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Abstract 

Objective Compared with other regions in the world, the transmission characteristics of the COVID‑19 epidemic 
in Africa are more obvious, has a unique transmission mode in this region; At the same time, the data related to the 
COVID‑19 epidemic in Africa is characterized by low data quality and incomplete data coverage, which makes the 
prediction method of COVID‑19 epidemic suitable for other regions unable to achieve good results in Africa. In order 
to solve the above problems, this paper proposes a prediction method that nests the in‑depth learning method in 
the mechanism model. From the experimental results, it can better solve the above problems and better adapt to the 
transmission characteristics of the COVID‑19 epidemic in African countries.

Methods Based on the SIRV model, the COVID‑19 transmission rate and trend from September 2021 to January 2022 
of the top 15 African countries (South Africa, Morocco, Tunisia, Libya, Egypt, Ethiopia, Kenya, Zambia, Algeria, Bot‑
swana, Nigeria, Zimbabwe, Mozambique, Uganda, and Ghana) in the accumulative number of COVID‑19 confirmed 
cases was fitted by using the data from Worldometer. Non‑autoregressive (NAR), Long‑short term memory (LSTM), 
Autoregressive integrated moving average (ARIMA) models, Gaussian and polynomial functions were used to predict 
the transmission rate β in the next 7, 14, and 21 days. Then, the predicted transmission rate βs were substituted into 
the SIRV model to predict the number of the COVID‑19 active cases. The error analysis was conducted using root‑
mean‑square error (RMSE) and mean absolute percentage error (MAPE).

Results The fitting curves of the 7, 14, and 21 days were consistent with and higher than the original curves of daily 
active cases (DAC). The MAPE between the fitted and original 7‑day DAC was only 1.15% and increased with the 
longer of predict days. Both the predicted β and DAC of the next 7, 14, and 21 days by NAR and LSTM nested models 
were closer to the real ones than other three ones. The minimum RMSEs for the predicted number of COVID‑19 active 
cases in the next 7, 14, and 21 days were 12,974, 14,152, and 12,211 people, respectively when the order of magnitude 
for was  106, with the minimum MAPE being 1.79%, 1.97%, and 1.64%, respectively.

Conclusion Nesting the SIRV model with NAR, LSTM, ARIMA methods etc. through functionalizing β respectively 
could obtain more accurate fitting and predicting results than these models/methods alone for the number of 
confirmed COVID‑19 cases in Africa in which nesting with NAR had the highest accuracy for the 14‑day and 21‑day 
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predictions. The nested model was of high significance for early understanding of the COVID‑19 disease burden and 
preparedness for the response.

Keywords COVID‑19, Nested model, Functionalized β, Machine learning, ARIMA, SIRV model, Epidemic

Introduction
Since the outbreak of COVID-19, many scholars have 
used statistical methods [1–5], mechanism models 
[6–10] and deep learning methods [11–18] to predict 
the COVID-19 epidemic trend. Although the pure deep 
learning method has higher accuracy when compared 
with mechanism model in predicting the development 
trend of the epidemic, it cannot reflect the specific influ-
encing factors of the epidemic trend like mechanism 
model and is less instructive for further taking cor-
responding prevention and control measures. So, the 
authors are attempting to combine the mechanism model 
with the deep learning method to obtain the advantages 
of both, that can not only provide more accurate analy-
sis on the development trend of the epidemic but also 
analyze the influencing factors of the development of the 
epidemic and provide clues for further prevention and 
control.

