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Abstract 

Background  Local governments and other public health entities often need population health measures at the 
county or subcounty level for activities such as resource allocation and targeting public health interventions, among 
others. Information collected via national surveys alone cannot fill these needs. We propose a novel, two-step method 
for rescaling health survey data and creating small area estimates (SAEs) of smoking rates using a Behavioral Risk Fac‑
tor Surveillance System survey administered in 2015 to participants living in Allegheny County, Pennsylvania, USA.

Methods  The first step consisted of a spatial microsimulation to rescale location of survey respondents from zip 
codes to tracts based on census population distributions by age, sex, race, and education. The rescaling allowed us, 
in the second step, to utilize available census tract-specific ancillary data on social vulnerability for small area estima‑
tion of local health risk using an area-level version of a logistic linear mixed model. To demonstrate this new two-step 
algorithm, we estimated the ever-smoking rate for the census tracts of Allegheny County.

Results  The ever-smoking rate was above 70% for two census tracts to the southeast of the city of Pittsburgh. Several 
tracts in the southern and eastern sections of Pittsburgh also had relatively high (> 65%) ever-smoking rates.

Conclusions  These SAEs may be used in local public health efforts to target interventions and educational resources 
aimed at reducing cigarette smoking. Further, our new two-step methodology may be extended to small area estima‑
tion for other locations and health outcomes.
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Introduction
Disaggregation of behavioral risk data to finer geographi-
cal scales can provide key insights into many public 
health challenges. Researchers have noted, for example, 
high prevalence of cigarette smoking has continued 
among specific subpopulations in the United States 
(U.S.), many of whom are known to be vulnerable [1]. 
While tobacco smoking has declined considerably in the 
U.S. over the past decades, an estimated 13.7% of U.S. 
adults still smoke cigarettes, and it is the leading cause 
of preventable disease, disability, and death [2]. Ciga-
rette smoking has been linked to many cardiovascular 
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and respiratory diseases, such as chronic obstructive 
pulmonary disease (COPD), and is the leading risk fac-
tor for lung cancer development [3, 4]. Smoking cessation 
reduces the risk for these adverse health outcomes and 
can add as much as a decade to life expectancy [2]. A sys-
tematic combination of routinely collected health survey 
data with measures of local vulnerability can identify the 
neighborhoods with high smoking rates to allow better 
targeting of smoking cessation interventions, as well as 
those who may be experiencing disparities in outcomes 
of such programs.

National health surveys, such as the Behavioral Risk 
Factor Surveillance System (BRFSS) [5], are crucial tools 
for monitoring population trends in smoking and other 
high-risk, health-related behaviors at the country or 
state level. However, local governments and other public 
health entities often need these population health meas-
ures at the county or subcounty level for activities such as 
resource allocation and targeting public health interven-
tions, among others. National surveys alone cannot fill 
these needs, often due to limited coverage of small geo-
graphic areas. Further, small sample sizes of such surveys 
when restricted to local populations make estimation of 
the variables of interest difficult, and possibly also unreli-
able below the state level. To address this issue, various 
small area estimation techniques have been proposed to 
downscale national or state health survey data and gen-
erate small area estimates (SAEs) that are deemed more 
reliable in terms of providing insights into health condi-
tions and health-related risk behaviors that are specific 
to local populations [6]. A handful of prior studies have 
sought to produce SAEs based on BRFSS data, including 
for risk behaviors like smoking [7–11], health outcomes 
like COPD [12, 13], and other factors [14, 15].

