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Abstract 

Background  Air pollution and several prenatal factors, such as socio-demographic, behavioural, physical activity and 
clinical factors influence adverse birth outcomes. The study aimed to investigate the impact of ambient air pollution 
exposure during pregnancy adjusting prenatal risk factors on adverse birth outcomes among pregnant women in 
MACE birth cohort.

Methods  Data for the study was obtained from the Mother and Child in the Environment (MACE) birth cohort study 
in Durban, South Africa from 2013 to 2017. Land use regression models were used to determine household level pre-
natal exposure to PM2.5, SO2 and NOx. Six hundred and fifty-six births of pregnant females were selected from public 
sector antenatal clinics in low socio-economic neighbourhoods. We employed a Generalised Structural Equation 
Model with a complementary log–log-link specification.

Results  After adjustment for potential prenatal factors, the results indicated that exposure to PM2.5 was found to 
have both significant direct and indirect effects on the risk of all adverse birth outcomes. Similarly, an increased level 
of maternal exposure to SO2 during pregnancy was associated with an increased probability of being small for ges-
tational age. Moreover, preterm birth act a mediating role in the relationship of exposure to PM2.5, and SO2 with low 
birthweight and SGA.

Conclusions  Prenatal exposure to PM2.5 and SO2 pollution adversely affected birth outcomes after controlling for 
other prenatal risk factors. This suggests that local government officials have a responsibility for better control of air 
pollution and health care providers need to advise pregnant females about the risks of air pollution during pregnancy.
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Background
Adverse birth outcomes are common health problems 
and incur significant health consequences such as infant 
morbidity and mortality, as well as hypertension, type 2 
diabetes, and cardiovascular disease in adulthood [1–5]. 
Preterm birth (PB) and low birthweight [6] infants are 
at greater risk for mortality and a variety of health and 
developmental problems [7]. WHO [8] showed that in 
developing countries about 1 in 6 ( 16.5%) babies were 
born with low birthweight (< 2500  g). Globally, out of 
7.6  million deaths of under-five children, 17% are due 
to prematurity [9]. More than 60% of preterm births 
(< 37  weeks gestational age) take place in South Asia 
and Sub-Saharan Africa [10]. Around 15% of low-birth-
weight occurs in Sub-Saharan Africa [11]. Adverse birth 
outcomes are likely to compromise the health of the 
growing infant, and predict poorer health outcomes in 
later life [12].

Recently, there has been growing evidence that air pol-
lution exposure plays a vital role in the occurrence of 
adverse pregnancy outcomes such as PB, LBW and SGA 
[13, 14]. Maternal exposure to air pollution during preg-
nancy has been suggested to be associated with increased 
risks of adverse birth outcomes such as PB, LBW, SGA, 
and intrauterine growth retardation (IUGR) [13, 15–21]. 
These outcomes are associated with the most commonly 
measured air pollutants, such as particulate matter with 
an aerodynamic diameter of less than 2.5  μm (PM2.5), 
sulfur dioxide (SO2) and oxides of nitrogen (NOx) [20]. 
Demographic factors [22–24], lower socio-economic sta-
tus and pre-pregnancy body mass index [25] and poor 
housing conditions [26] are also among the risk factors 
for adverse birth outcomes.

In low and middle-income resource settings, alcohol 
use, or tobacco smoke exposure were behavioral risk fac-
tors to the health of women during their pregnancy and 
to that of their child [27, 28]. However, many of the stud-
ies in sub-Saharan Africa, lack the ability to adjust for 
these individual-level behavioural risk factors.

Generalised structural equation models (GSEM) are 
more appropriate than individual regression models. 
These models allow multiple simultaneous equations to 
incorporate confounding and mediation, besides incor-
porating latent variables for representing more complex 
measures that are not measurable with a single variable 
[29]. GSEMs minimise the effect of residual confound-
ing in associations, especially in observational studies. 
GSEMs also allow for the inclusion of variables with 
a mediating effect on the exposure and outcome vari-
ables. In traditional regression analysis, one needs to 
build different models for different outcomes given a set 
of covariates. This makes drawing conclusions difficult 
and probably inaccurate. However, GSEM is applied to 

construct models with latent variables [30]. It encom-
passes unobserved external or internal variables (latent 
variables), along with the observed distributions [31]. 
Thus, a mediation analysis using GSEM was conducted to 
look at the direct and indirect relationships between air 
pollution exposure and birth outcomes.

Moreover, comprehensive models that adjust demo-
graphic, socio-economic, clinical, physical activity, and 
behavioural exposure predictors are needed to disen-
tangle the impacts of prenatal air pollution exposure on 
adverse birth outcomes. These will promote interven-
tion efforts to improve maternal and infant health in low 
and middle-income resource settings. Thus, we adopted 
a generalised structural equation modeling approach to 
address these issues and decompose the direct and indi-
rect effects of prenatal ambient air pollution exposure on 
adverse birth outcomes, adjusting for prenatal exposure 
factors.

Methods
Data and variables
Studies in the city of Durban have reported that increased 
levels of ambient air pollution in the city were found to 
be a major health concern [11, 32]. Recent studies also 
indicated that the participants in South Durban are 
exposed to high levels of NOx [33, 34]. We analysed data 
from the Mother and Child in the Environment (MACE) 
birth cohort, a study with ongoing recruitment in Dur-
ban, South Africa. This is described in detail elsewhere 
[35]. Here we report on the enrolled cohort of 996 preg-
nant women from March 2013 to May 2017 from eight 
public sector antenatal clinics in Five communities in the 
south of Durban (Merebank, Bluff, Wentworth and Aus-
terville), located in close proximity to major industries, as 
well as communities in less heavily industrial areas in the 
north of Durban (KwaMashu, and Newlands East) were 
selected (Fig. 1). The selected communities were similar 
in socio-demographic profiles.

All pregnant women that were at a gestational age of 
less than 20  weeks and resident for the full duration of 
the pregnancy in the geographical area within which the 
clinic was located as well as for the follow-up period of 
5–6  years, were recruited into the study. Women with 
multiple pregnancies (n = 2); miscarriages (n = 55); still-
births (n = 25); and termination of pregnancy (n = 2) 
were therefore excluded from the cohort. A further 225 
participants who relocated outside the areas of inter-
est and decide to use clinics closer to their new homes 
were excluded. This reduced the number of enrolled sub-
jects followed up through to labour and delivery during 
their pregnancy to 687 participants. Finally, excluding 31 
participants with postdate birth (gestational age above 
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42 weeks), the effective sample size is 656 mother–child 
pairs (see SupFigure 1 in Supplementary Material).