Thus, our focus of interest was put to the function-
alization of transmission rate β. A few of researchers 
have redefined the population classification based on 
the SIR model in order to predict the epidemic trend 
of COVID-19 more accurately [6–10]. These methods, 
however, ignored the time-varying characteristics of 
the transmission rate β so that they were not capable to 
improve the prediction accuracy of COVID-19 effec-
tively. Some researchers discretized β, added asympto-
matic infected persons and other factors such as social 
distance to SIR model to improve prediction accuracy 
[19]. Similarly, Deepa [20] functionalized the β staged 
with exponential function by adding the vaccine growth 
rate to the model to predict the end time of the epidemic 
in the United States, India, and Brazil. Zhang [21] et al. 
used genetic algorithms to optimize transmission rate 
and used a SIQR model to predict confirmed cases and 
deaths in Brazil. Zeng et al. [22] studied the effect of the 
government interventions as a condition for β function, 
argued that β was constant without government inter-
ventions, and became an exponential function after the 
government interventions, and the rate of recovery was 
an exponential power function by case study about the 
COVID-19 epidemic data of Hubei province, China, 
France, and the United States. Ding et  al. [23] used the 
least-squares method to estimate β under different block-
ade states in South Africa using the Eureqa software [24] 
to obtain long-term predictions of daily growth rate, 
cumulative clearance rate, and cumulative mortality, and 

predicted the inflection point occurrence time. Kian et al. 
[25] used β daily decay function and added the ratio of 
depletion to the β function to simulate the early spread of 
COVID-19.

Machine learning and statistical methods can make 
relatively accurate short-term predictions, but they have 
higher requirements on training data. The prediction 
results are only related to the training data. Ardabili 
et  al. [26] used genetic algorithms, particle swarm opti-
mization algorithms, and gray wolf optimizer to esti-
mate parameters in prediction models such as power 
functions, and used two machine learning algorithms 
to directly predict the infected cases, and the prediction 
results obtained were more accurate than prediction 
models such as power functions. However, the SIR model 
can predict long-term trends while the data require-
ments are not high. Yang et  al. [27] added migrants on 
the basis of SEIR, compared the number of infected cases 
under the same control measures at different times in 
Wuhan, and used the LSTM method that used the num-
ber of SARS infections in 2003 as training data to predict 
the cases of COVID-19 infect. Therefore, other factors 
such as machine learning methods can be introduced to 
expand the model.

To this end, the authors established a nested model to 
incorporate machine learning methods including Non-
autoregressive (NAR) and Long-short term memory 
(LSTM) models respectively in the mechanism model 
(SIR model) to fit the β. Besides, statistical methods 
including Autoregressive integrated moving average 
(ARIMA) model and Gaussian function as well as poly-
nomial function etc. were also tried respectively to func-
tionalize β. In addition, these methods have analyzed 
the factors that could influence the development of the 
epidemic and provide clues for further prevention and 
control.

Given the rapid spread of COVID-19 and the relatively 
low capacity of African countries to deal with the health 
situations, African countries have become more vulner-
able. Hence, it is necessary to predict the number of the 
COVID-19 active cases, and the prediction results can 
help African countries minimize the losses.

Concretely, this study analyzed the development trend 
of the COVID-19 epidemic in the top 15 African coun-
tries (South Africa, Morocco, Tunisia, Libya, Egypt, 
Ethiopia, Kenya, Zambia, Algeria, Botswana, Nigeria, 
Zimbabwe, Mozambique, Uganda, and Ghana) with the 
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cumulative number of active cases and discussed the pre-
dictability of the epidemic using the nested model stated 
above. On July 6, 2021, the African Center for Disease 
Control and Prevention issued a guideline for the simula-
tion and prediction methods of the COVID-19 pneumo-
nia epidemic in Africa [28], given its imperfections that 
neither the latest experienced different variant strains 
such as Delta and Omicron variants with different  R0s of 
the epidemic nor vaccination measures in African coun-
tries has yet been covered. Realistically speaking, the 
epidemic statistics of African countries have low data 
density and abnormal data. For example, the number of 
vaccinations for several consecutive days may remain 
unchanged. The vaccine data for several consecutive 
days maybe vacant. The vaccine data suddenly increases, 
and the number of confirmed cases drops rapidly for 
unknown reasons and then rises rapidly to a higher 
position.

The combined nested SIRV model can predict the 
transmission rate in African countries with low data den-
sity and outliers using machine learning and statistical 
methods. With this model, the number of active cases 
can be more accurately predicted.