In this study, our objective is to address the problem 
of estimating subcounty level behavioral risks, such as 
smoking rates, which can leverage on auxiliary data that 
generally exist for local populations but not necessarily 
on the desired spatial scale. Towards this, we introduced 
a new two-step algorithm for survey data to rescale and 
generate SAEs of the variable of interest. The term “small 
area” is used to describe a domain for which the sam-
ple size is not large enough to allow sufficiently precise 
direct survey estimation. Often indirect SAE methods 
depend on the availability of population level auxiliary 
information related to the variable of interest [6]. In the 
first step, we use microsimulation for spatial “side-scal-
ing” of the survey data from the original unit of area (e.g., 
at zip code-level) to a different unit of area (e.g., at cen-
sus tract-level). While uncertainty in this step may lead 
to loss of some data points, it can make valuable auxil-
iary information in the form of social vulnerability data 
available at this re-scaled level. In the second step, such 

local population level auxiliary data are used to inform 
the model for small area estimation, which, in this study, 
is done for every census tract (or simply “tract”). It also 
helps us avoid the use of zip codes of locations that may 
(and often do) change over time. Further, we include 
additional steps to decide whether to incorporate the 
design of the survey in our model and provide multiple 
model diagnostics. We demonstrated the methodology 
by estimating the tract level ever-smoking rates of Alle-
gheny County in western Pennsylvania.

Data and Methods
The University of Pittsburgh Institutional Review Board 
approved this study (STUDY19040081).

Local BRFSS survey
The Allegheny County Health Department modeled 
its local BRFSS survey after the national survey, but the 
county raised its own funds for the survey and added 
many of its own questions. This county survey was 
administered via telephone to a random sample of adults 
18 years and older who resided in Allegheny County in 
2015. These methods have been described previously 
[16]; briefly, a probability-based sampling via random 
digital dial was conducted within the universes of all pos-
sible landline and cellular telephone numbers, 1.4 and 1.8 
million total possible numbers, respectively. Six percent 
of possible landline and 4% of cellular telephone numbers 
in the county were sampled, with a total of 9032 inter-
views secured. Consent for participation was obtained at 
the beginning of the call [16]. For the present study, we 
obtained these as de-identified data, with personal iden-
tifying information masked by codes. We excluded 74 
survey respondents with likely erroneous ages (< 18 years 
old) and 122 respondents with missing zip codes, leaving 
8836 respondents in 105 zip code-defined areas for the 
spatial microsimulation. Survey demographic variables 
were re-categorized as necessary to harmonize with key 
census variables: sex (male or female), age (18–24, 25–34, 
35–44, 45–64, ≥ 65 years), race (white, black, other), and 
education (less than high school, high school graduate, 
college 1 to 3 years (some college or technical school), 
and college graduate or higher). The sociodemographic 
profiles of the survey respondents are summarized in 
the Supplementary Table S1. For the present study, a 
respondent’s ever-smoking of tobacco in the form of cig-
arettes (not including e-cigarettes or further categories) 
data was used. For further details, see [16].

American community survey
The spatial microsimulation (Step 1 below) requires 
census population margins by demographic factors to 
assign survey respondents to probable tracts. While the 
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National Census takes place once every 10 years, the ACS 
is a nationwide survey that collects economic, housing, 
and demographic data every year [17]. We obtained 2015 
tract-level population estimates from ACS to correspond 
to the year of our BRFSS survey.

Social vulnerability data
The U.S. Centers for Disease Control and Prevention’s 
(CDC) Social Vulnerability Index (SVI) was originally 
computed to help public health officials and emergency 
response planners identify the most vulnerable commu-
nities that will require support during a hazardous event. 
The SVI ranks tracts on 15 social factors and further 
pools them into four summary themes: socioeconomic, 
household composition and disability, minority status 
and language, and housing type and transportation. It 
also provides an overall SVI [18].

Spatial microsimulation
Step 1 of our two-step algorithm is a microsimulation to 
assign survey respondents to tracts using the approach 
of combinatorial optimization (CO). Details regarding 
this step are available in the Supplementary Methods. In 
short, this procedure involves the selection of an optimal 
combination of households from an existing survey data-
set that best fit published small-area census tabulations 
[19]. We conducted the spatial microsimulation using the 
simPop package in R (version 4.0.2), an open-source data 
synthesizer that can be used to allocate populations from 
larger to smaller geographic areas [20]. Survey respond-
ents were rescaled from zip codes to tracts based on cen-
sus population marginals by age, sex, race, and education.

