
Handmann et al. BMC Public Health          (2023) 23:146  
https://doi.org/10.1186/s12889-022-14888-x

RESEARCH 

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

BMC Public Health

Feasibility of digital contact tracing 
in low‑income settings – pilot trial 
for a location‑based DCT app
Eric Handmann1*   , Sia Wata Camanor2, Mosoka P. Fallah3   , Neima Candy3   , Davidetta Parker2   , 
André Gries1 and Thomas Grünewald4    

Abstract 

Background  Data about the effectiveness of digital contact tracing are based on studies conducted in countries 
with predominantly high- or middle-income settings. Up to now, little research is done to identify specific problems 
for the implementation of such technique in low-income countries.

Methods  A Bluetooth-assisted GPS location-based digital contact tracing (DCT) app was tested by 141 participants 
during 14 days in a hospital in Monrovia, Liberia in February 2020. The DCT app was compared to a paper-based refer-
ence system. Hits between participants and 10 designated infected participants were recorded simultaneously by 
both methods. Additional data about GPS and Bluetooth adherence were gathered and surveys to estimate battery 
consumption and app adherence were conducted. DCT apps accuracy was evaluated in different settings.

Results  GPS coordinates from 101/141 (71.6%) participants were received. The number of hours recorded by the 
participants during the study period, true Hours Recorded (tHR), was 496.3 h (1.1% of maximum Hours recordable) dur-
ing the study period. With the paper-based method 1075 hits and with the DCT app five hits of designated infected 
participants with other participants have been listed. Differences between true and maximum recording times were 
due to failed permission settings (45%), data transmission issues (11.3%), of the participants 10.1% switched off GPS 
and 32.5% experienced other technical or compliance problems.

In buildings, use of Bluetooth increased the accuracy of the DCT app (GPS + BT 22.9 m ± 21.6 SD vs. GPS 60.9 m ± 34.7 
SD; p = 0.004). GPS accuracy in public transportation was 10.3 m ± 10.05 SD with a significant (p = 0.007) correlation 
between precision and phone brand. GPS resolution outdoors was 10.4 m ± 4.2 SD.

Conclusion  In our study several limitations of the DCT together with the impairment of GPS accuracy in urban set-
tings impede the solely use of a DCT app. It could be feasible as a supplement to traditional manual contact tracing.
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Background
Contact tracing was an essential element of the contain-
ment strategy of the 2014–2016 Ebola epidemic in West 
Africa. However, postepidemic analysis has revealed 
many limitations and challenges associated with manual 
contact tracing (MCT) [1]. These limitations primarily 
include poor scalability, time-consuming in-person inter-
views with infected patients and difficulty in contacting, 
informing and tracking exposed contacts. Additionally, 
recall errors, undetected exposures in public settings, 
transcription errors and time delays between contact 
identification and the instruction to quarantine further 
impede the effectiveness of contact tracing [1, 2]. MCT is 
a time-consuming process and thus challenging in over-
whelmed health systems coping with high numbers of 
infections.

Smartphone-based digital contact tracing (DCT) may 
address some of these limitations. Modeling studies 
[3] suggest that epidemic control can be achieved using 
DCT. Key enablers for the use of DCT include the con-
tinuing growth in coverage of mobile cellular networks, 
rapid advances in mobile technologies and the integra-
tion of mobile health tools into existing electronic health 
services [4]. From 2015 to 2021, the percentage of the 
population in the least developed countries being cov-
ered by at least 3G mobile networks has increased in 6 
years from 53 to 83%. The number of mobile phone sub-
scriptions in these countries increased from 67 to 75% in 
this time period [5]. To exploit this potential, the WHO 
has called for innovative technologies that address global 
health concerns in limited-resource settings [6].

During the COVID-19 pandemic, numerous high- 
and middle-income countries developed and deployed 
DCT tools. The reported success of DCT differed widely 
due to diverse policies for DCT (e.g., extent of privacy 
invasion), varying technical approaches and cultural 
differences [7, 8]. A review of current studies [9] identi-
fied limitations of DCT, such as dependency on a high 
degree of adoption and adherence, privacy concerns 
in the population, security vulnerability and techni-
cal constraints. Considering differences between DCT 
approaches and their varying performances throughout 
the countries, it becomes apparent that one solution 
cannot fit all and thus needs to be adapted to the politi-
cal, economic, cultural and social characteristics of the 
targeted population.

The aim of this study was to evaluate a DCT app in the 
setting of a low-income country. Widely available tech-
niques such as GPS and Bluetooth were used to maximize 
the proportion of the population meeting the technical 
requirements to use the DCT app. Other emerging tech-
niques to estimate proximity (e.g., Bluetooth Low Energy 
- BTLE) would exclude a significant number of individuals 

using older smartphones [10]. The DCT app used regular 
Bluetooth to mitigate the deficiencies of GPS in urban set-
tings, such as the inability of GPS to differentiate between 
app users on different floors. To assess its effectiveness, 
the DCT app was compared to a paper-based method. A 
secondary outcome was to identify specific restrictions 
for the implementation of DCT under real-world condi-
tions of limited-resource countries.

