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Abstract 

Background People with certain underlying respiratory and cardiovascular conditions might be at an increased risk 
for severe illness from COVID‑19. Diesel Particulate Matter (DPM) exposure may affect the pulmonary and cardiovascu‑
lar systems. The study aims to assess if DPM was spatially associated with COVID‑19 mortality rates across three waves 
of the disease and throughout 2020.

Methods We tested an ordinary least squares (OLS) model, then two global models, a spatial lag model (SLM) and a 
spatial error model (SEM) designed to explore spatial dependence, and a geographically weighted regression (GWR) 
model designed to explore local associations between COVID‑19 mortality rates and DPM exposure, using data from 
the 2018 AirToxScreen database.

Results The GWR model found that associations between COVID‑19 mortality rate and DPM concentrations may 
increase up to 77 deaths per 100,000 people in some US counties for every interquartile range (0.21 μg/m3) increase 
in DPM concentration. Significant positive associations between mortality rate and DPM were observed in New York, 
New Jersey, eastern Pennsylvania, and western Connecticut for the wave from January to May, and in southern Florida 
and southern Texas for June to September. The period from October to December exhibited a negative association in 
most parts of the US, which seems to have influenced the year‑long relationship due to the large number of deaths 
during that wave of the disease.

Conclusions Our models provided a picture in which long‑term DPM exposure may have influenced COVID‑19 mor‑
tality during the early stages of the disease. That influence appears to have waned over time as transmission patterns 
evolved.
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Background
In 2020, more than 20 million cases of coronavirus dis-
ease 2019 (COVID-19) were identified in the United 
States (U.S.), and more than 350,000 people died 
[5, 9, 19]. In addition to age, socioeconomic status, access 
to healthcare, physical environment, and education have 
been identified as social determinants of COVID-19 hos-
pitalization and mortality [30, 36]. Several studies have 
observed a disproportionate share of COVID-19 inci-
dence and mortality among predominantly Black U.S. 
communities, which may be partly attributable to social 
and economic inequalities and preexisting comorbidities 
[7, 8, 33 36, 40, 55], as well as to disproportionately high 
exposures to air pollution [29].

The impact of particulate matter exposures on COVID-
19 outcomes have also been evaluated, with some studies 
centered on diesel particulate matter (DPM). In an inves-
tigation of the role of long-term exposure (2000-2016) 
to air pollution during the first months of the pandemic, 
Wu et al. [54] found that an increase of 1 μg/m3 in par-
ticulate matter with a nominal diameter of 2.5 μm  (PM2.5) 
was associated with an 11% increase in the COVID-
19 death rate for January 1-June 18, 2020. Bozack et  al. 
[3] performed a similar analysis to test associations of 
COVID-19 intensive care unit (ICU) admission and mor-
tality with long-term concentrations of  PM2.5, nitrogen 
dioxide, and black carbon for the period March 8-August 
30, 2020 in New York City. They noted an association 
of ICU admission and mortality with long-term  PM2.5 
concentrations (collected December, 2018-December, 
2019). Petroni et  al. [35] investigated the association of 
COVID-19 mortality with respiratory hazard index cal-
culated across 3223 U.S. counties using emissions data 
for 2014 and COVID-19 data through May 13, 2020. 
They observed a 9% increase in COVID-19 mortality per 
unit increase in respiratory hazard index, which includes 
DPM. Their analyses with only DPM demonstrated an 
increased effect of 182% in the mortality rate ratio with 
a 0.5 μg/m3 increase in DPM concentration. Hendryx and 
Luo [18] studied the association of long-term exposure to 
ozone (obtained from 2016),  PM2.5 (obtained from 2016), 
and DPM (obtained from 2014) with COVID-19 preva-
lence and mortality through May 31, 2020. They showed 
an increase of 14.3 deaths per 100,000 U.S. residents for 
each DPM concentration increase of 1 μg/m3 in a single-
pollutant model adjusted for demographic, health, smok-
ing, and COVID-19 testing covariates. These findings 
collectively suggest that long-term PM exposure may 
predispose an individual to COVID-19 mortality. How-
ever, association of COVID-19 mortality with long-term 
DPM may change over time with the evolution of the 
coronavirus and changes in policies and personal behav-
iors. Our understanding of the effect of long-term DPM 

exposure on COVID-19 mortality during different waves 
of the disease and over the locations impacted by those 
waves remain unknown, hampering anticipation of dis-
ease hotspots.