Accordingly, our nested model introduced a population 
“V” who has completed the whole process of vaccina-
tion against COVID-19 to form a SIRV model. Then, we 
obtained the transmission rate β of 15 African countries 
and predicted the daily β value with time-variable char-
acteristics using five methods including NAR, LSTM, 
ARIMA, Gaussian function and polynomial function. As 
we know, the transmission rate β determines the change 
in the number of active cases in the traditional SIR 
model. After being functionalized, the β was substituted 
into the mechanism model to get the predicted value of 
the number of active cases. The nested model incorpo-
rating machine learning in SIRV model designed in this 
study has entirely considered the impact of the vaccina-
tion rate, effective time, and efficacy rate of the COVID-
19 vaccine on the spread of the COVID-19 epidemic. We 
provided an expanded model involving the vaccine type 
and variant strains of the COVID-19 virus. Meanwhile, 
we have also compared the difference in the prediction 
accuracy of infection numbers between machine learn-
ing, statistical methods alone and their nested models 
respectively.

Methods
Data sources
All data used in this study are from Worldometer 
[29]. The duration of the data was from September 2021 
to January 2022. The Government Policy Relevance 
Index comes from the COVID-19 Government Response 
Tracker (OxCGRT) developed by Oxford University.

The Construction of nested model
The construction of the nested model incorporating 
machine learning and statistical methods in SIRV model 
proposed in this study began with the SIR model. After 
adding the time-varying data of the whole process of vac-
cination against COVID-19, SIRV model was obtained, 
and then the dynamically changing transmission rate β 
in sequence (③ in Fig. 1, Table 1). The  er was set as 0.7, 
and  et represented the vaccine effective time which was 
set as 14  days in this model  (er,  et are based on expert 
experience). Ideally, the model shown in ④ (Fig. 1) could 
be obtained by considering the data about variant strains 
such as the transmission rate β, removal rate γ, and the 
number of infected cases “I” (active cases) of different 
variant strains. These indices were expanded to the trans-
mission rates β1, β2……βn, the removal rates γ1, γ2……γn, 
and the number of infected cases  I1,  I2……In. Similarly, if 
different vaccine types were considered based on ②, it 
can be extended to shown in ⑤. While, both of models 
④ and ⑤ were lack of data in reality to construct our 
nested model further (Fig. 1).

For the SIRV model in our nested model, we cat-
egorized unvaccinated people, the people who are not 
infected with the COVID-19, and the people who have 
received the COVID-19 vaccine but have not yet taken 
effect into susceptible groups i.e. “S”. The people infected 
with the COVID-19 were classified as the infected pop-
ulation “I”, and the people who recovered after being 
infected with the COVID-19, those who died from the 
infection and the effective COVID-19 vaccine were clas-
sified as the removed population, that is, the popula-
tion “R” who did not infect or spread the COVID-19 
virus. The interaction of these variables is shown in 
Fig. 2. In this study, the effective population was defined 
as people who have been vaccinated with all doses of 
COVID-19 vaccine and have successfully established 
COVID-19 virus immunity; and those who have not been 
in effect are people who have not been fully vaccinated 
with COVID-19 vaccine or have received full doses of 
COVID-19 vaccine but have not successfully established 
COVID-19 virus immunity.

The four differential equations in the Part ③ of Fig. 1 
are explained as follows. The first equation is the sus-
ceptibility rate equation with S(t) is the susceptible 
population at time t, the second and the third equations 
describe the infection and removal rate respectively, 
with I(t) and R(t) are the infected and removed popula-
tion at time t. The fourth equation describes people who 
has completed the whole process of vaccination against 
COVID-19 at time t. In these equations, β is the trans-
mission rate,  er is vaccine efficacy, et is vaccine effective 
date, γ is the removal rate which based on the expert 
experience collected by the authors and relevant actual 
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data, the authors found that the average recovery time 
of the COVID-19 patients was 14  days, so the model 
established in this paper set the removal rate at 1/14, g0 is 
vaccination growth rate, and N is the total population in 
any region (Table 1). Here, we are assuming that the new 
births and deaths due to ageing, accidents, non-epidemic 
diseases, etc. are negligible. Then the total population N 
is always constant, so we have

Based on the second part of Fig.  1, the model can be 
extended to Equations shown in the ④ part of Fig. 1, by 
incorporating data on mutant strains.

After incorporating data on vaccine types, the model 
can be extended to Equations shown in the ⑤ part of 
Fig. 1.