Methods
A field trial was designed and established for 14 days at 
the John F. Kennedy Medical Center in Monrovia, Libe-
ria, in February 2020. Ethical approval was granted by 
the Institutional Review Board Committee of the John F. 
Kennedy Memorial Medical Center. The study received 
clearance and support from the National Public Health 
Institute of Liberia and the Ministry of Health of the 
Republic of Liberia.

Recruitment of participants took place 4 days prior 
to the trial by providing information about the planned 
trial and consecutive sampling. Study participants were 
employees of the JFK Hospital. Inclusion criteria com-
prised written informed consent, a smartphone with an 
Android operating system (OS) capable of GPS, Blue-
tooth and mobile data and the possibility to perform a 
paper-based reference system (pCT). The target sample 
size was 200. Participants who did not attend the first or 
third visit or presented a smartphone different from the 
one they registered at the kick-off meeting were excluded. 
Participants were provided with mobile data credit, and 
transportation fees were covered.

The training phase was held during two kick-off meet-
ings, where the DCT app called EBOLAPP was side-
loaded via a QR code from a free cloud-based storage 
service and installed on the participants’ smartphones. 
Booklets and armlets were distributed to the participants 
along with further details on study procedures. After the 
first visit, issues with the automatic setting of permis-
sions for the DCT app to use location, storage and phone 
(Bluetooth, mobile data) of the smartphone were identi-
fied. Therefore, a manual adjustment of permissions was 
added to the study procedure. During the study, ten par-
ticipants were designated ‘infected’ for between three and 
6 days (Fig. 1).

The DCT app records GPS coordinates every 30 sec-
onds if a position change of greater than 1 meter is 
detected. If no position change is detected for 25 min-
utes, the criteria are reduced to every 5 minutes and 
five meters to preserve battery life. When Bluetooth 
detects another device, the last GPS coordinate logged 
is added to the movement profile to increase the fre-
quency of logged GPS coordinates. For subjects who are 
subsequently identified as infected, their anonymised 
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coordinate data are voluntarily shared to all other app 
users to determine a match with their own locally stored 
coordinate data. Coordinate data received from other 
app users are immediately deleted after coordinate 
matching occurs. The proximity thresholds measured in 
meters and time matching intervals for hit registration 
are adjustable by the administrator. If the coordinates 
match, the app user receives an exposure notification. For 
the purposes of this study, the GPS coordinate logs of all 
participants were sent to the server during each of the 
three visits. During the visits, additional data about GPS 
and Bluetooth adherence were gathered, and a survey to 
estimate battery consumption and adherence to app use 
was conducted. Significant exposure risk was defined 
to have occurred for hits with a proximity of ≤5 m for 
≥2 minutes and for hits ≤1.5 m irrespective of duration.

To assess the effectiveness of the digital contact trac-
ing app (aCT), a paper-based reference system for con-
tact tracing (pCT) was established. To enable visual 
discrimination, study participants wore a yellow armlet 
if they were designated as infected and a green armlet if 
they were not. Participants listed all hits with designated 
infected participants with the same definitions for prox-
imity and duration as aCT according to date and time, 
and infected participants did the same vice versa.

To process the proximity and duration of hits based 
on the DCT app GPS coordinate logs, a Javascript-
based software with an identical algorithm to the DCT 
app was used (Additional  File  1). The proximity of GPS 

coordinates was determined using the spherical law of 
cosines. After the lists of pCT hits were digitalized, they 
were matched with aCT hits by analyzing the data using 
R and SPSS to evaluate the aCT accuracy.

To evaluate the DCT app accuracy in buildings, an index 
smartphone was positioned in the ground floor of a three-
floor building for 2 min within a distance of five meters 
to randomly chosen participants. To assess the outdoor 
accuracy in an urban environment, participants were posi-
tioned at distinct locations of the city, and the precision 
of participants’ logged GPS coordinates was measured 
(Fig.  2). Moreover, participants were asked to track their 
commute using a car or public transport, and every logged 
GPS coordinate on the route was visualized and analyzed 
in reference to an idealized route (Additional  File  2). 
Google Maps was used to visualize and determine the pre-
cision of GPS coordinates.

The Shapiro–Wilk test was used to check for a normal 
distribution. Chi-square analyses for categorical vari-
ables and the Mann–Whitney U test for continuous vari-
ables were used to analyze differences among rates, and 
Spearman correlation was used to assess the association 
between two variables. p values were determined for all 
outcomes and considered significant at < 0.05.