DPM is composed of a complex mixture of black car-
bon and organic carbon. Studies have shown that 80-90% 
of particles emitted by diesel engines are smaller than 
2.0 μm [12, 24], small enough to penetrate the alveoli 
[41]. Long-term DPM exposure has been associated 
with adverse respiratory and cardiovascular effects [12, 
37, 41]. Diesel engines power school buses, heavy-duty 
trucks, a variety of off-road heavy equipment, shipping, 
and commercial boating [12, 24]. DPM emissions are 
higher in urban areas, where most of the global popula-
tion lives [12, 41]. Likewise, greater DPM concentrations 
have been observed in socioeconomically disadvantaged 
communities [8, 12].

Methods
Our study explores spatial associations between long 
term average concentrations of DPM, as a metric for past 
air pollution exposure, and COVID-19 mortality across 
each pandemic wave and throughout 2020 in the U.S. 
The objectives of the study are 1) to assess if living near 
DPM sources increased the risk of death from COVID-
19, 2) to estimate how associations between mortality 
and long-term exposure to DPM (using the U.S. Environ-
mental Protection Agency [50] broad definition of long-
term exposure measured over “months to years”) may 
have changed over time with changes in the Coronavirus 
and in the population’s behavior, and 3) to test if mod-
els accounting for spatial autocorrelation improve model 
estimates. Data for air pollution, health, demographic, 
and social determinants of health were merged for this 
analysis, and global and local models were both applied 
to examine these relationships.

Population data
Two measures of mortality were considered for our 
study: mortality rate (defined as the number of dead per 
100,000 people in a defined geographic area) and case 
fatality rate (CFR, defined as the percent dead among 
confirmed COVID-19 cases in a defined geographic 
area). County-level number of COVID-19 deaths and 
CFR were obtained from the publicly-available Johns 
Hopkins Coronavirus Resource Center [19] for the 
period January 1- December 31, 2020. Total popula-
tion shapefile data were obtained from the U.S. Census 
Bureau [49] for the mortality rate calculation. Use of 
the mortality rate in our model may point to an impact 
of long-term DPM exposure on COVID-19 mortality in 
the general population. Use of the CFR in our models 
may indicate an effect of long-term DPM exposure on 
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mortality among those who are already infected with 
COVID-19. An advantage of the CFR is that positive 
associations may indicate that long-term DPM expo-
sure causes death due to COVID-19. However, a dis-
advantage of the CFR is that two measures (COVID-19 
cases and deaths) are estimated, so it is susceptible to 
errors due to undercounting both the COVID-19 mor-
tality count and the COVID-19 case count. The mortal-
ity rate is only susceptible to errors in the death count.

Data for potential confounders associated with the 
measures of COVID-19 mortality and DPM, including 
access to health care, education, poverty, demograph-
ics, transportation, and occupation were obtained from 

the American Community Survey (ACS [48];) and the 
County Health Rankings (CHR [42];) (Table 1). The vari-
ables tested as potential confounders are similar to those 
used in other studies investigating factors associated with 
COVID-19 that also tested for confounders and observed 
associations with variables relating to socioeconomic sta-
tus, demographics, and healthcare availability that could 
potentially be correlated with air pollution (e.g., [30, 44]).

Exposure data
Long-term average DPM concentrations were obtained 
from the 2018 AirToxScreen database, the most recently 
modeled concentrations of hazardous air pollutants and 

Table 1 Potential confounders tested in the models

Race/ethnicity Education
Fraction Black Fraction Incomplete school

Fraction White Poverty and Wealth
Fraction Hispanic Fraction unhoused

Fraction American Indian Fraction with a severe housing burden (more than 50% of 
monthly income spent on housing)

Fraction Asian Fraction with one of four housing problems: overcrowding, 
high costs, lack of kitchen, lack of plumbing

Fraction Pacific Islander Food‑environment index

Transportation Income inequality (ratio of 80th percentile to 20th percentile)

Fraction who walks to work Fraction unemployment

Fraction who takes public transportation to work Fraction median income

Fraction who takes a bicycle or motorcycle to work Fraction in poverty

Fraction who drives a car to work Median home value

Fraction average time to work Demographics
Traffic volume Population density

Age
Fraction over 65

Median age

Occupation
Fraction in a service occupation

Fraction in a manual occupation

Fraction working in a mining or agricultural occupation

Fraction working in a construction occupation

Fraction working in a utilities occupation

Health
Fraction in poor health

Fraction obese

Fraction with diabetes

Fraction reporting inactivity (no leisure time physical activity in the past month)