Model solution
Firstly, the validity period of the vaccine and the vaccine’s 
effectiveness were adjusted adaptively, and the time-var-
ying transmission rate β was obtained through traversal. 
Then β was calculated by five methods, including NAR, 
LSTM, ARIMA, Gaussian function and polynomial func-
tion. After fitting and prediction, the obtained β was 
finally substituted into the SIRV model to obtain the pre-
dicted value of the number of infected cases. The travers-
ing process of the β value for one of the days is shown in 
Fig. 3.

Secondly, the obtained β was substituted into the 
SIRV model to fit the epidemic trends of 7, 14, and 

S(t)+ I(t)+ R(t) = N

dS

dt
+

dI

dt
+

dR

dt
= 0

Fig. 1 The designed procedure for nesting machine learning and statistical methods in SIRV model

Table 1 The meaning and of each letter in the part ③ of the 
differential equation

Variable Meaning Whether 
a time 
variable

S Susceptible Yes

I  Infected Yes

R Removed Yes

V The COVID‑19 Vaccine Yes

N Total Population of Each Country No

β Transmission rate Yes
er Vaccine Efficacy No

et Vaccine Effective Date No

γ Removal rate No

g0 Vaccination Growth Rate No
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21 days of the 15 African countries (Fig. 4). Mean abso-
lute percentage errors (MAPEs) of the comparisons 
between the simulations of 7, 14, and 21  days and the 
real epidemic trends were 1.15%, 2.41%, and 4.61%, 
respectively. The simulated trend was consistent with 

the real epidemic trend, so this model can be consid-
ered valid.

β prediction methods
In this paper, the β value is a factor that describes the 
intensity of the virus infection, which can be calculated 

Fig. 2 The interaction among S, I, R and V

Fig. 3 Traversing process of β on a certain day
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using the SIRV model described in this article from the 
number of existing infected people. The specific calcula-
tion method is to use the traversal method to traverse all 
possible β values in days within a reasonable interval, and 
predict the number of cases in the next 7 days according 
to the β values obtained by all traversals, and finally select 
the β value with the smallest error as the β value in the 
dataset. At the same time, the LSTM, ARIMA and other 
methods used in this paper are also trained according to 
the β values obtained by the above described methods as 
datasets, so as to obtain the β values in the future, and 
then use the β values obtained by training to substitute 
into the SIRV model again to obtain the predicted num-
ber of infected people and other data.

The experiments of β fitting and prediction were car-
ried out from the easier methods to more difficult ones. 
So, the order was: polynomial function, Gaussian func-
tion, ARIMA, NAR and LSTM.

Firstly, a polynomial function was used. To avoid data 
over fitting, we repeated the experiments using a third-
order polynomial function to fit β.

After traversing to obtain β, we found that it aligned 
more with the superposition state of multiple normal dis-
tributions within a certain period. Therefore, secondly, 
Gaussian function was used to fit the change process of β.

Thirdly, since the transmission rate β involved in this 
paper is a non-stationary time series, ARIMA was used 
to predict β.

Fourthly, due to the complex time-variable charac-
teristics after traversal, it was difficult for ordinary lin-
ear methods to fit the transmission rate β.While NAR 
has feedback and memory capabilities, and its output 
at each moment correlates with both the input at the 
current moment, and the input and output at the last 
time. At the same time, NAR can perform dynamic cal-
ibration, which requires less time for model calibration; 
when new samples are added, the matrix order remains 
unchanged, and matrix inversion operations are not 

necessary. Therefore, the NAR method can improve 
computational efficiency so that it was used to fit the 
time variables.

Fifthly, compared with RNN, the output of each step 
of LSTM is not determined by the input of the last 
moment completely. Due to the structure of the for-
get gate, LSTM can perform a relatively reasonable 
and accurate long-term operation to predict sequence 
variables with a small computational cost. Therefore, 
this study also tried to use the LSTM method to fit the 
transmission rate β.

The beginning of September 2021 was set as the start-
ing point of the training set. At that time, the 15 Afri-
can countries studied in this paper had all launched 
the vaccination against the COVID-19. After this time 
point, Delta and Omicron variant strains gradually 
became the mainstream COVID-19 virus strains in 
Africa in succession.

