the same data, we demonstrated 
that the MLR models capture the most important pat-
terns in the data in predicting welfare dependency. A 
Danish study also found a similar predictive perfor-
mance of RTW of a logistic regression model against a 

more flexible modelling design combining multistate 
and survival analysis [32]. However, the sample was not 
restricted to persons sick-listed with CMD. Two studies 
[6, 7] makes prediction models with machine learning for 
RTW using Korean data, but only one of them [6] com-
pares predictive performance across different algorithm, 
including logistic regression. The study assessing differ-
ent algorithms showed comparable performance across 
the algorithms, although the random forest algorithm did 
slightly better. In sum, along with the existing literature, 
the present study suggests that flexible machine learning 
models have limited advantages over traditional models 
in predicting welfare dependency and the closely related 
concept of RTW. This would also be in line with both 
empirical and simulation studies showing that machine 
learning models do not perform better than traditional 
models, such as logistic regression in clinical prediction 
modelling, except for settings with a large N [3].

The modest predictive performance of both the MLR 
and XGB demonstrates that it can be difficult to predict 
welfare dependency from administrative data. Since the 
number of observations was reasonably large and we 
tried a very flexible modelling approach, it is unlikely that 
more observations and other algorithms would improve 
predictive ability markedly. However, combining admin-
istrative data with variables based on self-report may 
improve predictive performance. For example, satisfac-
tion level with the employer and maintenance of rela-
tionship with the company was among the important 
predictors of RTW across several algorithms in one study 
[6]. Thus, these predictors, not available from administra-
tive data, could possibly also improve the predictive abil-
ity of welfare dependency in our setting.

Datamining showed that MLR might improve perfor-
mance by modelling some of the predictive associations 
derived from the SHAP analysis of XGB. For example, 
XGB demonstrates that the relationship between wel-
fare dependency and the number of weeks as a health or 
other benefits recipient can be modelled as a curvilinear 
function to reduce information loss associated with cat-
egorizing a continuous variable. Further, SHAP analysis 
indicated a predictive interaction between basic job skill 
level and “mental-ill health without further specification”. 
Due to the nature of data mining, this effect could result 
from overfitting. Further research assessing similar pre-
dictive interaction effects could establish whether this 
interaction is consistent across data in new settings. We 
did not find any strong indications of other interactions 
in the data mining. This corroborates the finding that 
XGB cannot achieve better predictive performance than 
the MLR even if XGB can deal with interaction effects 
that are not pre-specified in the model.

Fig. 5  SHAP dependence plots at 1 year follow-up
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Table 6  Multinomial logistic regression: 1 year follow-up

OR Odds Ratio, CI Confidence interval, N = 9.752

Outcome (Ref.: Not benefit recipient) Health benefit recipient Recipient of other benefits

OR 95% CI P-value OR 95% CI P-value

(Intercept) 0.1 [0.07; 0.14]  < 0.01 0.11 [0.08; 0.14]  < 0.01

Job skill level (Ref.: Basic)

  Highest 0.87 [0.71; 1.06] 0.17 0.92 [0.76; 1.1] 0.35

  Medium 0.89 [0.77; 1.04] 0.14 0.9 [0.79; 1.04] 0.15

  Few or no 0.94 [0.77; 1.14] 0.51 1.09 [0.91; 1.3] 0.34

  Unstated 0.93 [0.75; 1.15] 0.5 1.02 [0.83; 1.24] 0.88

Industry (Ref.: Human health and social work activities)

  Accommodation and food service activities 0.91 [0.64; 1.28] 0.59 0.99 [0.72; 1.36] 0.95

  Agriculture 1.19 [0.7; 2.03] 0.53 0.86 [0.5; 1.49] 0.59

  Construction 0.9 [0.7; 1.16] 0.43 0.88 [0.69; 1.12] 0.3

  Courts and prisons, Police, Fire Departments 0.8 [0.45; 1.4] 0.43 0.97 [0.58; 1.61] 0.9

  Education 1.05 [0.82; 1.34] 0.71 0.98 [0.78; 1.24] 0.86

  Manufacturing, mining and quarrying 1.08 [0.88; 1.34] 0.46 0.96 [0.78; 1.18] 0.69

  Other branches 0.95 [0.8; 1.12] 0.53 1.06 [0.91; 1.23] 0.47

  Public administration 0.92 [0.66; 1.29] 0.62 1.19 [0.89; 1.6] 0.25

  Transporting and storage 0.97 [0.75; 1.26] 0.83 1.02 [0.8; 1.3] 0.89

  Unstated 1.15 [0.52; 2.58] 0.73 1.24 [0.59; 2.63] 0.57

  Wholesale and retail trade, repair of motor vehicles and 
motorcycles

1.06 [0.88; 1.29] 0.52 1.08 [0.9; 1.3] 0.39

Age groups (Ref.: 20–29)

  30–39 1.27 [1.07; 1.51] 0.01 1.09 [0.93; 1.27] 0.27

  40–49 1.47 [1.24; 1.75]  < 0.01 1.25 [1.07; 1.46] 0.01

  50–54 2.22 [1.8; 2.73]  < 0.01 1.3 [1.06; 1.59] 0.01

Women (Ref.: Men) 1.06 [0.93; 1.21] 0.37 1.14 [1.01; 1.29] 0.03

Not Danish Citizenship (Reference: Danish Citizenship) 1.18 [0.93; 1.5] 0.17 1.48 [1.19; 1.83]  < 0.01

Family type (Reference: Couple with resident children)