Fraction smoking

Access to Healthcare
Fraction uninsured

Fraction population receiving health care

Fraction hospitals per county

Fraction hospital beds available
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select other pollutants [51]. EPA used a hybrid model that 
coupled a Community Multiscale Air Quality (CMAQ) 
chemical transport model to the American Meteorologi-
cal Society/Environmental Protection Agency Regula-
tory Model (AERMOD), a dispersion model, to estimate 
AirToxScreen air pollutant concentrations at the census 
tract level through a multi-step process. CMAQ v5.2 was 
first run over a 12 km × 12 km grid based on DPM emis-
sions inputs from the National Emissions Inventory [51]. 
Next, the AERMOD dispersion model was run for each 
source using the same inputs but with receptors distrib-
uted over census tract centroids. Finally, concentrations 
estimated by AERMOD along the census tract centroids 
were scaled by the ratio of the CMAQ concentration to 
the average of the AERMOD concentrations over that 
same grid cell. This formulation allows for more accu-
rate representation of the chemistry and physics of the 
DPM than the AERMOD dispersion model can provide 
alone, while maintaining the finer census tract level spa-
tial resolution of the dispersion model. Because the con-
centrations are calculated from the annual emissions, the 
concentrations are annual averages.

Model runs
We tested the associations of COVID-19 mortality rate 
and CFR with long-term DPM concentrations across 
the contiguous United States for time periods coinciding 
with each COVID-19 wave in 2020: January 1-May 31, 
2020, June 1-September 30, 2020, and October 1-Decem-
ber 31, 2020. We also ran the models for the entire year: 
January 1-December 31, 2020.

We used regression analysis to examine spatial non-
stationarity in the relationship between the measures 
of COVID-19 mortality and DPM while accounting for 
potentially confounding effects. This work is similar to 
spatial modeling approaches used by Sun et al. [47] and 
Rahman et  al. [39]. Sun et  al. [47] investigated differ-
ent spatial regression models and compared them with 
an ordinary least squares (OLS) regression model to 
explain the transmission pattern of COVID-19. County-
level race/ethnicity and socio-economic covariates were 
included in their models. We adapted their approach by 
focusing on associations of COVID-19 mortality with 
DPM and by investigating different waves of the disease. 
Three global models, OLS, spatial lag model (SLM), and 
spatial error model (SEM), were run to produce a nation-
wide effect estimate. One local model, geographically 
weighted regression (GWR), produced effect estimates at 
the county scale. The R Statistical Software version 4.0.5 
was used to run all code. We performed spatial regres-
sion modeling with the following libraries: spdep, spgwr, 
and spatialreg.

OLS models are designed to minimize the sum of 
squared differences between the true data and the pre-
diction across the dataset [17]. Mollalo et  al. [30] stud-
ied county-level variations of COVID-19 incidence in 
the U.S. From a list of 35 demographic, socio-economic, 
topographic and environmental variables, they used a 
stepwise forward selection procedure and then checked 
for multicollinearity to determine the most significant 
predictors of COVID-19. Then, using the same selected 
explanatory variables, they tested their model using OLS 
and several spatial models including SEM, SLM, and 
GWR (described below). Accounting for spatial autocor-
relation in their model improved performance over OLS. 
Karaye and Horney [20] also compared OLS to spatial 
regression models to analyze the impact of social vul-
nerability on COVID-19 cases. Spatial autocorrelation 
of the residuals may compromise the validity of the OLS 
model and produce biased estimators [25, 28]. The model 
assumptions of zero mean, independence, heteroscedas-
ticity, and normal distribution are met for the case where 
OLS is a complete and correct model in which the varia-
bles capture all of the spatial variation without specifying 
spatial positions [10, 43]. Spatial autocorrelation in resid-
uals may occur due to an omitted variable. Heteroscedas-
ticity, or dependence of the residuals on the fitted values, 
may result in part from spatial autocorrelation [28]. This 
was evaluated in the OLS using the Breusch-Pagan test 
for heteroscedasticity of the residuals. The SLM and SEM 
employ generalized frameworks that apply a transforma-
tion to the data to improve heteroscedasticity of the data 
using appropriate control of the error term and calculate 
efficient maximum-likelihood estimates [4].