Policy‑related indices
This study correlated the policy-related indices (from 
Oxford University COVID-19 Government Response 
Tracker) with the predicted quantity β to determine 
whether the use of government policy-related indices 
had a positive impact on the model prediction.

Spearman analysis method was used to analyze the 
rank correlation because the correlation was not linear 
and the data had a high degree of dispersion and abnor-
mal points. The rank correlation between the β and tra-
ditional strictness index, government response index, 
containment correlation index, and economic support 
index were 0.105, -0.591, -0.560, and 0.378 respectively. 
There was no apparent correlation between β and each 
policy index, so the government policy correlation coef-
ficient was defined as a reference variable in the model 
constructed in this study and was not directly involved 
in the actual operation of the model.

Fig. 4 Fitting results of the number of active cases of COVID‑19 in 15 African countries
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Validation of the model
The validation of the model used datasets from two coun-
tries, Germany and the Netherlands. Because, they both 
rank among top 15 countries in the Human Development 
Index around the world, their reported cumulative numbers 
of COVID-19 cases were of the same order of magnitude 
with that of the 15 African countries we analyzed, and had 
a weak correlation between the government policy-related 
index and β that was similar to the 15 African countries.

Result
Fitness of the number of active cases
The fitting curves of the 7, 14, and 21 days were consist-
ent with the original curves of the original number of 
daily active cases (Fig.  5). The fitting errors increased 
from 1.15% gradually when the model fitted 7, 14 and 
21 days. The fitted data of 7, 14 and 21 days were higher 
than the true values at the peak due to the systematic 
error at each model iteration.

Fig. 5 The fitting of the number of active cases for 7, 14 and 21 days. Note: a is the number of daily active cases in 15 countries, (b) is the number of 
daily active cases in South Africa, (c) is Morocco Number of daily active cases, and (d) is the number of daily active cases in Tunisia
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Prediction of transmission rate
The actual β fluctuates greatly in the first two days from 
the start of the prediction on January 11, 2022, and then 
the image oscillated in a “wavy” shape, showing an over-
all downward trend. The β predicted by LSTM fluctuated 
greatly from January 11, 2022 to January 17, 2022. Espe-
cially, the β value reached the highest value of 0.1184 on 
January 12, 2022, and then oscillated around the real β. 
The β obtained by the NAR method reached the high-
est point of 0.09843 on the first day, and then decreased 
monotonically and slowly. The β obtained by the ARIMA 
method increased smoothly and monotonically within 
the 21  days of prediction time range, and was always 
greater than 0.1. The β predicted by the Gaussian func-
tion was a monotonically decreasing curve, dropped 
from around 0.09 to 0.05. It had the most obvious down-
ward trend among the five methods from January 11, 
2022 to January 28, 2022.The β predicted by the polyno-
mial function was consistent with the one by the Gauss-
ian function, and both were monotonically decreasing 
curves. The downward trend of the β predicted by poly-
nomial function was the highest among the five methods 
from January 29, 2022 to January 31, 2022 (Fig. 6a).

The prediction curve obtained by LSTM method had 
the largest fluctuation, and oscillated and decreased after 
reaching the maximum value. The NAR drops from the 
highest point to about 0.09, but it was obvious that the 
NAR method reached a stable statefirstly. The prediction 
curves obtained by statistical methods are all monotonic 
curves, the ARIMA prediction curve was a monotoni-
cally increasing curve, while the Gaussian function was 
monotonically decreasing curves with obvious downward 
trend. The β curve predicted by the polynomial function 
increased monotonically in the first two days, and then 
decreased monotonically (Fig. 6a).