For CO based spatial microsimulation, we used the 
simPop package in R (version 4.0.2), an open-source data 
synthesizer that can be used to allocate populations from 
larger to smaller geographic areas [20]. After the study 
population was initially distributed to census tracts, a 
post-calibration procedure (calibPop) was performed 
to refine the distribution to tracts based on known cen-
sus population marginals for age, sex, race, and educa-
tion. This procedure implements CO based on simulated 
annealing to conduct an iterative search for a near opti-
mal combination of households to populate the geo-
graphic areas. As this is a probabilistic step, a degree of 
randomness is involved in the household selection and 
the results will be slightly different for each run. Thus, the 
microsimulation was run for N = 100 iterations for each 
respondent r. In each iteration, r is assigned to at most 
one tract within her zip code that is known from the 
BRFSS survey data. Further, one census table containing 
a population breakdown by all four demographic vari-
ables of interest was not available. We therefore repeated 
the microsimulation for each of the following three 

combinations of marginals: {age, sex, race}; {age, sex, 
education}; and {sex, race, education}.

Then, we spatially assign to each respondent r the tract 
which has (i) the strongest assignment among (ii) the 
least inconsistent of all tracts assigned to r by microsimu-
lation. Let Max(r, d) and Min(r, d) be the largest and the 
smallest number of assignments of any tract d to r out of 
a total of N = 100 microsimulations of r for each of the 
three combinations of marginals as stated above. For each 
r, we sort the tracts in a sequence {d(i)}r in the increas-
ing order of Incons(r, dj) =  Max (r, dj) −  Min (r, dj) as long 
as Incons(r, dj) < δ. Then r is assigned to the first tract in 
the sorted sequence {d(i)}r for which Max (r, d(i)) ≥μ. The 
threshold values of μ and δ were selected as 40 and 50 
based on the empirical distributions of Max and Incons 
to include a majority of respondents in the final assign-
ments. If no tract met these criteria for a survey respond-
ent, then that person was considered “unassigned” and 
excluded from Step 2.

Small area estimation
In Step 2, we used the rescaled microdata from Step 1 for 
small area estimation of ever-smoking rates for all tracts 
in Allegheny County. Two types of variables are used for 
SAE analysis. First, the variable of interest drawn from 
the survey, i.e., ever-smoking, which is binary at the indi-
vidual level, and corresponds to whether a person had 
ever smoked or not. The parameter of interest was to 
estimate the proportion of ever smokers within each cen-
sus tract (given by the 458 tracts of Allegheny County).

The second type consists of the tract-level auxiliary 
variables (or covariates). We used as available covariates 
four theme-wise summary SVI variables defined as (i) 
Socioeconomic: RPL_THEME1, (ii) Household Compo-
sition & Disability: RPL_THEME2, (iii) Minority Status 
& Language: RPL_THEME3, and (iv) Housing Type & 
Transportation: RPL_THEME4. These values are given as 
percentile ranking.

A generalized linear model between tract-specific sam-
ple (unweighted) proportions of smoking and the set of 
four auxiliary variables (RPL_THEME1–4) was fitted for 
choosing the appropriate auxiliary variables. This model 
was fitted using the glm function in R and specifying the 
family as “binomial” and the tract-specific sample size 
as the weight. The primary purpose was to build a good 
explanatory and predictive model based on the avail-
able auxiliary data. Finally, two auxiliary variables, RPL_
THEME1 (Socioeconomic) and RPL_THEME3 (Minority 
Status & Language), which significantly explained the 
model, were identified for use in subsequent SAE 
analysis.