SLMs estimate an autocorrelation parameter (“spatial 
lag”) using a weighted average of the response variable 
across neighboring areas, testing if neighboring observa-
tions affect one another [16, 26, 47]. As the autocorrela-
tion parameter approaches zero, the SLM approaches the 
OLS [30]. In SEMs, errors across neighboring areas are 
autocorrelated (“spatial error”) [16, 23]. SEMs estimate 
the relationship between the residuals in a spatial region 
and those in adjacent regions [47]. The spatial structure is 
in the residuals, meaning that some important predictors 
are omitted in the model [6].

SLM and SEM have only one spatial dependence 
parameter. The single-valued characteristic makes it 
impossible for global spatial models to reveal local spatial 
patterns [6, 14]. Another limitation of global spatial mod-
els is that the model is dependent on the spatial weighting 
matrix 6. In contrast, GWR allows for local models to be 
fit to each observation using spatial distance as a weight-
ing factor for the influence of all other points [14]. To 
determine local associations between COVID-19 cases in 
the U.S. and demographic, socio-economic, topographic 
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and environmental parameters, Mollalo et al. [30] exam-
ined two local models including GWR. The variables 
incorporated in the model are the same set used for OLS, 
SLM, and SEM. Similarly, Karaye and Horney [20] com-
pared GWR to OLS to understand the spatially varying 
effect in the relationship between social vulnerability and 
COVID-19 case counts. The main advantage of GWR 
as a local model is the ability to test for spatial variabil-
ity among the effects of different variables in the model 
[6, 14, 25]. Another strength is that GWR has the same 
model structure as the OLS, which facilitates comparison 
between the two models [14].

For our spatial autoregressive models, we estimated 
spatial relationships between regions based on con-
tiguous boundaries shared between 2 or more counties, 
assuming that COVID-19 spread in a county is influenced 
by adjacent counties. For GWR, a cross-validation func-
tion minimizes the root mean square prediction error 
that defines the weight matrix. We evaluated spatial auto-
correlation among contiguous cells in the model residu-
als using Moran’s I [31]. Statistically significant Moran’s 
I indicates either correlation or anticorrelation among 
neighboring units. Additionally, we used Lagrange mul-
tiplier test statistics to understand whether the spatial lag 
or spatial error pattern is more important for interpret-
ing the local results.

The level of urgency of the COVID-19 outbreak con-
tributed to uncertain policy decisions and interventions 

in health in compressed timeframes coupled with the 
complex social, economic and political events of 2020 
[22]. Effects related to pandemic waves could have influ-
enced the importance of specific variables during these 
different times of the year. Therefore, a set of different 
covariates have been integrated into the model for each 
time period. To determine which covariates to include in 
the regression models of COVID-19 mortality, we applied 
a stepwise selection algorithm for each season (Table 1). 
Then, the same covariates were incorporated in the best 
model for OLS, SLM, SEM, and GWR for each specific 
wave (Table 2), based on the following framework:

The confounder selection procedure was based on min-
imizing the Akaike information criterion (AIC) after con-
trolling for multicollinearity. We used this same process 
for each of the three waves and throughout 2020 to find 
the most significant models for determining the nation-
wide and local associations between COVID-19 mortal-
ity and DPM concentration.

Results
County-level annual average DPM concentration varied 
from 0.000202 to 1.72 μg/m3 with a nationwide median 
of 0.204 μg/m3. Elevated DPM concentration could 

(1)
COVID − 19 deaths =DPM concentration

+ Confounder variables

+ error term

Table 2 Model framework for each wave modeled

Wave Dates Models

Mortality Rate

 Jan 1‑May 31, 2020 COVID‑19 deaths ~ log(DPM concentration) + Fraction Black + Fraction American Indian + Fraction who take public transpor‑
tation to work + Fraction uninsured + Fraction smoking + Fraction income inequality + Population density (2)

 Jun 1‑Sep 30, 2020 COVID‑19 deaths ~ log(DPM concentration) + Fraction Black + Fraction Hispanic + Fraction who take public transportation to 
work + Fraction who drive to work + Fraction reporting inactivity + Fraction incomplete school + Population density (3)

 Oct 1‑Dec 31, 2020 COVID‑19 deaths ~ log(DPM concentration) + Fraction Black + Fraction American Indian + Fraction working in a mining or 
agricultural occupation + Fraction smoking + Fraction obese + Fraction over 65 + Fraction experiencing housing problems (4)