Results
From a total of 200 included participants, 59 were 
excluded (see Fig.  3 for an explanation). The median 
age of all 141 participants was 31 years (IQR 27–36), 

Fig. 1  Course of study with participants successively designated as infected showing their cumulative number and the number of possible 
contacts for each day; the timing of the intervention and the visits with the respective tasks was mapped on the timeline. * Permission for the DCT 
app to use location, storage and phone (Bluetooth, mobile data) of the smartphone
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and 58.2% were female. The professions, distribution of 
phone brands and Android OS versions are displayed in 
Table  1, and information about the smartphone models 
used is added in Additional File 3. A total of 71.4% of the 
participants used smartphone brands where the DCT 
app had not been previously tested during a pilot study 
(Table  1). Thus, specific settings of those smartphone 
brands and OS were not implied during app develop-
ment. Smartphones with outdated Android versions 
(Android 4, 5 and 6) were used by 21.6% of participants 
(the latest Android version during the time the study was 
conducted was Android 10).

GPS coordinates from 101/141 (71.6%) participants 
were received (Fig. 3). Of the 40 participants, from whom 
no GPS coordinates were received, specific reasons were 
identified for seven cases (Fig. 3). For 33 participants for 
whom no specific reason was identified, compatibility 
between the software and smartphone might be an expla-
nation: 30/33 (90.9%) used brands that were not previ-
ously tested. Compared to the overall distribution of not 
previously tested brands (71.4%), this proportion is sig-
nificantly higher (p = 0.015).

Of the 101 participants who transmitted GPS coor-
dinates to the server, 31 (30.7%) sent less than ten GPS 

Fig. 2  Measurement of accuracy during use in an outside urban environment. Distance of logged GPS coordinate (violet) to location of the 
participant (grey) in m. Time of logged GPS coordinate in hh:mm

Fig. 3  Flow of participants and results of the contingency table for effectiveness
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coordinates over 14 days, and 67 participants (66.3%) 
transmitted less than 100 GPS coordinates (Fig.  3). 
Only 13 participants (12.9%) transmitted more than 500 
GPS coordinates. Over 24 hours, the DCT app records 
approximately 500 GPS coordinates.

To quantify the total number of hours that could have 
been recorded via the DCT app by all participants during 

the study period, the maximum Hours Recordable (mHR) 
was calculated.

Equation 1. Calculation of maximum Hours Recordable 
(mHR).

The actual number of hours recorded by the par-
ticipants during the study period (Fig.  4), true Hours 
Recorded (tHR), was 496.3 h. This tHR amounts to 1.1% 
of mHR, which explains the small number of GPS coor-
dinates that were transmitted to the server. However, to 
understand the difference between mHR and tHR, we 
have to consider three main factors (permission, data 
transmission, GPS) and other observed factors, as dis-
played in Fig. 5.

During the first visit, it was established that in 127/141 
(90.1%) smartphones, no GPS tracking was possible, as 
the needed permissions - ‘Location’, ‘Phone’ (Bluetooth, 
mobile data), ‘local storage’- were not automatically set. 
To remedy this issue, ‘manual permission adjustment’ 
was performed (Fig.  1). Over a duration of 7 days, 127 
participants recorded no GPS coordinates, which means 
that 21.336 h of mHR (45.0%) was explained by a delayed 
permission set. Of the 14 participants (9.9%) for whom 
permissions were automatically set, 11/14 (78.6%) had 
Android 6 or earlier versions. The overall distribution 
of smartphones with Android 6 and earlier in the group 
of all participants was 21.5%. Newer Android versions 
(7 and later) are correlated (p < 0.001) with blocking the 
DCT app from automatically using GPS/Location, Blue-
tooth and Memory.

Transmission failures of location data to the server 
have been identified as the second explanatory factor for 
the difference between tHR and mHR. Data transmission 

(1)mHR = 14 days x 24 hours x 141 participants = 47,376h

Table 1  Baseline characteristics of participants and smartphones

a n = 1: biologist, paramedic, optician, biomedical engineer, laboratory assistant, 
receptionist, journalist, cook, receptionist, data coordinator
b n = 1: Alcatel, Motorola*, Vivo, A3, MobiWire, Nokia*, Huawei

*previously tested Smartphone brands

Participants characteristics n (%) 
Total n = 141

Median age, years (range) 31 (27–36)

Women 82 (58.2)

Profession

  Nurse 41 (29.1)

  Medical student 35 (24.8)

  Midwife 15 (10.6)

  Environmental health 10 (7.1)

  Physician assistant 9 (6.4)

  Security 6 (4.3)

  Maintenance 5 (3.5)

  Social worker 4 (2.8)

  Administration 3 (2.1)

  Pharmacist 2 (1.4)

  Cleaner 2 (1.4)

  Othersa 10 (7.1)

Phone brand

  Tecno 56 (39.7)

  Samsung* 32 (22.7

  Itel 20 (14.2)

  Infinix 9 (6.4)

  BLU 3 (2.1)

  ZTE 3 (2.1)

  Orange 2 (1.4)

  HTC* 2 (1.4)

  LG* 2 (1.4)

  One 2 (1.4)

  Xiaomi 2 (1.4)

  Othersb 7 (4.9)

  unknown 1 (0.7)

Android version

  4 4 (2.8)

  5 7 (5.0)

  6 17 (12.1)

  7 28 (19.9)

  8 43 (30.5)

  9 31 (22.0)

  unknown 11 (7.8)

Fig. 4  True Recorded Hours (tHR) in hours per participant over 
14 days (total 469.3 h). * Poor adherence (GPS), battery consumption, 
energy supply, smartphone quality, technical experience
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failures were associated with poor mobile reception or 
insufficient mobile data credit. The proportion of failed 
data transmissions from the 101 participants who sent 
GPS coordinates to the server during the visits is outlined 
in Table 2.