The true number of infection cases peaked on the sec-
ond day, dropped sharply on the third day, and then fell 
in a “wave”. The number of active cases obtained by the 
LSTM method generally showed an upward trend in 
the first 10 days, and then decreased monotonically. The 
number of active cases obtained by the 21-day curve was 
always larger than the actual number of active cases; the 
number of active cases predicted by the NAR method 
was a monotonically decreasing curve. After the 10th 
day, the number of infections is always smaller than the 
true number of infections. The numbers of active cases 
predicted by the ARIMA method were always larger 
than the reported number of active cases from the third 
day, which was a monotonically increasing curve. For 
the Gaussian function, the predicted curve was a mono-
tonically decreasing one with a decreasing slope, and the 
predicted number was smaller than the reported one on 
the sixth day. The predicted numbers of active cases by 

the polynomial function reached the maximum value on 
the second day, followed by a monotonically decreasing 
curve which was completely smaller than the reported 
number of active cases from the  10th day (Fig.  6b). The 
predicted numbers of active cases by the machine learn-
ing methods were closer to the reported ones than those 
predicted by statistical and polynomial methods. The 
number of active cases predicted by the LSTM method 
and polynomial function increased firstly and decreased 
then, which could predict the peak of infection (Fig. 7).

When the transmission rate was smaller than the 
removal rate, and the smaller the transmission rate was, 
the lower the predicted number of active cases would 
be, so when the transmission rate was smaller or larger, 
the sensitivity was higher. In this study, β was taken from 
0.01 to 0.21, and the removal rate was set to 0.1. The 
obtained curve of the number of active cases increased 
with the increasing of β. After the mathematical deriva-
tion of the original model and the analysis of the actual 
experimental results, it resulted in that the sensitivity 
of the nested model constructed in our study was posi-
tively correlated with β. Therefore, the predicted β and 
the number of active cases in our nested model were usu-
ally higher than the actual and reported ones slightly and 
respectively (Fig. 8).

Comparison of prediction accuracy among the methods 
used
The comparison of the nested models incorporating with 
the 5 different methods in the SIRV method with the 5 
different methods alone for the prediction of the devel-
opment of the COVID-19 epidemic in Africa showed 
that the nested models had higher prediction accuracies 
than all of the 5 methods alone respectively.

Among the 5 methods, the polynomial fitting method 
in the nested model has the most obvious improvement 
compared to using the polynomial fitting method alone 
in prediction, and the difference in MAPE was 51.86%. 
The RMSEs of using only polynomial method alone to 
predict the numbers of active cases were the largest in 
7, 14, and 21  days, which were 193,124, 277,429, and 
381,881 respectively. The RMSEs obtained by Gauss-
ian function in the nested model was the smallest in the 
7-day prediction (12,974). The RMSE/MAPE of the num-
ber of active cases predicted by NAR in the nested model 
was the smallest in 14 and 21  days, and the RMSEs/
MAPEs by LSTM in the nested model were larger than 
those of NAR in the nested model in 14 and 21  days, 
but they were less than those of both statistical methods 
and polynomial function combined in the nested model 
(Fig. 9).
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Validation of the model
The results of using the nested model to predict the num-
ber of active cases in Germany are as follows: all three 
nesting methods predict an upward trend in the number 
of active cases, and the 21st MAPE of the nested LSTM 
model method is only 2.82%, which is the best result. The 
prediction results of the SIRV nested model for active 
cases in the Netherlands also successfully predicted the 
upward trend of the number of active cases. The 21-day 
MAPE of the prediction results of the nested ARIMA 
model method was 12.24%, which was the best among 
the three. Africa’s 21-day MAPE was less than 10% for all 
three hybrid methods, while Germany’s 21-day MAPE 

using the ARIMA hybrid method was greater than 10%, 
and the Netherlands’ MAPE using all three methods was 
greater than 10% (Table 2).

Discussion
In order to provide better insights into the predict-
ability of the epidemic trend of COVID-19 in Africa, 
we employed existing data that have been published in 
authoritative sources, and explored to take the advan-
tages of both machine learning method and mechanism 
model (SIRV model) which are expected to accurately 
predict the epidemic trends and provide clues for fur-
ther control and preventive measures at the same time. 

Fig. 6 Comparisons on β and the number of active cases between the real and predicted data. Note: a Comparison between the real and 
predicted transmission rate β for 7, 14 and 21 days; b Comparison between the real and predicted numbers of active cases in the next 7, 14 and 
21 days
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It could be inferred that the data on the COVID-19 
epidemic in Africa are characterized with low density, 
abnormal data, missing reports and so on, thus this 
appears to be a limitation for use of the raw data set. 
This study therefore, explored a nested model incorpo-
rating machine learning methods, statistical methods 
and polynomial function respectively in SIRV model 
to allow for perfect utilization of the available data on 
Africa COVID-19 epidemic.