 Jan 1‑Dec 31, 2020 COVID‑19 deaths ~ log(DPM concentration) + Fraction Black + Fraction Hispanic + Fraction American Indian + Fraction work‑
ing in a mining or agricultural occupation + Fraction reporting inactivity + Fraction income inequality + Fraction experiencing 
housing problems (5)

Case Fatality Rate

 Jan 1‑May 31, 2020 Case Fatality Rate ~ log(DPM concentration) + Unemployment + Income inequality + Severe housing burden + Fraction work‑
ing in a mining or agricultural occupation + Fraction working in construction + Fraction incomplete school + Fraction Pacific 
Islander

 Jun 1‑Sep 30, 2020 Case Fatality Rate ~ log(DPM concentration) + Unemployment + Fraction income inequality + Fraction who take public trans‑
portation to work + Fraction working in a mining or agricultural occupation + Fraction of time spent commuting to work + 
Fraction Hispanic + Fraction Pacific Islander

 Oct 1‑Dec 31, 2020 Case Fatality Ratio ~ log(DPM concentration) + Fraction uninsured + Unemployment + Fraction reporting inactivity + Fraction 
who take public transportation to work + Fraction working in a mining or agricultural occupation + Fraction of time spent 
commuting to work + Fraction Pacific Islander

 Jan 1‑Dec 31, 2020 Case Fatality Rate ~ log(DPM concentration) + Fraction uninsured + Fraction reporting inactivity + Unemployment + Fraction 
income inequality + Fraction who take public transportation to work + Fraction working in a mining or agricultural occupation 
+ Fraction Pacific Islander
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be observed at specific points corresponding to cities 
(Fig.  1). Across New York metropolitan area counties, 
which was greatly impacted during the first wave of the 
pandemic, the average DPM concentration was 0.425 μg/
m3.

During the January-to-May wave, the highest cumula-
tive numbers of COVID-19 deaths were found in roughly 
the same regions as elevated DPM (Fig. 2a). As 2020 pro-
gressed, most counties experienced a higher mortality 
rate. The New York region exhibited lower cumulative 
mortality rate during the October-to-December wave of 
our study (Fig. 2c), with a mean of 98 deaths per 100,000 
compared with the January-to-May wave, which had a 
mean of 280 deaths per 100,000 (Fig.  2a). As shown in 
Fig.  2a and b, cumulative mortality rate increased sub-
stantially from the first wave to the second wave in the 
Southeast region. In the West region, New Mexico, Ari-
zona and California displayed the same pattern as the 
Southeast, with a large increase during the second wave. 
For the September-to-December wave, COVID-19 mor-
tality rate increased across almost all of the US, exhibit-
ing nearly the same pattern as for the all-year distribution 
(Fig. 2c and d).

At a global level, all models demonstrated a statistically 
significant association between long-term average DPM 
concentration and COVID-19 mortality rate for the first 
9 months of 2020, as represented by the January-to-May 
and June-to-September waves (Table  3). SLM and SEM 
produced slightly higher associations for the June-to-Sep-
tember wave. For the October-to-December wave, none 
of the global models were found to produce positive asso-
ciations or to be statistically significant. For the entire 
year, both the OLS and SLM produced positive associa-
tions, while the SEM produced a negative association.

OLS did not seem to be the most appropriate model to 
study spatial associations between COVID-19 mortality 
rate and DPM. Smaller associations for the spatial autore-
gression models compared with OLS suggested that the 
OLS covariates were positively biased due to spatial auto-
correlation. Moran’s I and visual inspection of the residu-
als maps (Supplemental Fig. S1) indicated spatial clusters 
of high values and of low values. The Breusch-Pagan test 
provided support for heteroscedasticity of the residu-
als (p < <  10− 6) in the OLS models, which may have been 
partially attributed to spatial autocorrelation [28]. The 
SLM and SEM models provided modest improvements in 
model fit, as indicated by slightly higher values of coef-
ficient of determination  (R2). Model fit testing indicates 
that the SLM and SEM provided comparable fits, based 
on the Lagrange multiplier test.