  Couple without resident children 1.23 [1.04; 1.47] 0.02 1.08 [0.91; 1.27] 0.39

  Single with resident children 1.44 [1.21; 1.72]  < 0.01 1.63 [1.4; 1.92]  < 0.01

  Single without resident children 1.34 [1.16; 1.54]  < 0.01 1.48 [1.3; 1.69]  < 0.01

No unemployment insurance (Ref.: Insured) 1.11 [0.94; 1.32] 0.22 1.11 [0.95; 1.3] 0.2

Unemployed (Ref.: Employed) 1.96 [1.67; 2.31]  < 0.01 1.75 [1.5; 2.03]  < 0.01

Reason Sickness Absence (Ref.: Stress/Burnout)

  Depression 2 [1.75; 2.27]  < 0.01 1.64 [1.45; 1.84]  < 0.01

  Mental ill health without further specification 2.57 [2.14; 3.09]  < 0.01 1.48 [1.23; 1.78]  < 0.01

  Anxiety 2.14 [1.61; 2.83]  < 0.01 1.48 [1.12; 1.95] 0.01

Number of weeks receiving health related benefits 2 years prior sickness absence event (Ref.: 0 weeks)

  1–26 1.43 [1.26; 1.62]  < 0.01 1.34 [1.19; 1.51]  < 0.01

  > 26 3.64 [3.01; 4.4]  < 0.01 2.01 [1.65; 2.45]  < 0.01

Number of weeks receiving other benefits 2 years prior sickness absence event (Ref.: 0 weeks)

  1–26 1.33 [1.14; 1.55]  < 0.01 1.86 [1.62; 2.14]  < 0.01

  > 26 2.06 [1.73; 2.46]  < 0.01 3.2 [2.73; 3.76]  < 0.01

Time passed between the first day of sickness absence and the baseline visit at the jobs and benefits office (Ref.: 0–30 days)

  31–60 0.85 [0.71; 1.03] 0.09 1.01 [0.84; 1.21] 0.94

  > 60 0.93 [0.76; 1.13] 0.45 1.22 [1.01; 1.48] 0.04

Participation in the Danish RTW program

  Intervention 1.05 [0.89; 1.24] 0.55 1.36 [1.16; 1.59]  < 0.01

  Not eligible 0.73 [0.62; 0.84]  < 0.01 0.74 [0.64; 0.86]  < 0.01

Period: Before 2012 (Ref.: 2012) 1.02 [0.89; 1.18] 0.74 1.1 [0.97; 1.26] 0.14
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In practice, prediction models can help job centres in 
focusing efforts on workers with a high risk of persis-
tent welfare dependency rather than “wasting” scarce 
resources on individuals that are likely to return to work 
by themselves. In addition, it may help to set expectations 
on risk for welfare dependency that are more realistic for 
both workers and job centres to ease disappointment if 
coming off welfare dependency proves difficult. Here 
the use of administrative data can be useful because 
it can provide consistent and objective information, 
whereas self-report can suffer from different biases (e.g. 
difficulty in remembering the exact number of months 
receiving benefits the past 24  months.). A downside 

to administrative data is that it will not always be up to 
date at the time of prediction. In these circumstances, 
the prediction model must rely on data with some lag, 
which may reduce the models’ predictive ability. Predic-
tion models can be implemented with software that can 
extract information from administrative data and by typ-
ing in self-reports to the software. The web page https://​
qrisk.​org/​three provides an example of an interface 
where the user types in information to get a risk score of 
a person’s risk of developing a heart attack or stroke in 
the next 10 years based on scientific studies [33].

The present study has demonstrated how flexible 
machine learning modelling can complement traditional 

Fig. 6  SHAP values by outcome and job skill level for self-reported “mental ill-health without further specification”

https://qrisk.org/three
https://qrisk.org/three
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statistical methods. However, researchers should also 
weigh benefits against potential costs and challenges. 
Below we list some considerations:

1.	 The additional application of machine learning mod-
els to traditional statistical models is more demand-
ing of other researchers with limited knowledge of 
machine learning models. This is likely a problem in 
occupational health research, where most research-
ers have limited machine learning training. However, 
occupational health researchers are vital in providing 
insights into the data being used for prediction mod-
elling. We note that applied textbooks in prediction 
modelling all stress the value of expert knowledge 
in variable selection [3, 4, 31]. Thus, the application 
of machine learning models is ideally completed 
through partnerships between domain experts and 
data scientists.

2.	 Interpreting flexible machine learning models using 
explanatory algorithms like SHAP is a relatively new 
field of research. This further raises the barriers to 
other researchers assessing the reported predictive 
patterns of flexible machine learning models.

3.	 The application of machine learning models in occu-
pational health research would also benefit from a 
more structured approach to data mining. While 
textbooks cover different algorithms, e.g. [34, 35], 
strategies or guidelines based on a consensus among 
experts would help researchers use more structured 
approaches to data mining.

Conclusions
Flexible machine learning models like XGB can supple-
ment traditional statistical methods like MLR in occu-
pational health research by providing a benchmark for 
predictive performance and traditional statistical models’ 
ability to capture important associations for a given set of 
predictors as well as potential violations of linearity. For 
example, considerable differences in performance could 
indicate that a traditional statistical model has failed to 
model important non-linearities or has too extensive 
information loss from categorizing continuous variables. 
In this case, SHAP analysis of flexible machine learning 
models using variable importance and SHAP-depend-
ence plots can help detect important associations.
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