The final model, including the covariates RPL_
THEME1 and 3, was then used to produce tract-level 
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estimates of ever-smoking rates. The tract-specific direct 
survey estimates of smoking rates were defined as fol-
lows. Let ydi denote the variable of interest for person i 
in tract d  (d = 1, …D). In particular, ydi is a binary vari-
able that takes the value 1 if person i in tract d smokes 
and 0 otherwise. Here, D is the total number of tracts in 
the study population, where D1 and D2 are the number 
of tracts with and without sample data, respectively, such 
that D1 + D2 = D. The aim is to estimate the proportion of 
ever smokers, Pd = N−1

d

∑Nd
i=1ydi , in tract d, where Nd is 

the population size of tract d. Let wdi be the survey weight 
for person i in tract d. The direct estimator (denoted by 
Direct) for Pd is p̂Directd =

nd
i=1wdi

−1 nd
i=1wdiydi , with 

the estimate of variance of the Direct estimator given by 
v
�

p̂Direct
d

�

≈

�
∑nd

i=1
wdi

�

−2∑nd
i=1

wdi

�

wdi − 1
��

ydi − p̂Direct
d

�2 , where nd is 
sample size for tract d.

In case of simple random sampling (SRS) used for survey 
data collection, p̂Directd = pd = (nd)

−1
∑nd

i=1ydi is the sim-
ple sample proportion and v

(

p̂Directd

)

≈ (nd)
−1pd(1− pd) , 

where y =
∑nd

i=1ydi denotes the sample count in tract d. If 
the sampling design is informative, this SRS-based version 
of Direct may be biased.

Let ud denote the tract-specific random effects that 
capture the dissimilarities between the tracts. If we 
ignore the sampling design, the sample count yd in tract 
d can be assumed to follow a binomial distribution with 
parameters nd and πd, i.e., yd|ud ∼ Bin(nd, πd); d = 1, …, 
D1. This leads to E(yd|ud) = ndπd. Let xd be the k-vector 
of covariates for tract d available from secondary data 
sources. Following previous work by study team mem-
bers [21, 22] as well as others [23–25], the aggregate level 
version of logistic linear mixed model (LLMM) linking 
the probability πd with the covariates xd is expressed as

with πd = exp
(

x
T
d β + ud

){

1+ exp
(

x
T
d β + ud

)}−1 . 
Here β is the k-vector of regression coefficients and ud 
is assumed to be independent and normally distributed 
with mean zero and variance σ 2

u.
Assuming Nd >  >  > nd, an empirical plug-in predictor 

(EPP) of smoking proportion in tract d is given by

It is obvious that in order to compute the small area 
estimates by eq. (2), the estimates of the unknown param-
eters β and u =

(

u1, . . . ,uD1

)T in eq. (2) are obtained 
using an iterative procedure that combines the Penalized 
Quasi-Likelihood estimation of β and u with restricted 
maximum likelihood (REML) estimation of σ 2

u to esti-
mate unknown parameters. For tracts with no sample 

(1)
logit(πd) = ln

{

πd(1− πd)
−1

}

= ηd = x
T
d β + ud

(2)
ŷEPP
d

= exp
(

x
T
d
�̂ + ûd
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1 + exp
(

x
T
d
�̂ + ûd

)}−1
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data (nd = 0), the synthetic type predictor of smoking 
proportion in tract d is given by

The mean squared error (MSE) estimation of small area 
predictor (2) and (3) is due to Chandra et al. (2019) [21].

To determine whether the sampling design used in 
survey data collection must be incorporated for valid 
inference about the population, we compute the effec-
tive sample sizes and the effective sample counts for the 
sample data, as described previously [21]. Use of effective 
sample size rather than the actual sample size allows for 
the varying information in each area under complex sam-
pling. Following previous work, we use the effective sam-
ple sizes in place of observed sample sizes to incorporate 
the sampling design [22, 26].

Diagnostic measures
These measures are used for examining the assumptions 
of the underlying models and assessing the empirical per-
formances of the EPP method. Generally, two types of 
such measures are suggested and commonly employed 
in SAE application; (i) the model diagnostics, and (ii) the 
diagnostics for the small area estimates. The main pur-
pose of model diagnostics is to verify the distributional 
assumptions of the underlying small area model, i.e., how 
well this working model performs when it is fitted to the 
survey data. The other diagnostics are used to validate 
reliability of the model-based small area estimates.