Exposure assessment
Air pollution exposure to PM2.5, SO2 and NOx meas-
urements for participants in the MACE birth cohort 
was derived from a land use regression model. This is 
described in greater detail elsewhere [34, 37, 38]. Using 
the methodology used in the European Birth Cohorts 
(ESCAPE), samples of NOx were taken at 40 randomly 
selected sites in the north and south Durban areas 
(Fig. 1) using Ogawa samplers over two two-week peri-
ods during mid-summer and mid-winter, to account 
for seasonal variability. The air pollution monitoring 
campaign was undertaken over two-week periods with 
a one-week break in between to allow for sample prepa-
ration, for a duration of nine consecutive months. An 
annual average concentration was estimated from the 
results of the two measurements for each sampling site 
by adjusting it with data from the Air Quality Moni-
toring Station of the eThekwini Municipality. At one 
additional site (reference site), the pollutants were 
measured using the same sample media for the full year 
to allow for the site-specific measurements to be tem-
porally adjusted to the long-term annual average for the 
observation period [38]. An annual adjusted average 
prenatal PM2.5, SO2 and NOx exposure ( µg/m3 ) was 
predicted, using a combined land use regression model 

based on pre-selected geographic predictors, such as 
land use types (area of industrial land use, open space 
land use, and the harbour), road length, topography, 
population, and housing density. The model developed 
accounted for 73% of the variance in ambient PM2.5, 
SO2 and NOx measurements. No temporal adjustments 
were made. The parameter estimates were used to pre-
dict PM2.5, SO2 and NOx exposure at the residential 
addresses of the study participants.

Outcome variables
The three adverse birth outcomes examined in this study 
were the following: PB, LBW and SGA. All of the data 
were extracted from MACE data. Gestational age was 
assessed by obstetricians based on last menstruation or 
early ultrasound estimates. PB was coded as a dichoto-
mous variable as infants were born before 37 completed 
weeks of gestation or not. Birthweight data were coded as 
a dichotomous variable, indicating LBW as a birthweight 
≤ 2,500 g (g). SGA was defined as ≤ the 10.th percentile 
for birth weight by gestational age [39, 40] across our 
sample and was categorised as a dichotomous variable. 
Birthweight (BW) measurement was obtained by trained 
nurses. Exploration of the data was performed using 
parallel coordinate plots, in order to examine trends of 
adverse birth outcomes across exposure to air pollution, 
and clinical factors. Details about parallel coordinate 

Fig. 1  Study area of MACE birth cohort, showing the location of the study areas (north/south Durban) within the city; Dots represent study 
participant households from Mitku et al. [36]
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plots data visualization have been previously described 
[41].

Prenatal risk factors
This study considered observed covariates as prena-
tal risk factors. These are exposure to ambient PM2.5, 
SO2 and NOx pollution and clinical (gestational weight 
gain, BMI in the first trimester, and HIV status). Mater-
nal socio-demographic status included demographic 
variables (maternal age, infant gender and low socio-eco-
nomic status (unemployment, multiparous, low income), 
primary or less education), and low socio-economic 
housing). The perinatal health behavioural characteristics 
included alcohol use, smoking, and passive exposure to 
tobacco smoke during pregnancy. We also included walk-
ing and physical exercise as indicators of physical activity. 
Gestational weight gain was obtained as the difference in 
kilograms between the weight at the third and first tri-
mesters and maternal BMI (in kg/m2) was calculated 
using first-trimester weight and height.

Generalised Structural Equation Model (GSEM)
A structural equation model [42] is a multivariate sta-
tistical model that involves relationships among endog-
enous and exogenous latent variables, accounting for 
measurement error. It provides a general framework for 
modelling stochastic dependence that arises through 
cause-effect relationships between random variables. 
SEM minimises the effect of residual confounding in 
associations, especially in observational studies [43]. It 
allowed including variables with a mediating effect on 
the exposure and outcome variables. A SEM model is 
composed of two sub-models: a measurement model and 
a structural or causal model. In path diagrams of SEM, 
the ovals signify latent variables and observed variables 
are shown in rectangles. A structural model constitutes a 
directional chain system that describes the hypothetical 
causal relationship between the constructs of theoretical 
interest (latent variables) using path diagrams [44, 45]. 
The structural component of the model has the following 
mathematical form:

where ηi is a vector of latent endogenous variables for 
unit i, αη is a vector of intercept terms, B is the matrix 
of coefficients giving the expected effects of the latent 
endogenous variables ( η) one each other, ξ i is a vector of 
latent exogenous variables, Ŵ is a coefficient matrix giv-
ing the expected effect of latent exogenous variables ( ξ ) 
on latent endogenous variables ( η) , and ζ i  is the vector 
of disturbances. I = 1, …, n, E(ζ i) = 0, COV(ξ i

′

,ζ i) = 0, and 
(I-B ) is invertible.

(1)ηi = αη + Bηi + Ŵξ i + ζ i

A measurement model describes the relationships 
between latent variables and their manifest variables. The 
measurement model is represented as

where yi and xi are vectors of the observed indicators 
of ηi and ξ i , respectively, αy and αx are intercept vectors, 
�y and �x are matrices of factor loadings or regression 
coefficients giving the effect of the latent ηi and  ξ i on yi 
and xi , respectively, and εi and δi are the unique factors 
of yi and xi . We assume that the unique factors ( εi and δi ) 
have expected values of zero, have covariance matrices of  
�εε and �δδ , respectively, and are uncorrelated with each 
other and with ζ i and ξ i.