The SIRV model in this study was generated from 
SIR model by considering the vaccination effect. The 
core essence of “nesting”/“nested” used in the study 
denotes the functionalization of transmission rate β in 
the SIRV model by using machine learning methods 
(NAR, LSTM), statistical methods (ARIMA, Gaussian 
function) and polynomial function respectively. As a 
result, the nested model created showed a satisfactory 
accuracy in the prediction of the epidemic trends of 
COVID-19 in African countries, especially for the SIRV 
model nested with machine learning methods. Even, 
when we used data of the Netherlands and Germany 

over the same period, the prediction results obtained by 
using the nested model were better than those obtained 
by applying only a single model, but the error was 
higher generally than that of African countries. Here, 
we will discuss the prediction result, accumulative 
error and sensitivity of the nested model constructed 
in this study, and the feasibility to combine the mecha-
nism (SIRV) model with machine learning method for 
the prediction of trend epidemic of COVID-19.

As we know, machine learning method has higher pre-
diction accuracy than statistical method and polynomial 
function when they are used alone. This study showed 
that the nested models incorporating machine learn-
ing methods in SIRV model also had higher prediction 
accuracy than those incorporated with statistical meth-
ods and polynomial function. At the same time, the two 
machine learning methods adopted were very suitable 
for the prediction of one-dimensional time series after 
being nested in SIRV model. One reason for this is the 
innate characteristics of machine learning method in 
that LSTM is derived from RNN model designed for 

Fig. 7 Comparison between the predicted inflection point and the real value

Fig. 8 Different β corresponding to different sensitivities in 15 countries
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(a)

(b)
Fig. 9 Comparison of RMSE and MAPE among each method nested in the SIRV model. Note: a showed the comparison of RMSE among each 
method, (b) showed the comparison of MAPE among each method
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time series specially and NAR is suitable for the predic-
tion of one-dimensional time series in the presence of 
oscillation [30, 31]. The other reason is that the β value 
processed by the nested model was of irregular oscilla-
tion that was more suitable for both NAR and LSTM to 
predict than other methods. However, the parameters of 
the NAR dynamic neural network need to be manually 
adjusted, and the current parameters may not be appli-
cable to the data of other countries, which limits the 
application of NAR in other practices [32].

Accordingly, as shown in Fig.  7 of the results sec-
tion, the difference between the various curves can be 
explained by the memory cells of LSTM to store past data 
and the feedback mechanism of NAR, the weakness of 
ARIMA in processing irregular oscillation data, and that 
both the second-order Gaussian and the third-order pol-
ynomial function were showing monotonous decreasing 
when predicting the β respectively.

During the experimental process, we found that the 
nested model with polynomial function had the big-
gest improvement effect than others in the prediction of 
infected case number. The possible reason was that the 
accuracy of polynomial fitting correlated with the poly-
nomial order used. Both under-fitting and over-fitting 
of polynomial function in direct prediction could cause 
huge deviations, and the higher the fitting order was, the 
larger the deviation. While, compared with the direct 
prediction of the number of active cases, the order of 
magnitude of the predicted β was smaller, so smaller was 
the corresponding fitting error.

The β obtained in this study could be substituted back 
to the nested model through two approaches to predict 
the number of active cases. One is to use the β predicted 
by the five methods to make a one-time prediction on 
the number of active cases of the next 7, 14 and 21 days. 
Another is that each of the time variable β is used to 
predict the number of active cases of only one day after 
the current day, then day by day for the next 7, 14 and 
21 days. According to the experimental results, the latter 
approach could predict the number of active cases more 

accurately to reduce the cumulative error that occurs 
during the integration process.