The local spatial differences estimated using the GWR 
model are presented as a range of values (Table  3). The 
mean COVID-19 mortality rate – DPM association for 
the GWR is identical to that of the OLS, but overall  R2 
for the GWR indicates improved performance over all 
global models. Spatial distribution of the DPM coeffi-
cients indicates changing conditions across the country 
during the three parts of the year (Fig.  3). During the 
January-to-May wave, associations were mostly positive 
across the U.S. (Fig. 3a), up to an increase of 76.94 deaths 
per 100,000 for every interquartile range (IQR) increase 
in DPM concentration. During the June-to-September 
wave, about half of the contiguous US presented a posi-
tive association (Fig.  3b), while associations were more 
negative for the October-to-December wave (Fig.  3c). 
Year-round COVID-19 mortality rate associations with 
DPM were similar to those for the October-to-Decem-
ber wave, likely due to the large number of cases during 

Fig. 1 Spatial distribution of DPM concentration across contiguous U.S. counties (μg/m3). The R Statistical Software version 4.0.5 was used to 
produce the map, using the package lattice 
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that timeframe. Local variations in  R2 across the waves 
showed high (> 70%) values in the Northeast and South-
west during the January-to-May and June-to-September 
waves and in the year-long model. High  R2 persisted into 
the October-to-December wave for the Southwest, albeit 
with a smaller area (Fig. 4). Low values of  R2 (< 40%) were 
observed in the areas with greatest decrease in mortal-
ity with increasing DPM concentration, suggesting much 
greater uncertainty in those associations than in the posi-
tive ones seen in the New York area during the first wave. 
Moreover, COVID-19 mortality rate was statistically sig-
nificantly associated with DPM concentration during the 
January-to-May and June-to-September waves but not 
during the October-to-December wave.

Among all potentially confounding covariates incor-
porated in the global models, fraction Black race and 
fraction American Indian ethnicity were statistically 
significantly positive in all global models. In addition 
to these two covariates, inactivity was significant in the 
June-to-September and October-to-December waves and 

in the year-long model, and the confounders Hispanic, 
Mining or Agriculture, Public Transportation, Time to 
Work, Income Inequality, and Population Density were 
significant at different time periods of the model. A nega-
tive relationship was found for smoking for the January-
to-May wave, while a strong positive association was 
obtained for the October-to-December wave. In evalua-
tions of the effects of smoking on COVID-19 incidence 
or mortality, inconsistent results have been found in the 
literature [1, 27,  31]. Benowitz et  al. [1] highlighted the 
need for further investigations to better understand the 
mechanisms and effect of smoking on COVID-19 related 
outcomes. Correlation analysis suggests that DPM was 
moderately correlated with COVID-19 mortality rate in 
the January-to-May wave (Fig. 5a) and for the year-long 
(Fig. 5d) model, but that correlation was reduced in the 
June-to-September (Fig.  5b) and October-to-December 
(Fig.  5c) waves. Population density was correlated with 
COVID-19 mortality rate (ρ = 0.74) and DPM (ρ = 0.59) 
in the January-to-May wave. Fraction using public 

Fig. 2 Spatial distribution of COVID‑19 mortality rate for (a, top left) January‑May, (b, top right) June‑September, (c, bottom left) 
October‑December, and (d, bottom right) all of 2020. The R Statistical Software version 4.0.5 was used to produce the maps, using the package 
lattice 
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transportation was moderately correlated with COVID-
19 mortality rate (ρ = 0.48) and DPM (ρ = 0.62) in the 
January-to-May wave. Therefore, population density and 
public transportation usage had the potential to act as 
confounders in a model testing the association between 
COVID-19 mortality and DPM concentration for the 
January-to-May wave. A model including just DPM in 
the SLM and SEM produced effect estimates of 7.728 
and 9.713 deaths due to COVID-19 per 100,000 people 
for an IQR change in DPM (with  R2 = 0.2 for both mod-
els), respectively. Inclusion of the covariates in the model 
produced effect estimates of 1.710 and 1.845 deaths due 
to COVID-19 per 100,000 people for an IQR change in 
DPM (with  R2 = 0.42 and 0.45), respectively. These differ-
ences suggest that the final models controlled for those 
confounders. In the model that only included the covari-
ates, the effect estimates for population density and use 
of public transportation were slightly lower than in the 
full model, while  R2 for the SLM and SEM were the same 
as for the models including DPM.