GSEM is a more flexible modelling approach than 
SEM, similar to a generalised linear model (GLM), as a 
more flexible alternative to ordinary least squares regres-
sion. The GSEM allows responses of continuous or 
binary, ordinal, count, or multinomial variables. GSEMs 
represents a generalisation of SEMs by allowing the use 
of discrete variables and non-Gaussian distributions. 
They combine observed (or manifest) and latent variables 
representing unmeasured constructs. A GSEM can be 
defined as

where x and y are vectors of manifest variables and 
η, ξ , ζ represent the latent variables, while δ and ε denote 
the error terms. The functions ( f η f x , f y ) provide a gen-
eral way to represent the connections between the varia-
bles within the parentheses to those on the left-hand side 
of each equation in Eq. 4.

The models were estimated by using the robust maxi-
mum likelihood approach with a method of mode-cur-
vature adaptive Gauss–Hermite quadrature (MCAGH), 
which is superior in terms of accuracy to the nonadaptive 
methods.

The goodness of fit for each model was assessed with 
the Akaike information criterion (AIC) and the Bayes-
ian information criterion (BIC). Lower AIC and BIC val-
ues indicate better model fit. AIC and BIC both balance 
model fit with parsimony, and each penalises based on 
the number of parameters. BIC imposes a larger pen-
alty for complex models. As a result, AIC may overfit the 
model while BIC may underfit the model, but generally, 

(2)yi = αy +�yξ i + εiand

(3)xi = αx +�xηi + δi

η = f η(η, ξ , ζ )

(4)x = f x(η, δ)

y = f y(η, ε)
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they correspond closely with one another [46]. In the 
current data, we have tested the GSEM model using the 
Bernoulli distribution with a probit, logit and comple-
mentary log–log link functions. The fitted model with a 
complementary log–log link was found with lower AIC 
and BIC values (Table 1). Then, our final model was fitted 
with a Bernoulli distribution and complementary log–log 
link.

Indirect effects were calculated by multiplying the 
slope coefficients on each path. They were then summed 
to obtain the overall indirect effect of the variable. Total 
effects were calculated as a sum of the direct and indirect 
effects and reported in effect coefficients. These values 
were obtained using the nlcom command. We have used 
multiple imputation to address these missing points. All 
analyses were performed at a 5% significance level using 
STATA 15.0.

Results
Data Exploration
The parallel coordinate plots revealed that mothers of 
infants with adverse birth outcomes LBW, SGA and PB 
tend to have average to higher prenatal exposure to PM2.5 
(Fig. 2). For SO2 and NOx, similar trends of high range of 
variation from low to high were observed across different 
adverse birth outcomes. The parallel coordinate plots fur-
ther displayed that infants with adverse birth outcomes 
were found to be born from mothers with lower BMI at 
first trimester (Fig. 2). Furthermore, both the scatter plot 
matrix and the colour map on correlations showed that 
exposure to NOx had a modest positive correlation with 
exposure to PM2.5 and SO2 pollution. On the other hand, 
PM2.5 is weakly and negatively correlated with exposure 
to SO2 (Fig.  3). This indicates the absence of multicol-
linearity among air pollution exposure measures. This 
all provokes the use of a comprehensive statistical model 
that considers the three adverse birth outcomes simulta-
neously to examine the adverse effect of air pollution and 
other adjusted factors.

The median annual air pollutant levels of PM2.5, SO2 
and NOx for individual women and the percentage of 
adverse birth outcomes by prenatal exposure factors for 
individual women and their newborns in the MACE birth 
cohort are shown in Table 2. The overall median level of 

exposure to PM2.5, SO2 and NOx was 13.0 μg/m3 (range 
8.9– 14.1 μg/m3), 2.8 μg/m3 (range 2.1 – 5.9 μg/m3), and 
34.4  μg/m3 (range 2.5 – 45.4  μg/m3) respectively. The 
mean maternal age was 26 years (SD: 5.7 years). Of 656 
infants in the birth cohort, 66.5% were from south Dur-
ban. The median level of exposure to PM2.5 was similar 
across all adverse birth outcomes while a higher median 
exposure level to NOx (34.6 μg/m3 (range 2.5 – 45.4 μg/
m3)) was observed among mothers with preterm birth 
(Table 2).

Figure  4 and Table  3 presents the final GSEM model 
containing both the structural and measurement com-
ponents. The fitted model had a minimum AIC and BIC 
values compared to other competing models. It was 
found relatively parsimonious. The path diagram for the 
final model with all variables is given in Fig. 4. The single-
headed arrows indicate causal effects and the associated 
parameter values show the coefficient estimates.

Direct effects
Table  3 and Fig.  4 presents the coefficient estimates of 
direct effects of pathways between prenatal air pollution 
exposure and adverse birth outcomes from the fitted gen-
eralised structural equation model. Results showed that 
increased prenatal exposure to particulate matter PM2.5 
increased the risk of LBW (AOR = 1.3, 95% CI:1.02–
1.42). Prenatal exposure to SO2 was directly associated 
with SGA (AOR = 1.1, 95% CI:1.01–1.13). i.e. as expo-
sure level to SO2 increases the probability of being born 
small for gestational age increases. The direct effects of 
prenatal exposure to NOx on adverse birth outcomes 
were significant, but not in the expected direction (Fig. 4 
and Table 3). Our results suggest that infants born from 
smoker mother have a significantly increased risk of PB 
(AOR = 1.9, 95% CI: 1.27–2.89). Moreover, infants from 
HIV positive mothers had a higher tendency to be born 
preterm (AOR = 0.8, 95% CI:0.49–0.96).

The results also revealed that LBW (AOR = 0.9, 95% CI: 
0.92–0.97), SGA (AOR = 0.9, 95% CI: 0.91–0.95) and PB 
(AOR = 0.94, 95% CI: 0.93–0.95) were negatively associ-
ated with increased BMI at first trimester. Increased ges-
tational weight gain had associated with decreased odds 
of PB (AOR = 0.98, 95% CI:0.97 – 0.99). Among socio-
economic variables, the results showed that the primary 
or less mother’s education level had a negative signifi-
cant association with PB (Fig.  4). Infants from mothers 
who had primary or less education have a significantly 
higher probability of being preterm (AOR = 2.7, 95% CI: 
1.15–6.17). Our results also suggest that infants born 
from mother’s living in lower socio-economic housing 
had associated with increased risk of LBW (AOR = 1.7, 
95% CI: 1.61–1.85). Compared to male infants, females 

Table 1  Testing the Bernoulli distribution family under different 
link functions