Regarding the sensitivity of the model, the nested 
model incorporating machine learning etc. in SIRV 
model designed in this study had a different sensitivity 
to different infection situations (Fig. 8). The sensitivity of 
the nested model we constructed in this study correlated 
with β positively. When the transmission rate β is equally 
spaced, the number of active cases presents different sen-
sitivity distributions. When β is higher than the removal 
rate, the sensitivity of the model rises significantly. There-
fore, the predicted β and the number of active cases built 
in this study were usually slightly higher than the actual 
situation at the peak, the estimated number of active 
cases is generally pessimistic in the early stage of a round 
of infection. This method is not only very suitable for 
estimation before an outbreak of the epidemic but also 
can be sensitive to predict the inflection point of the out-
break, so as to provide more reliable short, medium- and 
long-term epidemic-related forecasting data forecasts to 
facilitate the development of pertaining control measures 
and policies. Comparing a direct use of machine learn-
ing or statistical methods to predict the number of active 
cases, we showed that the nested method could effec-
tively estimate the outbreak degree of a wave of epidem-
ics and correct the underestimation of the transmission 
rate from the algorithm level, which can play a specific 
warning role.

In the view of the nested model created in this study 
was based on the SIR epidemiological model, the final 
prediction accuracy was closely related to the specific 
transmission mode of the virus. For example, the removal 
rate was negatively correlated with the virulence of the 
variant strain, and the β was positively correlated with 
the infectivity of the variant strain. However, the changes 
in infectivity and pathogenicity caused by the mutation of 
the virus have a fundamental impact on the development 
trend of the epidemic, the virus variation has a critical 
impact on the transmission rate and removal rate, and 
the variation of the virus cannot be predicted accurately 

Table 2 Comparison of MAPEs between nested and single method for Germany and The Netherlands

Country Methods 7 days 14 days 21 days

Nested Single Nested Single Nested Single

Germany NAR 2.21 19.00 3.48 30.60 5.92 38.58

LSTM 2.31 4.66 2.62 13.33 2.82 24.19

ARIMA 8.19 12.37 17.41 24.11 26.69 34.88

The Netherlands NAR 4.91 3.52 14.76 13.61 25.32 26.16

LSTM 2.17 5.96 6.52 14.74 12.88 24.66

ARIMA 2.33 3.96 6.94 11.91 12.24 21.06
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currently, so that our nested model was good at early 
warning of outbreak, and capable to predict the epidemic 
inflection point in the early and middle stages of a wave 
of epidemic, but not good at the prediction of the future 
epidemic if neither the new variation of the virus nor its 
characteristics of virulence or transmission are well mas-
tered. The reason for the strength of our nested model is 
that, in the early stage of the epidemic, the β value will 
show an upward trend. When the β value rises above 
the outbreak threshold and is in the rising range, it will 
sharply increase the number of active cases. This situa-
tion corresponds to a large-scale outbreak that may be 
caused in the early stage of the epidemic.

Regarding  R0, β and  R0 belong to the same type of indi-
cators. In the process of using machine learning and sta-
tistical methods to predict β, the calculation of  R0 has 
been included, so  R0 is not involved in this study.

In addition, because many of the top 15 African coun-
tries with cumulative confirmed cases lack the COVID-
19 vaccination data, we used the hot platform imputation 
method to fill the missing values of vaccine data in this 
study. Through our ongoing further research, it has been 
found that there are still other methods available to fit-
ting the missing data. We will continue to explore supe-
rior method to fill the missing values for future solutions.

Conclusion
Nesting the SIRV model with NAR, LSTM, ARIMA 
methods, Gaussian and polynomial functions through 
functionalizing β respectively could obtain more accurate 
fitting and predicting results than these models/methods 
alone for the number of confirmed COVID-19 cases in 
Africa processing low data density, a few of outliers and 
missing reports. The nested SIRV model with NAR had 
the highest accuracy for the 14-day and 21-day predic-
tions, while that with Gaussian function had the highest 
accuracy for 7-day prediction.

The prediction method in this paper is significant to 
the real-world COVID-19 response in many ways and 
manners. Namely, it can predict the local burden of the 
COVID-19 pandemic and thus can enhance the prepar-
edness of the government for the pandemic response, 
including the early preparedness of supplies, technolo-
gies and resources.
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ARIMA  Autoregressive integrated moving average
DAC  Daily active cases
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