In LLMM, eq. (1), the random tract-specific effects are 
assumed to have a normal distribution with mean zero 
and fixed variance. If the model assumptions are satis-
fied, then the tract level random effects (or residuals) 
are expected to be randomly distributed and not signifi-
cantly different from the regression line y = 0; whereas, 
from eq. (1) the area level random effects (or residuals) 
are defined as ûd = η̂d − x

T
d β̂d = 1, . . . ,D . To examine 

the normality assumption, (as shown in Supplementary 
Fig. F1) the histogram (left plot), the normal probability 
(q-q) plot (center plot) and the distribution of the tract-
level residuals (right plot) are used. The Shapiro-Wilk test 
(implemented using the shapiro.test() function in R) was 
also used to examine the normality of the tract random 
effects. The value of the Shapiro-Wilk test statistic was 
0.984 with 285 degrees of freedom (p-value = 0.002). This 
indicates that the tract random effects are likely to be 
normally distributed. The tract level residuals appear to 
be randomly distributed around zero. Further, the histo-
gram and q-q plot also provide evidence in support of the 
normality assumption (Supplementary Fig. F1).

Further, a set of diagnostics described previously [27, 28] 
are also considered for assessing validity and reliability of the 
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tract-wise estimates generated by the EPP method. Here, we 
used 4 commonly used measures that address these require-
ments: a bias diagnostic, a goodness of fit test, a percent 
coefficient of variation diagnostic, and a 95% confidence 
interval diagnostic. The first two diagnostics examine the 
validity and last two assess the reliability or improved preci-
sion of the model-based small area estimates. In addition, we 
implemented a calibration diagnostic where the model-
based estimates are aggregated to higher level and compared 
with direct survey estimates at this level. Here direct esti-
mates DIR 

(

p̂Directd

)

 are defined as the survey weighted direct 
estimates. We compute bias (Bias) and average relative dif-
ference (RE) between direct 

(

p̂Directd

)

 and the EPP 
(

p̂EPPd

)

 esti-
mates as: Bias = D−1

1

∑D1

d=1p̂
Direct
d − D−1

1

(

∑D1

d=1p̂
EPP
d

)

 , 

and RE = D−1
1

∑D1

d=1

(

p̂Directd −p̂EPPd

p̂Directd

)

 respectively. The calcu-

lated Bias is due to our model-based estimation step and not 
the randomization used in Step 1.

Results
Out of the 8836 survey respondents used for the micro-
simulation in Step 1, 5901 (i.e., more than two-thirds) 
received a final tract assignment (Supplementary Fig. F2). 
In general, proportions of groups by education, race, and 
sex across the five age categories were similar between 
the 2015 census and our microsimulated datasets (Sup-
plementary Fig. F3). Out of a total of 468 Allegheny 
County tracts in the survey data, we had 286 tracts with 
samples, and the rest were out of sample. In the sample 
data, the sample count (i.e., number of ever-smokers in 
the sample) was 4517. For this study, auxiliary variables 
were available for 458 tracts (285 with and 173 without 
sample data) only. Therefore, further analysis considered 
only 458 tracts for estimating the ever-smoking rate using 
SAE. At this stage, the survey data had a total sample size 
of 5892 respondents and sample count of 2689 (Table 1).

Across tracts, the sample size ranged from one to 160 
with an average of 21. The average sample count was 
nine per tract, with a range of zero to 71. About 32% 
(91 out of 285) of total tracts had samples of less than 
five people (Fig.  1). As majority of the points are on 
the right side of the diagonal line (Supplementary Fig. 
F4a), it implies that for most tracts, the effective sam-
ple size is smaller than the observed sample size. Simi-
larly, in most of the cases, the effective sample counts 
are smaller than the observed sample counts (Supple-
mentary Fig. F4b). It is evident from the Supplementary 
Fig. F5 that the unweighted direct estimates underesti-
mate the number of ever-smokers, which indicates that 
the sampling design is indeed informative, when com-
pared to simple random sampling (SRS), in such tracts. 