During the first visit, data transmission to the server 
failed in 91/101 cases (90.1%), of which 87 were due to 
delayed manual permission adjustment. Out of 14 par-
ticipants who had set automatic permissions success-
fully, 4/14 (28.6%) did not transmit data to the server. 
These four participants account for 384 h (0.8% of mHR) 
of missing GPS data logs due to failed data transmission 
over 4 days prior to the first visit. Out of the ten partici-
pants for whom data were successfully sent to the server, 
70% were using previously tested smartphones, which is a 
higher proportion compared to 28.6% overall. During the 
second visit, data were not received by the server from 
42/101 (41.6%) participants. Over 3 days (intervention 
until Day 7), these 42 participants accounted for 3024 h 
(6.4% of mHR) of missing GPS data logs. During the third 
visit, 16/101 (15.8%) participants could not transmit their 
data to the server. Over 5 days, 16 participants accounted 
for a further 1920 h (4.1% of mHR) of missing GPS data 
logs. The total number of hours for which no GPS coor-
dinates were tracked due to transmission issues to the 
server is 5328 h (11.3% of mHR).

Additionally, it can be concluded that the signifi-
cant (p < 0.001) reduction in data transmission failures 
between the first and third visits and between the sec-
ond and third visits (Table  2) can be explained by the 
change in locations. The first two visits took place on the 
ground floor of a multistory building. In contrast, data 
transmission failures to the server were significantly 
reduced during the third visit, which took place in a sin-
gle story building. The effect of location change may be 
underestimated, as the number of participants report-
ing insufficient mobile credit to transmit data increased 
throughout the process, peaking as an issue during the 
third visit.

During all visits, GPS and Bluetooth settings were 
checked. Identified as the third main factor to explain 
the difference between tHR and mHR, these results are 
presented in Table  3. Assessing all three visits, a mean 
of 10.1% participants had switched their GPS off, which 
corresponds to 4785 h (10.1% of mHR) during which no 
GPS coordinate logging was possible. This factor is likely 
to be underestimated because the analyzed data showed 
that participants switched on their GPS and Bluetooth 
settings directly before and switched it off after the visit. 
These results imply poor participant adherence to app 
use. However, a quantitive approximation of the real app 
run time cannot be estimated on the basis of tracked GPS 

Fig. 5  Maximum Hours Recordable (mHR) broken down into total hours recorded (tHR) and causes for non-tracking

Table 2  Failed data transmission as a reason for reduced tHR and its proportion of mHR (11.3%, see Fig. 5);GPS and Bluetooth status 
during visits presented as % of participants

No Data 
transmission n 
(%)

Reason Cumulative tHR h 
(% of mHR)

GPS on Bluetooth on

1st Visit 91/101 (90.1%) 87/101 (86.1%) permission not set
4/14 (28.6%) permission set but poor signal reception

384 (0.8%) 88.9 96.5

2nd Visit 42/101 (41.6%) 15/101 (14.9%) did not attend
27/101 (26.7%) insufficient data credit, poor signal reception

3024 (6.4%) 89.7 87.2

3rd Visit 16/101 (15.8%) 16/101 (15.8%) insufficient data credit, poor signal reception 1920 (4.1%) 91.0 82.4
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coordinates due to multiple biases impacting the fre-
quency of GPS coordinate logging.

Table 3 provides explanations for the remaining 32.5% 
of the difference between tHR and mHR that could not 
be quantified. One of the issues relates to battery con-
sumption by the DCT app (see survey results in Addi-
tional  File  4). Limited access to electricity during the 
study, coupled with higher app-related battery con-
sumption, was a relevant limitation to the performance 
of a DCT app and may explain a reduced adherence to 
app use. Further differences between tHR and mHR may 
be attributed to deficiencies of participant smartphones 
with various reported software and hardware malfunc-
tions (Table  3). The difference (p = 0.037) between the 
proportion of not previously tested brands in the over-
all group of participants (71.4%) and in the subgroup for 
which no GPS data were received by the server (90.9%) 
supports this assumption.

Some participants with limited technical know-how 
required repeated training on how to correctly use the 
DCT app. There was no significant correlation between 
tHR and participant profession or age.

Effectiveness of aCT
To assess the DCT app effectiveness, we assembled 
aCT hits and pCT hits of all participants designated as 
infected, with corresponding matches (Table 4). To eval-
uate the extent of tracking activity, Fig.  6 displays the 
percentage of tracking participants and the mean tHR 
per day. By pCT, 1075 hits of designated infected partici-
pants with other participants have been listed, resulting 
in a median of 25.8 (± 28.8) hits per day per designated 
infected participant. A total of 147 pCT entries were 
not analyzed due to incomplete documentation. With 
aCT, five hits with a median of 0.1 (± 0.6) hits per day 
per designated infected participant were recorded. Of ten 
designated infected participants, only four were record-
ing GPS coordinates during the infected period, of whom 
one participant only recorded one GPS coordinate. All 
designated infected participants recorded 4.3% (42.4 h 
tHR) of the time they were infected (984 h mHR) and a 
median of 62.1 minutes per day per infected person. The 
average time all participants logged GPS coordinates was 

significantly lower (p < 0.001) at 15.1 minutes per day per 
person.