Family/link AIC BIC

Probit 13,727.7 14,041.7

Logit 13,720.2 14,025.3

Cloglog 13,717.2 14,022.3
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Fig. 2  Parallel coordinates plot for trends of (A) low birthweight  (B) small for gestational age (SGA) (C) preterm birth (PB) across maternal exposure 
to PM2.5, SO2 and NOx air pollution and other factors
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Fig. 3  Correlation among measures of exposure to air pollution

Table 2  Percentage of adverse birth outcomes by prenatal exposure factors in the MACE Study (2013–2017)

LSEH Flat, terraced flat, apartment building or Informa housing; Informal dwelling is a makeshift structure not erected according to approved architectural plans, for 
example, shacks or shanties in informal settlements or in backyards. [47]

Prenatal exposure factors Percentage or Mean (SD)

LBW
(n = 93)

SGA
(n = 72)

PB
(n = 113)

Median annual exposure to air pollution (μg/m3)
  PM2.5 13.2 13.2 13.2

  SO2 2.6 2.2 2.7

  NOx 32.6 29.2 34.6

Behavioural factors
  Maternal smoking (Smoker) 8.6 6.9 11.5

  Passive smoking (PSmoker) 29.0 27.8 34.5

  Alcohol consumption 9.7 9.7 8.0

Low socio-economic factors
  Primary or less maternal education (PLEduc) 3.2 2.8 5.3

  Maternal Unemployment (Unemp) 18.3 20.8 21.2

  Low maternal annual income (LInc) (< US$2000) 91.4 91.7 89.4

  Low socio-economic housing (LSEH) 40.9 34.7 33.6

Demographic factors
  Maternal age in years Mean (SD) 25.7(6.5) 25.5(6.2) 25.9(5.7)

  Multiparous 16.1 23.9 15.3

  Child gender (Female) 45.2 44.4 50.4

Clinical factors
  HIV status (Positive) 34.4 34.7 36.3

  Syphilis (Positive) 9.7 9.7 4.4

  BMI at first trimester (BMIT1) (kg/m2) 25.5(6.6) 25.0(5.5) 25.8(6.3)

  Gestational weight gain (WeightGain) (kg) 6.3(6.1) 6.6(6.1) 6.5 (6.0)

  Physical exercise (at least once in a week) 45.2 44.4 44.2

  Residential location (South Durban) 52.7 45.8 55.8
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were less likely to be born with SGA (AOR = 0.9, 95% CI: 
0.86–0.89) (Fig. 4 and Table 3).

Indirect and total effects
Table 4 displays the indirect, and total effects of prena-
tal exposure factors with the adverse birth outcomes. 
We found that prenatal exposure to PM2.5 (AOR = 0.03, 
95% CI: 0.02 – 0.04), and SO2 (AOR = 0.002, 95% CI: 
0.01 – 0.02) and NOx (AOR = 0.001, 95% CI: 0.0003 
– 0.002) exhibits indirect effect on LBW through PB. 
Furthermore, all of the three pollutants were associ-
ated with SGA indirectly through PB. However, these 
indirect effects were considerably of low effect sizes 
(Table  4). Infants from mothers with a higher level of 
exposure to PM2.5, SO2 and NOx are more likely to be 
LBW and SGA partly because of being preterm. Even if 
the direct effects were not in the expected direction, we 
observed a low-level indirect effect of prenatal expo-
sure to NOx on LBW and SGA through PB (Table 4).

Both the estimated direct effect of PM2.5 on LBW 
(AOR = 1.3, 95% CI:1.02–1.42) and indirect effect on 
through PB (AOR = 0.03, 95% CI: 0.02 – 0.04) are rela-
tively higher, resulting a significant stronger positive 
total effect (total effect = 1.94, 95% CI:1.49, 2.34). The 
indirect effect points to the existence of a mediating 
effect of PB on the effects of prenatal exposure to air 
pollution on being born LBW. This suggests that pre-
term infants with increased prenatal exposure to air 
pollution were more likely to be born with LBW. Lastly, 
PB has a mediating effect on how BMI at first trimes-
ter affects LBW (indirect effect = 0.003, 95% CI:0.0.002, 
0.005) and SGA (indirect effect = 0.003, 95% CI:0.0.002, 
0.005) (Table 4).

Discussion
Our study has demonstrated that the annual exposure 
to PM2.5 and SO2 air pollution constitute strong prenatal 
risk factor of adverse birth outcomes. The use of a novel 
statistical technique, GSEM showed that while the effects 

Fig. 4  GSEM predicting adverse birth outcomes (LBW, SGA and PB) among infants from MACE birth cohort. Significant relationships bolded. 
(Passive smoking (PSmoker), Primary or less maternal education (PLEduc), Maternal Unemployment (Unemp), Low maternal annual income (LInc), 
Low socio-economic housing (LSEH), Physical exercise (PhyEx))
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were mostly direct, the effect of air pollution through pre-
natal exposure to PM2.5 and SO2 on low birthweight and 
small for gestational age were mediated through preterm 
birth. This may be attributed to maternal exposure to 
PM2.5 increase throughout the entire pregnancy is related 
to an extra risk of preterm birth [48] and low birthweight 
may result from preterm birth [49]. The other possible 
reason may be including multiple measures of the medi-
ating variable or construct, ceteris paribus, will be a bet-
ter strategy for fully capturing percentage mediation [50].