Detailed results from the models examining asso-
ciations between CFR and DPM are included in the 
Supplemental Material (see Supplemental text, Sup-
plemental Table S1, and Supplemental Figs.  S2-S5). The 

relationships between CFR and DPM were similar to 
associations between mortality rate and DPM at each 
wave and throughout 2020. During the January-to-May 
wave, associations were positive and strongest in the 
Northeast. Associations were visible through parts of the 
Midwest and the Pacific Northwest. Associations per-
sisted in the Northeast for the June-to-September and 
October-to-December waves, but the magnitude of the 
associations was lower than for January-to-May. Nega-
tive associations were observed across the Southern and 
Mountain states for the June-to-September and Octo-
ber-to-December waves. Model fit  (R2) was consistently 
lower for the CFR models across model type and wave 
compared with the models testing associations between 
mortality rate and DPM.

Discussion
Our study analyzed the spatial correlation of COVID-19 
mortality rate and case fatality rate with long-term DPM 
concentration as a surrogate for exposure across the con-
tinental United States during three waves of the COVID-
19 pandemic during 2020. Our results suggested that 
long-term exposure to DPM may have been an impor-
tant factor in COVID-19 mortality during the first two 

Fig. 3 Map of associations between COVID‑19 mortality rate and long‑term DPM concentration for U.S. counties. The R Statistical Software version 
4.0.5 was used to produce the map, using the package lattice 
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waves of the disease and that long-term DPM exposure 
may have been more highly influential during the Janu-
ary-May wave. Sidell et  al. [44] examined associations 
between air pollution exposure and COVID-19 incidence 
for monthly and annual averages of  PM2.5, nitrogen diox-
ide  (NO2), and ozone  (O3) over four waves corresponding 
to those in our study plus January-February, 2021 for a 
Southern California cohort. They similarly observed that 
 PM2.5 had a larger effect during the first wave and that 
the effect diminished over time. A spatial autocorrela-
tion term was controlled for in these models, but Sidell 
et al. [44] did not incorporate local methods. Differences 
in the outcome variable and the specific exposure also 
necessitates a further examination of spatial and tempo-
ral patterns.

Our results indicate that the OLS model does not 
account for the spatial associations of COVID-19 mor-
tality rate or CFR with DPM concentrations. These 
results are similar to those of Sidell et  al. [44] and 
Mollalo et  al. [30], although their studies considered 
COVID-19 incidence rate rather than mortality. Mol-
lalo et al. [30] used OLS, SLM, SEM, and two versions 
of the GWR to model COVID-19 incidence and mortal-
ity for the time period of January 22-April 9, 2020 and 

found notable spatial associations of both COVID-19 
incidence and mortality with several predictors. The 
study of Hendryx and Luo [18], covering the January-
to-May wave, revealed strong associations of COVID-
19 prevalence and mortality with long-term DPM and 
 PM2.5 concentrations. Their study estimated a coeffi-
cient of 14.3-18.7 deaths per 100,000 U.S. residents for 
each increase of 1 μg/m3 in DPM concentration. Infla-
tion of the DPM effect shown in their results is possi-
bly due to the correlation between covariates and their 
mixed linear multiple regression model that does not 
account for spatial correlation. Stakhovych and Bij-
molt [46] emphasized that correlated spatial errors lead 
to bias and uncertainty in the OLS results. Moreover, 
LeSage and Fischer [26] noted that spatial correla-
tion in the OLS error terms is a sufficient motivation 
to employ spatial autoregression models for discerning 
spatial relationships between dependent and independ-
ent variables.

The spatial global models outperformed the OLS 
model fit for all models for both mortality metrics. This 
improved performance may be related to spatial auto-
correlation. A difference in coefficients and  R2 among 
the OLS, SLM, and SEM models was not observed for 

Fig. 4 Spatial distribution of local  R2 for the GWR model for mortality rate. The R Statistical Software version 4.0.5 was used to produce the map, 
using the package lattice 
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mortality rate during the June-to-September wave. Kim 
[21] reported an inflated effect of spatial autocorrela-
tion on OLS predictor coefficients, suggesting less spatial 
autocorrelation during the June-to-September wave con-
sistent with Bini et al. [2] and Smith and Lee [45].

Among the modeling techniques analyzed for our 
study, GWR provided the best model fit, based on esti-
mated global  R2. Our results revealed where and when 
local long-term exposure to DPM may have been associ-
ated with COVID-19 mortality, consistent with results 
from both Karaye and Horney [20] and Mollalo et al. [30] 
regarding patterns of local prevalence and local mortality 
of the disease based on local  R2. Some areas in the North-
east and West regions presenting a high  R2 in our mor-
tality rate model align with Mollalo et  al. [30] estimates 
for incidence rate. As noted by Fotheringham et al. [15], 
our GWR results illustrate the need to account for local 
phenomena.