Hence, the sampling weights cannot be ignored in our 
SAE analysis (Table 1).

We fitted generalized linear models between 
unweighted proportions of smoking and the four 
SVI themes to choose the appropriate auxiliary vari-
ables. The two auxiliary variables RPL_THEME1 and 
RPL_THEME3 were significant predictors for the ever-
smoking rate with an Akaike Information Criterion 
(AIC) value of 1205.5 (Table  2). Further, the effects of 
ever-smoking were positive for RPL_THEME1 (coeffi-
cient: 0.824, p < 0.001) and negative for RPL_THEME3 
(coefficient: − 0.633, p < 0.001). The null deviance of the 
model was 532 with 284 degrees of freedom, but add-
ing RPL_THEME1 and RPL_THEME3 in the model 
reduced the residual deviance to 478 with a loss of two 
degrees of freedom. Using these covariates, the tract-
level SAEs, and the corresponding standard errors, 
were computed. The results are shown in the Supple-
mentary Table S2, along with census tract-specific 
socio-demographic variables described in the Supple-
mentary Table S3. The excluded tracts are shown in the 
Supplementary Table S4.

To validate our results, we compared our tract-level 
SAEs of ever-smoking rates with such estimates by a 
previous study [8] for the groups of years 1991–1995, 
1996–2000, 2001–2005, and 2006–2010. Interestingly, 
the studies showed positive, significant correlations (cor-
relation coefficients: ~ 0.51, p < 0.001) (Fig.  2). However, 
our rate estimates ranged from 20 to 72%, whereas these 
prior estimates had a narrower spread (~ 10–40%). In our 
analysis, the tracts with the highest estimated ever-smok-
ing rate, slightly over 70%, were located southeast of the 
city of Pittsburgh. Other tracts with relatively high rates 
(> 65%) were located within neighborhoods in the south-
ern (Hazelwood, Arlington, Carrick) and eastern (East 
Hills) sections. There was also a cluster of tracts with 
relatively high rates to the west of Pittsburgh (Fig.  3a). 
As expected, the standard errors of SAE are higher in 
non-sample tracts (Fig.  3b). Distributions were similar 
between tracts in the city of Pittsburgh versus outside 
of Pittsburgh, although the SAEs for non-city tracts had 
slightly more spread (Supplementary Fig. F6).

Table 1  Summary of sample size and sample count in survey 
data

Characteristics Minimum Maximum Average Total

Sample size 1 160 21 5892

Sample count 
(smoking incidence)

0 71 9 2689

Sampling fraction 0.0028 0.056 0.0092
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Discussion
In this study, we have developed a new two-step algo-
rithm for rescaling behavioral survey data and modeling 
the prevalence of small area-level behaviors. Health sur-
veys, including the BRFSS and others, often do not pro-
vide spatial resolution below the state or county level. The 

local BRFSS survey administered in Allegheny County 
did collect zip code of residence, but without tract 
assignments, linkage with informative, ancillary data 
sources, such as the SVI, is difficult. Our microsimulation 
step allowed us to distribute survey respondents to tracts 
within the study area in a way that reflected the known 

Fig. 1  Tract-wise distribution of sample size (top) and sample count (bottom). The thresholds for sample size of 10 and sample count of 5 are 
shown with red horizontal lines
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sociodemographic composition of the tracts. While not 
every survey respondent received a final tract assign-
ment, we gained in spatial resolution for the others. Such 
disaggregation of population data at an informative spa-
tial scale can mitigate statistical bias that may appear in 
the form of modifiable areal unit problem (MAUP) [29].