This provides an explanation for why only five hits were 
recorded via the DCT app compared to the possible 1075 
pCT listed hits. Of those five aCT hits, two were also 
recorded via pCT and could be accounted for as matches. 
Two aCT hits were recorded via Bluetooth pairing while 
GPS was inactive; thus, the DCT app used prior logged 
GPS coordinates that no longer reflected current location 
and resulted in a false-positive hit. One aCT hit was not 
listed via pCT by the designated infected participant but 
by the contact person and thus could be identified as a 
true aCT hit. In this case, the hit was recorded via aCT 
but not via pCT, demonstrating that the DCT app can 
be superior to a paper-based system on the precondition 
that both participants use the DCT app correctly.

Table  5 shows the contingency table evaluating the 
effectiveness of the DCT app. If every hit was a true hit, 
pCT found 1075/1077 (99.8%), and aCT found 5/1077 
(0.5%). If only hits were analyzed when both partici-
pants had switched on their GPS, all three pCT hits 
were also recorded via aCT (plus one true aCT hit that 
was not listed via pCT). This suggests a high sensitivity 
of the DCT app under efficacy conditions. Determina-
tion of reliable thresholds for sensitivity or specificity 
was not possible due to the reduced time of tracked 
movement (tHR).

To determine if time stamp differences between GPS 
and Bluetooth pairing logged coordinates (periods where 
GPS was switched off, but Bluetooth was switched on, 
and thus Bluetooth pairing did not reflect the current 
location) were a relevant problem, the movement profiles 
concerning this matter were analyzed. Of the 101 partici-
pants where GPS coordinates were sent to the server, 47 
participants (46.5%) showed periods of Bluetooth pair-
ing and switched off GPS between one to ten times dur-
ing the study, with a median time of 3:33 (0:31–14:09) h. 
Considering that 46.5% of the DCT app users for 3:33 h 
had an augmented possibility to record false-positive 
hits, this was identified as a significant impairment under 
real-world conditions.

To further examine the performance of the DCT app, 
all days on which designated infected participants tracked 

Table 3  Relevant observations made concerning performance of DCT app

Adherence to app use GPS was switched on prior and switched off after the visit

Battery consumption Survey yields increased battery consumption, which likely reduced adherence

Energy supply participants could not charge their Smartphone regularly due to limited access to electricity

Smartphone deficiency corrupted memory cards; insufficient capacity of local storage; software errors (due to replicated Smartphones or Android 
OS, phone froze or had to be formatted)

technical experience participants with little technical experience had to be provided with repeated training on how to use the DCT app correctly
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Table 4  The number of tracking participants and the cumulative tHR per day such as the median of tracked hours of tracking 
participants was added, to assess the extent participants were tracking with the DCT app. For every Infected their tHR per day, their hits 
recorded with aCT and pCT with the number of those pCT contacts tracking on this day and their tHR on this day, together with the 
matches of aCT and pCT hits (further analyzed in Table 6) was outlined
Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cumulative tHR/ day a 5:50 7:15 0:17 18:11 54:15 78:23 35:39 55:12 51:51 82:19 78:06 63:55 34:07 0:16
tracking participants(n)b 3 2 1 8 20 11 8 18 10 28 35 20 8 1

tHR/tracking participantsc–
median (range)

1:41 
(0:02 –
4:07)

3:37 
(0:39 –
6:35)

N/A
2:01 

(0:01 –
4:33

1:30 
(0:01 –
16:38)

5:31 
(0:14 –
20:37)

2:18 
(0:10 –
15:08)

2:15 
(0:01 –
9:11)

2:54 
(0:11 –
16:49)

1:34 
(0:01 –
16:20)

0:15 
(0:01 –
16:31)

0:43 
(0:01 –
17:15)

0:31 
(0:01 –
15:47)

N/A

Infected #1 tHRd 4:07 6:35 0:17
Hits_aCTe 0 0
Hits_pCT (tracking)f 15 (1) 34 (0) 59 (1) 61 (10) 4 (1) 2 4 6 4
tHR/pCT contactg- median 0:39 0:00 0:05 3:39 0:54
Match Hits aCT/pCTh 0* 0* N/A N/A N/A

Infected #2 tHRd 4:33 2:06 4:30
Hits_aCTe 0 0 3
Hits_pCT (tracking)f 1 (0) 77 (6) 21 (3) 3 1
tHR/pCT contactg- median 0:00 1:49 3:09
Match Hits aCT/pCTh 0* N/A N/A 2*