Socio-economic disparity could explain the non-sta-
tionary effect of DPM exposure on COVID-19 mortality 
rate, due to drastic differences between contiguous areas. 
Socially vulnerable communities, including minoritized 
racial groups, have seen spatially associated COVID-19 
incidence [20]. This is consistent with the strong associa-
tion we observed for the fraction Black confounder in the 
mortality rate model (Table  3). Moreover, Paolella et  al. 
[32] pointed out spatial associations among fine par-
ticulate matter concentration, health effects, and minor-
itized groups and found out that finer spatial resolution 
revealed substantially higher fine particulate matter con-
centrations in Black and Hispanic communities.

The differences among associations of COVID-19 
mortality rate and DPM concentrations found by the 
SLM and SEM for the year-long time period, when SLM 
was demonstrated to be more significant by a Lagrange 
test, helped to illustrate that neighboring effects were 

Fig. 5 Pearson correlation matrix for mortality rate for (a, top left) January‑May, (b, top right) June‑September, (c, bottom left) October‑December, 
and (d, bottom right) all of 2020
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more relevant in modeling the spatial relationship with 
COVID-19 deaths than unobserved latent variables con-
tained in the error term. Counties near other counties 
with high COVID-19 incidence are likely to have higher 
incidence. Nonetheless, since the weighting matrix cho-
sen for our study was based on spatial adjacency, the 
county size differences between the Eastern and Western 
U.S. may have affected the parameter estimates creating 
more uncertainty in the larger counties [6]. Some vari-
ability in the association between COVID-19 and DPM 
exposure within counties might not have been captured, 
although DPM sources are more likely to be found in 
urban areas. However, since the SLM and SEM for the 
year-long time period were not statistically significant, 
other models should be considered when data are com-
bined across multiple waves.

Several limitations of this study need to be acknowl-
edged with respect to the input data. It is possible that, 
with more data and/or more time, the associations would 
disappear. Exposure measurement error could bias the 
results [52]. Our spatial modeling approach is intended to 
account for spatial exposure measurement errors. How-
ever, errors from applying cross-sectional analyses per-
sist. Although we studied different waves of the disease, 
our models were not truly longitudinal. Long-term expo-
sure to DPM was estimated using concentrations from 
2018. The dataset likely includes higher DPM concentra-
tions than for 2020 given reduced driving patterns during 
2020 and, to a lesser extent, fleet turnover. This suggests 
that the magnitude of the effects of DPM calculated by 
our study and these other studies were underestimated. 
Widely reported undercounting of cases and deaths dur-
ing the January-to-May wave would further contribute to 
this underestimation [13].

The set of potential confounders employed in our mod-
els was chosen to evaluate the influence of factors other 
than DPM potentially associated with COVID-19 out-
comes [54]. However, it was impossible to represent all 
influential factors in the relationship between each wave 
of COVID-19 mortality and long-term DPM concentra-
tions, so uncertainty in the potential for confounding 
existed [18, 54]. Furthermore, the study was designed at 
county level. Spatial variation within counties was not 
captured, and the difference in county size could have 
caused uncertainty since the weighting matrix defined for 
our SLM, SEM and GWR accounted for spatial adjacency. 
Therefore, associations at scales finer than county-level, 
including individual- and neighborhood-level associa-
tions, could not be inferred [54]. Despite these limitations, 
our study included a rigorous analysis of spatial relation-
ships for different time periods and tested a variety of 
potential confounders to minimize these limitations.

Conclusions
Our study built on previous findings by exploring asso-
ciations of COVID-19 mortality rate with long-term 
DPM concentrations across the first three waves of the 
pandemic. In doing so, our models provided a picture 
in which long-term DPM exposure may have influ-
enced COVID-19 mortality during the early stages of 
the disease, as observed specifically for the periods of 
January-to-May and June-to-September, 2020. Waning 
influence of DPM during the October-to-December 
wave suggested that person-to-person disease trans-
mission regardless of past DPM exposures may have 
become more influential in the spread of COVID-19 
and in mortality rates once the Coronavirus became 
widespread throughout the U.S. Further investigation 
might focus on factors associated with COVID-19 
mortality rate during the October-to-December wave. 
Although COVID-19 data were available beyond this 
period, the introduction of vaccines during 2021 were 
likely to have been so influential that combination 
of the 2 years of data may have produced misleading 
conclusions.
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