Elevated prenatal maternal exposure to PM2.5 was posi-
tively associated with low birthweight, preterm birth and 
SGA. Echoing findings elsewhere [51, 52], our study con-
firms that PM2.5 has consistent adverse effects on adverse 
birth outcomes. Similar to our findings, a systematic 
review by Shah et  al. [6] found that exposure to PM2.5 
increases the risk of LBW, while.a study in Canada, indi-
cated that a 10-μg/m3 increase in PM2.5 over the entire 
pregnancy was associated with small for gestational age 
[53]. Brauer et  al. [54] found consistent associations 
between PM2.5 exposure and risk of preterm birth. Ambi-
ent PM2.5 exposure increased the risk of preterm birth 

Table 3  Direct effects of GSEM predicting adverse birth outcomes (LBW, SGA and PB) among infants from MACE birth cohort

95% confidence intervals based on standard errors clustered on residential location

AOR Adjusted Odds Ratio, CI Confidence interval
*** P < 0.001
** p < 0.01
* P < 0.05

Adverse birth outcomes

Low birthweight
AOR (95% CI)

Small for gestational age
AOR (95% CI)

Preterm birth
AOR (95% CI)

Prenatal exposure to air pollution
  PM2.5 (μg/m3) 1.3(1.02, 1.42)* 1.2(1.21, 1.28)*** 1.2(1.09, 1.29)***

  NOx (μg/m3) 0.9 (0.92,0.95) ** 0.9(0.93,0.95)** 0.98(0.96, 0.99)*

  SO2 (μg/m3) 1.1(0.94, 1..31) 1.1(1.01, 1..13)* 1.2(0.87, 1.59)

Clinical factors
  Gestational weight gain (kg) 0.9(0.94,1.03) 1.0(0.95, 1.03) 0.98(0.97, 0.99)***

  BMI T1 (kg/m2) 0.9(0.92, 0.97)*** 0.9(0.91, 0.95)*** 0.94(0.93, 0.95)***

  Syphilis positive 1.0(0.73, 1.39) 0.9(0.58, 1.59) ____

HIV positive ____ ____ 1.3(1.17, 1.35)***

Behavioural factors
  Smoker 0.7 (0.37, 1.36) ____ 1.9(1.27, 2.89)**

  Alcohol use 1.5(0.69, 3.19) 1.4(0.59, 3.48) 0.7(0.50, 1.09)

Low socio-economic factors
  Primary or less education 1.1(0.56, 2.12) ____ 2.7(1.15, 6.17)*

  Low annual income (less than US$2000) 1.0(0.47, 2.25) ____ 1.0(0.55, 1.72)

  Low SE Housing (Informal or Flat, terraced flat, 
apartment building)

1.7(1.61, 1.85)** ____ ____

  Unemployment ____ ____ 1.7(0.72, 3.97)

  Physical exercise (at least once in a week) ____ 0.01(-0.51, 0.02) ____

  Female gender 0.87 (0.51, 1.51) 0.9(0.86, 0.89)*** 1.0(0.86, 1.14)

Table 4  Indirect and total effects of maternal prenatal exposure 
factors on adverse birth outcomes via preterm birth

*** p-value < 0.001
** p-value < 0.01

Paths via PB Coefficients (95%CI)

Indirect effect Total effect

NOx → LBW 0.001 (0.0003, 0.002)** 1.91(1.49, 2.34) ***

PM2.5 → LBW 0.03 (0.02, 0.04)*** 1.94(1.53, 2.36) ***

SO2 → LBW 0.002 (0.01, 0.02)*** 1.93(1.50, 2.36) ***

BMI T1 → LBW 0.003(0.0.002, 0.005)*** 1.91(1.49, 2.34) ***

Weight gain → LBW 0.0004(-0.0007, 0.002) 1.91(1.49, 2.34) ***

NOx → SGA 0.001 (0.0004, 0.002)** 2.1(1.45, 2.75) ***

PM2.5 → SGA 0.04 (0.02, 0.05)*** 2.1 (1.48, 2.80) ***

SO2 → SGA 0.01 (-0.02, 0.04)*** 2.1 (1.43, 2.78) ***

BMI T1 → SGA 0.004 (0.003, 0.005)*** 2.1 (1.45, 2.75) ***

Weight gain → SGA 0.0004 (-0.0006, 0.001) 2.1 (1.45, 2.74) ***

Female → SGA 0.002 (-0.02, 0.02) 2.1 (1.43, 2.77) ***
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increased by 3% for every 5 μg/m3 increase in PM2.5 aver-
age concentration in the entire pregnancy in one Chi-
nese study [55]. A recent meta-analysis found maternal 
exposure to PM2.5 per IQR increment increase risk of PB 
throughout entire pregnancy [56].

Our finding suggests that a higher level of prenatal 
exposure to SO2 is associated with risk of small for ges-
tational age. The concurs with a study in China, which 
showed a significant effect on adverse birth outcomes 
[54]. In this study, despite lower magnitude, we iden-
tified an indirect effect of exposure to PM2.5, and SO2 
ambient air pollution on LBW and SGA. The mediation 
path contributing to this effect is through preterm birth. 
This suggests that preterm birth is an important media-
tor between prenatal exposure to ambient air pollution 
and adverse birth outcomes. While it may have a protec-
tive direct effect, NOx exposure has a positive indirect 
effect on LBW and SGA through preterm birth. This may 
be attributed to bias or residual confounding. However, 
these indirect association of NOx exposure with adverse 
birth outcomes are relatively weak in magnitude. Unlike 
this study by Brauer et al. found an association between 
exposure to NOx and LBW [54].

Mothers who are smokers were more likely to experi-
ence the adverse birth outcome of preterm birth com-
pared to non-smokers. This is consistent with previous 
studies in the US, UK and Brazil that had shown the risk 
of PB is higher in smokers [57–59]. Our result is also in 
line with a recent systematic review and meta-analysis 
[60], in which smoking, was identified as a risk factor 
where smoking in pregnancy increased the risk of pre-
term birth. Similarly, Guan et al. found that smoking is a 
risk factor for preterm birth [61]. A recent study showed 
that women at greatest risk for PB are those with low 
socio-economic status, smoking [62].

This study used household-level air pollution estimates 
of exposure to pollutants NOx, PM2.5 and SO2, obtained 
through a land use regression model. Our work goes 
beyond previous findings by advancing a multivariate 
structural equation model to a more flexible generalised 
structural equation model, which allows effects of pre-
natal exposure to air pollution on, categorical responses, 
adverse birth outcomes. Another strength of this study 
was an adjustment for individual-level factors, such as 
maternal smoking status, weight gain, body mass index, 
syphilis and HIV status in addition to socio-demographic 
status, as compared to studies that utilise retrospective 
records, particularly from developing countries.

This study has a number of limitations. The main limi-
tation of this study is the use of a single average exposure 
level of pollutants during the whole pregnancy. The effect 
of exposure to pollutants may have a differential effect on 
adverse birth outcomes at different trimesters. The LUR 

approach, the methodology used in several large epide-
miological studies globally, including in birth cohorts, 
does not include a temporal component. In this study, 
only ambient air pollution exposure was available. Mis-
classification is also possible for the outcome variables, 
preterm birth and LBW. Misclassification of the mediator 
is important potential source of error which may impact 
on the exposure-outcome associations.