Infected #3 tHRd

Hits_aCTe

Hits_pCT (tracking)f 1 3 4 3 56 (9) 42 (5) 3 1
tHR/pCT contactg- median 4:01 2:03
Match Hits aCT/pCTh N/A N/A

Infected #4 tHRd 7:09
Hits_aCTe 2
Hits_pCT (tracking)f 20 (6) 44 (12) 52 (11) 1
tHR/pCT contactg- median 3:15 3:10 1:34
Match Hits aCT/pCTh 1* N/A N/A

Infected #5 tHRd

Hits_aCTe

Hits_pCT (tracking)f 2 2 27 (6) 24 (4) 27 (5) 2
tHR/pCT contactg- median 2:38 1:06 2:32
Match Hits aCT/pCTh N/A N/A N/A

Infected #6 tHRd 0:01
Hits_aCTe 0
Hits_pCT (tracking)f 2 1 1 3 3 41 (7) 76 (16) 52 (5)
tHR/pCT contactg- median 1:38 1:38 1:35
Match Hits aCT/pCTh N/A 0* N/A

Infected #7 tHRd 17:15 15:47
Hits_aCTe 0
Hits_pCT (tracking)f 1 6 4 24 (6) 28 (7)
tHR/pCT contactg- median 2:31 1:04
Match Hits aCT/pCTh N/A N/A N/A

Infected #8 tHRd 4:04
Hits_aCTe

Hits_pCT (tracking)f 6 1 6 (1) 1 (0)
tHR/pCT contactg- median 0:54 0:00
Match Hits aCT/pCTh N/A N/A

Infected #9 tHRd

Hits_aCTe

Hits_pCT (tracking)f 4 7 18 2 3 97 (16) 102 (8) 19 (1) 4 (0)
tHR/pCT contactg- median 1:44 2:14 0:43 0:00
Match Hits aCT/pCTh N/A N/A N/A N/A

Infected #10 tHRd 2:41
Hits_aCTe

Hits_pCT (tracking)f 6 1 2 17 15 (1) 4 (0)
tHR/pCT contactg- median 0:01 0:00
Match Hits aCT/pCTh N/A N/A

a the sum of aCT tracked hours across all 141 participants on a given day (hh:mm)
b the number of tracking participants on a given day (n)
c the median of tracked hours of tracking participants on a given day (hh:mm)
d tracked hours of the participant designated as infected (1–10) on a given day (hh:mm)
e Hits of the participant designated as infected recorded via aCT (n)
f Hits of the participant designated as infected recorded via pCT and the number of those contacts tracking on this day (n)
g the median of tracked hours across all pCT contacts on a given day (hh:mm)
h the number of matches between aCT and pCT hits (n)
*Matches between recorded aCT hits and pCT hits (Match aCT/pCT) are further analyzed (Table 7)
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their movement using GPS with no aCT hits being 
recorded were analyzed (Table 6). There was no pCT hit 
where both infected and regular participants tracked their 
movement using GPS but no aCT hit was recorded. Con-
sequently, no false negative results for aCT were found.

Accuracy
To evaluate aCT accuracy in buildings, an index smart-
phone was positioned next to participants. To detect 
whether Bluetooth increases accuracy in buildings as 
suggested, a comparison was made between aCT hits 
based on coordinates logged by both GPS and Bluetooth 
pairing and those based on GPS alone. For 7/22 partici-
pants, the hit only was recorded using additional coordi-
nates logged by Bluetooth pairing. The results shown in 
Fig. 7 demonstrate that in buildings, coordinates logged 
by Bluetooth pairing increase the accuracy of the DCT 
app. The mean distance recorded by the DCT app using 
GPS and Bluetooth was 22.9 m ± 21.6 SD and was signifi-
cantly (p = 0.004) more accurate than 60.9 m ± 34.7 SD 
recorded only via GPS coordinates. No significant cor-
relation between recorded distance and phone brand or 
version of the smartphone OS was found.

To estimate accuracy in public transport, participants 
were asked to track their route to work using the DCT 
app. The precision of every GPS coordinate to the track 
was measured and illustrated in a boxplot (Fig.  8). The 
mean distance between the idealized route and recorded 
GPS coordinate as an approximation for GPS accuracy 
is 10.3 m ± 10.05 SD. There was a significant (p = 0.007) 
correlation between precision and phone brand, but no 
correlation with smartphone OS was found.

To evaluate the accuracy outdoors in an urban environ-
ment, GPS coordinates of participants positioned at dis-
tinct locations were logged. The precision of logged GPS 
coordinates in relation to distinct location points was 
measured and illustrated in a boxplot (Fig. 9). The mean 
distance between the distinct location and recorded 
GPS coordinate as an approximation for GPS accuracy 
outdoors is 10.4 m  ± 4.2 SD. No significant correlation 
between degree of precision and phone brand or the ver-
sion of the smartphone OS was found.

Identified operational factors influencing the feasibility 
of DCT
Additional findings that could be relevant for the imple-
mentation of a DCT app in low-income settings are as 
follows:

•	 The overall acceptance of the DCT app was high (see 
Additional File 6).