According to the most recent Surgeon General’s report, 
13.7% of U.S. adults smoke [2]. Although the adult 
smoking rate in Allegheny County decreased from 23% 
in 2009–2010 to 19% in 2017 [2], this still exceeds the 
national rate. Racial disparities also persist in the county, 
both for smoking and smoking-related health outcomes. 
African Americans are both more likely to smoke (30% 
versus 17% of whites) and have rates of lung cancer 
15–30% higher than whites [14]. The SAEs of smoking 
rates demonstrated in this study, and its rigorous use of 
tract-specific (socioeconomic, and minority & language-
based) vulnerability covariates in the estimation, could 
inform local smoking cessation interventions to further 
decrease smoking rates in the county, particularly for 
high-risk groups such as those with higher levels of pov-
erty or unemployment. In addition, lower socioeconomic 
communities face greater burdens of environmental pol-
lution [30], further compounding their risks for cancer 
and other diseases.

Past applications of SAE on BRFSS data, e.g., Zhang 
et al. (2014) [12], were based on fitting a unit level logistic 

Table 2  Model Parameters for the Generalised Linear Models for 
Smoking Rate. (* p < 0.05; ** p < 0.01; *** p < 0.001)

DF degrees of freedom

Parameters Estimate Standard Error z value Pr(>|z|)

Intercept −0.13177 0.06153 −2.142 0.0322 *

RPL_THEME1 0.82368 0.11753 7.008 2.42e-12 ***

RPL_THEME3 −0.63327 0.13015 −4.866 1.14e-06 ***

AIC 1205.5

Null deviance 532.50 with 284 df

Residual deviance 477.55 with 282 df

Fig. 2  Scatterplots of SAEs of smoking rates calculated for 2015 (y-axis) in this study versus SAEs due to Oretega et al. (x-axis) for the years: (a) 
1991–1995, (b) 1996–2000, (c) 2001–2005, and (d) 2006–2010
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linear mixed model to BRFSS data and then drawing 1000 
random samples from their estimated conditional distri-
butions using the fitted model parameters, and thus, gen-
erating a sample of 1000 SAEs for each small area defined 
in the study [10]. The efficacy of the generated SAEs is 
therefore highly dependent upon the fitted model. The 
SAE method under an area level, logistic linear mixed 
model applied in this paper is a widely used approach if 
the model covariates are only available in aggregate form. 
It has a simple and closed form expression and, therefore, 
national statistical agencies (e.g., Office for National Sta-
tistics, Australian Bureau of Statistics, etc.) often prefer it.

Yet, the present study has some limitations. The spa-
tial re-scaling in Step 1 to gain in terms of the ability to 
include insightful covariates has a potential cost in terms 
of some loss of samples. In the probabilistic CO proce-
dure of Step 1, a degree of randomness is involved in the 
spatial assignments [19]. Given the current methodologi-
cal limitation in terms of the ability for estimating uncer-
tainty in the results of microsimulation, algorithms such 
as CO could introduce bias for the small area estimates. 
This is, however, a more general problem which needs 
to be addressed in future work. In Step 2, as one would 
expect, standard errors were higher among non-sample 
compared to sample tracts. Caution should be used in 
interpreting the SAE results in these non-sample tracts. 
We do not have reliable, direct-estimate data to validate 
our SAE census tract results, although they correlate 
significantly with those from past studies. Finally, while 
these tract-level estimates may be used to target smoking 
cessation interventions or help identify high-risk com-
munities for smoking and related health outcomes, they 
cannot be used to draw inferences about smoking habits 
of specific individuals residing in the small areas.

Conclusion
We proposed a two-step algorithm for rescaling survey 
data to more granular geographic levels for which ancillary 
data may be available to produce locally relevant estimates 

for health-related risk behaviors at these levels. We used 
smoking rates in Allegheny County, PA, both as a case 
study to demonstrate the algorithm as well as to create 
tract-level estimates that may be used in local public health 
interventions or additional studies. Future work could lev-
erage on the methods described here for other health sur-
veys, locations, diseases, and health-related behaviors.
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