Conclusion
In summary, this paper presented a Generalised struc-
tural equation model with a complementary log–log link 
that jointly explains adverse birth outcomes (low birth-
weight, SGA, and preterm birth), and prenatal exposure 
to ambient air pollution while accounting for socio-
demographic, behavioural, physical activity and clinical 
risk factors. Our study revealed a consistent association 
of air pollution exposure to PM2.5 throughout pregnancy 
on increased risks of preterm birth, low birthweight and 
SGA.

Generalised structural equation modeling allowed 
investigation of the effect of prenatal air pollution expo-
sures on adverse birth outcomes. Using this approach, we 
found that air pollution exposure had adverse effects on 
low birthweight and small for gestational age. This sug-
gests that, while policies promoting reducing exposure 
levels of pollution will reduce preterm birth, its effect on 
reducing the likelihood of LBW and SGA. Furthermore, 
more research should also investigate whether the tim-
ing of environmental exposures during pregnancy (i.e., 
by trimester) is associated with adverse birth outcomes in 
our study setting.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12889-​022-​14971-3.

Additional file 1:SupFigure 1. Flowchart illustrating final numberof 
participant women used in the study from MACE birth cohort 

Acknowledgements
We wish to acknowledge the Mother and Child in the Environment cohort 
study participants, all study fieldworkers and nursing staff at the participating 
clinics and hospitals. We also sincerely thank all the international collaborators 
(Utrecht, Michigan) and local collaborators of the MACE Study. AAM is grateful 
to DAAD (German Academic Exchange Program) for the scholarship.

Authors’ contributions
AAM, TZ, DN conceptualized the research problem and developed the study 
design. AAM organized the data, conducted the statistical analysis and drafted 
the manuscript. SM and HT were responsible for the exposure characterisa-
tion. PJ, KA, and RNN were responsible for the child outcomes data. All authors 
critically reviewed and made substantial contributions to the manuscript. All 
authors read and approved the final manuscript.

Funding
The Mother and Child in the Environment (MACE) cohort study is funded by 
the following research funding agencies in South Africa: National Research 

https://doi.org/10.1186/s12889-022-14971-3
https://doi.org/10.1186/s12889-022-14971-3


Page 11 of 12Mitku et al. BMC Public Health           (2023) 23:45 	

Foundation (NRF) (grant number: 90550), Medical Research Council (MRC) and 
the AstraZeneca Research Trust. The funders played no role in the design and 
conduct of the study, or the data analysis and drafting of the manuscript.

Availability of data and materials
The data that support the findings of this study are available from the MACE 
study but restrictions apply to the availability of these data, which were used 
under license for the current study, and so are not publicly available. Data 
are however available from the authors upon reasonable request and with 
permission from the MACE study.

Declarations

Ethics approval and consent to participate
Written informed consent was obtained from all the participants in this study, 
participated voluntarily, received no financial incentives, and had the right 
to withdraw at any stage. Follow-ups of the study were approved by the 
Biomedical Research Ethics Committee (BREC) at the University of KwaZulu-
Natal (UKZN) (BF263/12). All methods were carried out in accordance with the 
relevant guidelines.

Consent for publication
Not Applicable.

Competing interests
All authors declare that they have no competing interests.

Received: 9 August 2022   Accepted: 29 December 2022

References
	1.	 Campbell E, Seabrook J. The influence of socioeconomic status on 

adverse birth outcomes. Can J Midwifery Res Pract. 2016;15:11–20.
	2.	 Campbell EE, Gilliland J, Dworatzek PD, De Vrijer B, Penava D, Seabrook JA. 

Socioeconomic status and adverse birth outcomes: a population-based 
Canadian sample. J Biosoc Sci. 2018;50(1):102–13.

	3.	 Nowak AL, Giurgescu C. The built environment and birth outcomes: a 
systematic review. MCN Am J Matern Child Nurs. 2017;42(1):14–20.

	4.	 Seabrook JA, Woods N, Clark A, De Vrijer B, Penava D, Gilliland J. The asso-
ciation between alcohol outlet accessibility and adverse birth outcomes: 
a retrospective cohort study. J Neonatal Perinatal Med. 2018;11(1):71–7.

	5.	 Woods N, Gilliland J, Seabrook JA. The influence of the built environment 
on adverse birth outcomes. J Neonatal Perinatal Med. 2017;10(3):233–48.

	6.	 Shah PS, Balkhair T. births KSGoDoPL: air pollution and birth outcomes: a 
systematic review. Environ Int. 2011;37(2):498–516.

	7.	 Butler AS, Behrman RE. Preterm birth: causes, consequences, and preven-
tion: National academies press. 2007.

	8.	 Wardlaw TM. Low birthweight: country, regional and global estimates: 
Unicef. 2004.

	9.	 Gladstone M, Oliver C, Van den Broek N. Survival, morbidity, growth 
and developmental delay for babies born preterm in low and middle 
income countries–a systematic review of outcomes measured. PLoS ONE. 
2015;10(3): e0120566.

	10.	 World Health Organization. Born too soon: the global action report on 
preterm birth. 2012.

	11.	 Kistnasamy EJ, Robins TG, Naidoo R, Batterman S, Mentz G, Jack C, Irusen 
E. The relationship between asthma and ambient air pollutants among 
primary school students in Durban, South Africa. Int J Environ Health. 
2008;2(3–4):365–85.

	12.	 Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero 
and early-life conditions on adult health and disease. N Engl J Med. 
2008;359(1):61–73.

	13.	 Pedersen M, Giorgis-Allemand L, Bernard C, Aguilera I, Andersen AMN, 
Ballester F, Beelen RM, Chatzi L, Cirach M, Danileviciute A. Ambient air 
pollution and low birthweight: a European cohort study (ESCAPE). Lancet 
Respir Med. 2013;1(9):695–704.

	14.	 Nieuwenhuijsen MJ, Dadvand P, Grellier J, Martinez D, Vrijheid M. 
Environmental risk factors of pregnancy outcomes: a summary of recent 
meta-analyses of epidemiological studies. Environ Health. 2013;12(1):6.