•	 The understanding about contact tracing in the study 
group (experience from the Ebola epidemic in 2014–
2016) and the need for improvement in this field was 
good, which suggests a promising estimation for pos-
sible app uptake.

•	 To meet all specific demands and limit further bur-
dens, close cooperation with local health officials and 
the Ministry of Health was identified as a main oper-
ational factor.

•	 When the DCT app was presented to ICT (infor-
mation and communication technology) providers 
in Liberia, they confirmed that it would be possible 
to provide all mobile data from the DCT app free 
of charge to the user. The option for ICT provid-
ers to push the DCT app to its users for automatic 
installation and activation during a pandemic was 
confirmed.

Discussion
Conclusions about the effectiveness of DCT are based 
on findings of studies conducted in countries with pre-
dominantly high- or middle-income settings. Addi-
tional research is necessary to identify specific burdens 
for the implementation of such techniques in low-
income setting countries.

Effectiveness of DCT
The effectiveness of mobile app-based DCT in real-
world conditions of low-income settings has been iden-
tified as a major challenge by this study. High variability 
in smartphone quality, low levels of adherence to apps, 
insufficient access to mobile internet and unreliable 
access to electricity supply all inhibit DCT effective-
ness. Many of these findings are likely to be an issue in 
other low-income regions as well and should be consid-
ered by further initiatives implementing mobile health 
tools. Sachs et  al. [2] reported similar findings while 
introducing a mobile health tool during the 2014–16 
Ebola epidemic in West Africa. There are recent stud-
ies on the effectiveness of DCT apps in real-world 
settings in La Gomera, Spain [11], Switzerland [12], 
Norway [13] and the UK [14] that conclude positively 
about the performance of the app. The results are dif-
ficult to compare with our findings because the effec-
tiveness was estimated via indirect parameters due to 
the decentralized approach of the apps. A prospective 
study exploring the DCT app used in Australia [15] 
used a centralized approach and thus could compare 
DCT and MCT hits. The reported findings on effective-
ness were similar to our results, and they concluded 
that the app did not make a meaningful contribution to 
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COVID-19 contact tracing. Explanations for why many 
countries struggle to exploit the potential of DCT as 
predicted by modeling studies [3, 16–18] are the focus 
of current research. Based on a review of the literature 
[9], privacy concerns over user data, low trust in gov-
ernment and third parties (big data analysis, malicious 
actors), security vulnerabilities (hacker attacks), ethi-
cal issues (discrimination of minorities), user behav-
ior and participation (limited experience with mobile 
devices, reasons for adoption) have been prioritized in 
primary studies, in contrast to understanding technical 
constraints. This is likely indicative of concerns around 
adoption of a DCT app dominating technical limita-
tions in high income settings, which reflects the view of 
countries where primary studies have been conducted. 
According to our study results, technical constraints 
are a greater barrier to DCT implementation in low-
income setting countries. Factors such as battery con-
sumption in combination with limited energy supply, 
limited internet access (costs for mobile data, network 
coverage), hardware issues (smartphone quality, Blue-
tooth compatibility), and software issues (Android OS 
fragmentation, replicated software) should be the focus 
of further research.

Different approaches of DCT
The studied DCT app is a location-based approach to 
DCT, using GPS to calculate proximity to infected indi-
viduals, while most initiatives of DCT have been based 
on proximity inference via Bluetooth Low Energy (BTLE). 
Using BTLE over GPS would reduce battery consump-
tion, partly mitigating unreliable energy supply effects 
on DCT effectiveness. Technical reliability limitations of 
BTLE have been reported [19, 20]. Our finding that newer 
versions of OS impede proper app use has been reported 
by other initiatives and was addressed by the new Apple/
Google Application Programming Interface (API) [21]. 
However, BTLE is an emerging technique and cannot be 
applied on every smartphone, especially in low-income 
settings. Given that more than 40% (one billion) of 
Android active users worldwide use version 6.0 or below 
and no longer receive updates, many Android devices 
may not benefit from updates to the new BTLE-based 
contact tracing system Google built in collaboration with 
Apple during the COVID-19 pandemic (Google/Apple 
API) [10]. High app uptake rates have been identified as a 
crucial factor in DCT effectiveness [3, 17, 18], and unsup-
ported OS versions could prevent achieving the required 
uptake rates in low-income settings if BTLE is used. Of 
the participants in our study (urban population, hospi-
tal staff), 20% were using Android 6 or below, whereas in 
the overall population, the number could be significantly 
higher. Thus, a large proportion of smartphone owners 

in low-income settings would be excluded from DCT if 
BTLE techniques are selected. Additionally, the existing 
difference in access to health care due to DCT for disad-
vantaged communities caused by limited availability of 
smartphones and internet access [22, 23] would be fur-
ther exacerbated by implementing a DCT app requiring 
BTLE. In contrast, the location-based Bluetooth-assisted 
GPS method used in this study mitigates those barriers, 
as it utilizes widely available technology.