	15.	 Yorifuji T, Kashima S, Doi H. Outdoor air pollution and term low birth 
weight in Japan. Environ Int. 2015;74:106–11.

	16.	 Savitz DA, Bobb JF, Carr JL, Clougherty JE, Dominici F, Elston B, Ito K, Ross 
Z, Yee M, Matte TD. Ambient fine particulate matter, nitrogen dioxide, and 
term birth weight in New York. New York American journal of epidemiol-
ogy. 2013;179(4):457–66.

	17.	 Clemens T, Turner S, Dibben C. Maternal exposure to ambient air pollu-
tion and fetal growth in North-East Scotland: a population-based study 
using routine ultrasound scans. Environ Int. 2017;107:216–26.

	18.	 Huang JV, Leung GM, Schooling CM. The association of air pollution with 
birthweight and gestational age: evidence from Hong Kong’s ‘Children of 
1997’birth cohort. J Public Health. 2016;39(3):476–84.

	19.	 Mendoza-Ramirez J, Barraza-Villarreal A, Hernandez-Cadena L, de la Garza 
OH, Sangrador JLT, Torres-Sanchez LE, Cortez-Lugo M, Escamilla-Nuñez 
C, Sanin-Aguirre LH, Romieu I. Prenatal exposure to nitrogen oxides and 
its association with birth weight in a cohort of Mexican Newborns from 
Morelos, Mexico. Ann Glob Health. 2018;84(2):274.

	20.	 Ritz B, Wilhelm M. Ambient air pollution and adverse birth outcomes: 
methodologic issues in an emerging field. Basic Clin Pharmacol Toxicol. 
2008;102(2):182–90.

	21.	 Guo L-Q, Chen Y, Mi B-B, Dang S-N, Zhao D-D, Liu R, Wang H-L, Yan H. 
Ambient air pollution and adverse birth outcomes: a systematic review 
and meta-analysis. J Zhejiang Univ-Sc B. 2019;20(3):238–52.

	22.	 Gortzak-Uzan L, Hallak M, Press F, Katz M, Shoham-Vardi I. Teenage preg-
nancy: risk factors for adverse perinatal outcome. J Matern Fetal Med. 
2001;10(6):393–7.

	23.	 Kenny LC, Lavender T, McNamee R, O’Neill SM, Mills T, Khashan AS. 
Advanced maternal age and adverse pregnancy outcome: evidence from 
a large contemporary cohort. PLoS ONE. 2013;8(2): e56583.

	24.	 Tshotetsi L, Dzikiti L, Hajison P, Feresu S. Maternal factors contributing to 
low birth weight deliveries in Tshwane District, South Africa. PLoS ONE. 
2019;14(3): e0213058.

	25.	 Du M-k, Ge L-y, Zhou M-l. Ying J, Qu F, Dong M-y, Chen D-q: Effects of pre-
pregnancy body mass index and gestational weight gain on neonatal 
birth weight. J Zhejiang Univ-Sc B. 2017;18(3):263–71.

	26.	 Harville EW, Rabito FA. Housing conditions and birth outcomes: the 
national child development study. Environ Res. 2018;161:153–7.

	27.	 Myers B, Koen N, Donald KA, Nhapi RT, Workman L, Barnett W, Hoffman 
N, Koopowitz S, Zar HJ, Stein DJ. Effect of hazardous alcohol use during 
pregnancy on growth outcomes at birth: findings from a South African 
cohort study. Alcohol Clin Exp Res. 2018;42(2):369–77.

	28.	 Vanker A, Barnett W, Brittain K, Gie R, Koen N, Myers B, Stein D, Zar H. 
Antenatal and early life tobacco smoke exposure in an African birth 
cohort study. Int J Tuberc Lung Dis. 2016;20(6):729–37.

	29.	 Hoyle RH. Handbook of structural equation modeling: Guilford press. 
2012.

	30.	 Baum CF, Lööf H, Nabavi P, Stephan A. A new approach to estimation 
of the R&D–innovation–productivity relationship. Econ Innov Technol. 
2017;26(1–2):121–33.

	31.	 Fox J, Weisberg S. An R companion to applied regression: Sage publica-
tions. 2018.

	32.	 Naidoo RN, Robins TG, Batterman S, Mentz G, Jack C. Ambient pollution 
and respiratory outcomes among schoolchildren in Durban, South Africa. 
S Afr J Child Health. 2013;7(4):127–34.

	33.	 Mitku AA, Zewotir T, North D, Naidoo RN. exploratory Data Analysis of 
Adverse Birth outcomes and exposure to oxides of nitrogen Using inter-
active parallel coordinates plot technique. Sci Rep. 2020;10(1):1–9.

	34.	 Muttoo S, Ramsay L, Brunekreef B, Beelen R, Meliefste K, Naidoo RN. Land 
use regression modelling estimating nitrogen oxides exposure in indus-
trial south Durban, South Africa. Sci Total Environ. 2018;610:1439–47.

	35.	 Jeena PM, Asharam K, Mitku AA, Naidoo P. Naidoo RNJBp, childbirth: 
Maternal demographic and antenatal factors, low birth weight and 
preterm birth: findings from the mother and child in the environment 
(MACE) birth cohort. Durban, South Africa. 2020;20(1):1–11.

	36.	 Mitku AA, Zewotir T, North D, Jeena P, Asharam K, Muttoo S, Naidoo RN. 
The spatial modification of the non-linear effects of ambient oxides 
of nitrogen during pregnancy on birthweight in a South African birth 
cohort. Environ Res. 2020;183:109239.



Page 12 of 12Mitku et al. BMC Public Health           (2023) 23:45 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	37.	 Eeftens M, Beelen R, de Hoogh K, Bellander T, Cesaroni G, Cirach M, 
Declercq C, Dedele A, Dons E, de Nazelle A. Development of land use 
regression models for PM2. 5, PM2. 5 absorbance, PM10 and PMcoarse in 
20 European study areas; results of the ESCAPE project. EnvironSci Tech. 
2012;46(20):11195–205.

	38.	 Tularam H, Ramsay LF, Muttoo S, Brunekreef B, Meliefste K, de Hoogh 
K. Naidoo RNJEP: A hybrid air pollution/land use regression model for 
predicting air pollution concentrations in Durban. South Africa. 2021;274: 
116513.

	39.	 Sun L, Hu Y, Qi H, Maternal-Fetal Medicine Committee. A Summary of 
Chinese Expert Consensus on Fetal Growth Restriction (An Update on the 
2019 Version). Matern Fetal Med. 2022;4(3):162–8.

	40.	 Bardin R, Aviram A, Hiersch L, Hadar E, Gabbay-Benziv R. False diagnosis 
of small for gestational age and macrosomia–clinical and sonographic 
predictors. J Matern Fetal Neonatal Med. 2022;35(8):1539–45.

	41.	 Mitku AA, Zewotir T, North D, Naidoo RN. Exploratory data analysis of 
adverse birth outcomes and exposure to oxides of nitrogen using inter-
active parallel coordinates plot technique. Sci Rep. 2020;10(1):1–9.

	42.	 Nocita M, Stevens A, van Wesemael B, Aitkenhead M, Bachmann M, 
Barthès B, Dor EB, Brown DJ, Clairotte M, Csorba A, Dardenne P. Soil 
spectroscopy: An alternative to wet chemistry for soil monitoring. Adv 
Agronomy. 2015;132:139–59.

	43.	 Hoyle RH. Structural equation modeling: Concepts, issues, and applica-
tions: Sage. 1995.

	44.	 Bollen KA. Structural equations with latent variables Wile. 1989.
	45.	 Muthén B. A general structural equation model with dichotomous, 

ordered categorical, and continuous latent variable indicators. Psycho-
metrika. 1984;49(1):115–32.

	46.	 Burnham KP, Anderson DR. Multimodel inference: understanding AIC and 
BIC in model selection. Sociol Methods Res. 2004;33(2):261–304.

	47.	 Statistics S. General household survey 2015 statistical release P0318. 
Pretoria: Statistics South Africa; 2016.

	48.	 Li X, Huang S, Jiao A, Yang X, Yun J, Wang Y, Xue X, Chu Y, Liu F, Liu Y. Asso-
ciation between ambient fine particulate matter and preterm birth or 
term low birth weight: an updated systematic review and meta-analysis. 
Environ Pollut. 2017;227:596–605.

	49.	 Cutland CL, Lackritz EM, Mallett-Moore T, Bardají A, Chandrasekaran R, 
Lahariya C, Nisar MI, Tapia MD, Pathirana J, Kochhar SJV. Low birth weight: 
Case definition & guidelines for data collection, analysis, and presentation 
of maternal immunization safety data. Vaccine. 2017;35(48Part A):6492.

	50.	 Blakely T, McKenzie S, Carter K. Misclassification of the mediator mat-
ters when estimating indirect effects. J Epidemiol Community Health. 
2013;67(5):458–66.

	51.	 Ha S, Hu H, Roussos-Ross D, Haidong K, Roth J, Xu X. The effects of air 
pollution on adverse birth outcomes. Environ Res. 2014;134:198–204.

	52.	 Mainolfi MB, Salihu HM, Wilson RE, Mbah AK. Low-level exposure to air 
pollution and risk of adverse birth outcomes in Hillsborough County, 
Florida. J Occup Environ Med. 2013;55(5):490–4.

	53.	 Stieb DM, Chen L, Beckerman BS, Jerrett M, Crouse DL, Omariba DWR, 
Peters PA, van Donkelaar A, Martin RV, Burnett RT. Associations of preg-
nancy outcomes and PM2. 5 in a national Canadian study. Environ Health 
Perspect. 2016;124(2):243–9.

	54.	 Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C. A cohort 
study of traffic-related air pollution impacts on birth outcomes. Environ 
Health Perspect. 2008;116(5):680–6.

	55.	 Qian Z, Liang S, Yang S, Trevathan E, Huang Z, Yang R, Wang J, Hu K, 
Zhang Y, Vaughn M. Ambient air pollution and preterm birth: a pro-
spective birth cohort study in Wuhan, China. Int J Hyg Environ Health. 
2016;219(2):195–203.

	56.	 Li X, Huang S, Jiao A, Yang X, Yun J, Wang Y, Xue X, Chu Y, Liu F, Liu Y. Asso-
ciation between ambient fine particulate matter and preterm birth or 
term low birth weight: an updated systematic review and meta-analysis. 
Environ Pollut. 2017;227:596–605.

	57.	 Beta J, Akolekar R, Ventura W, Syngelaki A, Nicolaides KH. Prediction of 
spontaneous preterm delivery from maternal factors, obstetric history 
and placental perfusion and function at 11–13 weeks. Prenat Diagn. 
2011;31(1):75–83.

	58.	 Damaso EL, Rolnik DL, Cavalli RC, Quintana SM, Duarte G, da Silva 
Costa F, Marcolin A. Prediction of preterm birth by maternal charac-
teristics and medical history in the Brazilian population. J Pregnancy. 
2019;2019:4395217.

	59.	 Soneji S, Beltrán-Sánchez H. Association of maternal cigarette smok-
ing and smoking cessation with preterm Birth. JAMA Netw Open. 
2019;2(4):e192514–e192514.

	60.	 Ion R, Bernal AL. Smoking and preterm birth. Reprod Sci. 
2015;22(8):918–26.

	61.	 Guan T, Xue T, Gao S, Hu M, Liu X, Qiu X, Liu X, Zhu T. Acute and chronic 
effects of ambient fine particulate matter on preterm births in Beijing, 
China: a time-series model. Sci Total Environ. 2019;650:1671–7.

	62.	 Koullali B, Oudijk MA, Nijman TA, Mol BW, Pajkrt E. Risk assessment and 
management to prevent preterm birth. Semin Fetal Neonatal Med. 
2016;21(2):80–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Impact of ambient air pollution exposure during pregnancy on adverse birth outcomes: generalized structural equation modeling approach
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Data and variables
	Exposure assessment
	Outcome variables
	Prenatal risk factors
	Generalised Structural Equation Model (GSEM)

	Results
	Data Exploration
	Direct effects
	Indirect and total effects

	Discussion
	Conclusion
	Acknowledgements
	References