To address the problem that data transmission of the 
DCT app was often limited due to insufficient mobile 
data credit, we strived for a solution to provide mobile 
data for the DCT app free of charge. Approached ICT 
providers were willing and able to realize that in the 
event of an epidemic. Affordability of mobile internet 
is a burden to digital inclusion in disadvantaged com-
munities, especially considering that the median cost 
of 1 GB of mobile data is 15.3% of monthly GDP per 
capita for the poorest income quintile [24]. We recom-
mend that other initiatives seeking to implement DCT 
in low-income settings provide DCT free of charge to 
end users. Including ICT providers in the deployment 
of a DCT app is also crucial to ensure sufficient net-
work coverage and, if applicable, remote installation of 
the app.

Other GPS-based DCT apps have been used in South 
Korea (Corona 100), China, Israel (Ha’Magens) or the 
USA (Private Kit) with varying success [9]. To date, few 
peer-reviewed papers on the effectiveness of these apps 
have been published. The impairment of GPS accuracy in 
urban settings, as seen in our results, is consistent with 
other studies [25, 26]. Although the Bluetooth-assisted 
GPS location-based DCT app improved accuracy in 
buildings, this came at the cost of a higher risk of record-
ing false-positive hits when GPS was switched off. To 
reduce this risk, the interval between the timestamp 
of the last recorded GPS coordinate and the timestamp 
of coordinates based on Bluetooth pairing needs to be 
matched. High numbers of false-positive exposure noti-
fications raise doubts about the usefulness of the app in 
the population, as reported for the Ha’Magens app in 
Israel [27], a location-based DCT app used as an auto-
mated tool for DCT.

Impairment of GPS accuracy in urban settings 
together with the other DCT limitations identified 
suggests using DCT to supplement traditional manual 
contact tracing. In case of an infection, the app users 
can voluntarily look at a map with their logged GPS 
coordinates, which can only be accessed together with 
a verified health official (e.g., contact tracers). The 
‘recall problem’ has often been described as one of 
the weaknesses of manual contact tracing [28]. Listing 
the possible contacts during a period of time, e.g., the 
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last 2 weeks, from memory alone is often insufficient. 
By using GPS coordinate logging of the last 2 weeks, 
prospective contact tracing is likely to be more accu-
rate and effective. Another strategy that was reported 
as highly successful during the COVID-19 pandemic, 
but rarely implemented, is retrospective cluster-based 
tracing [29]. The intention is to recognize infec-
tion clusters early by asking where people have been 

infected and thereby informing other people from the 
cluster who might have been infected but who are still 
presymptomatic or asymptomatic. One reason retro-
spective cluster-based tracing was not commonly used 
is that the additional tracing effort might be beyond 
the capacity of public health officials during the surge 
of a pandemic. Aggregated GPS coordinate logs of 
infected persons are able to reveal clusters of infec-
tion early and thus enable containment measures to be 
implemented sooner.

Drivers and barriers of DCT
High trust in authorities and health officials is an 
important factor in achieving high rates of app uptake, 
acceptance and adherence [27, 30, 31]. Misinforma-
tion and poor transparency surrounding data privacy 
have led to some DCT attempts being unsuccessful 
[27]. South Korea applied DCT requiring high levels 

Fig. 6  Percentage of participants logging GPS coordinates per day from study group of 141 participants; Mean time of tHR from participants 
logging GPS coordinates per day

Table 5  Contingency table evaluating effectiveness of DCT app 
(aCT) versus paper based method (pCT) on the basis of recorded 
hits

pCT positive pCT negative total

aCT positive 3 2 5

aCT negative 1072 0 1072

total 1075 2 1077

Table 6  Analysis of days participants designated as infected and according pCT contacts were tracking to check for false negative hits

Day Analysis

Infected #1 2 1 pCT contact was tracking on this day.
Contact started tracking 6 h after pCT hit.

3 0 pCT contacts were tracking on this day.

Infected #2 4 0 pCT contacts were tracking on this day.

7 0 pCT contacts on this day.

8 3 pCT contacts were tracking on this day.
Of those 1 started tracking > 1 h after pCT hit and 2 were recorded via aCT (matches).

Infected #4 8 6 pCT contacts were tracking on this day.
Of those 5 started tracking > 1 h after pCT hits and 1 was recorded via aCT (match).

Infected #6 11 16 pCT contacts were tracking on this day. Infected #6 tracked for one minute, which was > 1 h before or 
after pCT hits.

Infected #7 12 0 pCT contacts on this day. During 17:15 hours of tracking no aCT- hit was recorded. (see Additional file 5)
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of sensitive data access (geolocation, medical records, 
camera, financial transaction), yet due to transparent 
and accurate information communicated by the gov-
ernment, the population demonstrated trust in the 
app, which boosted the effectiveness of contact trac-
ing. When surveyed, 86% of the population stated that 
the government had done ‘a good job’ dealing with the 
pandemic and that their country was more united as 
a result [32]. In contrast to many East Asian societies, 
there is little evidence that this level of privacy intru-
sion could be replicated within European societies due 
to their historical skepticism toward state surveillance 
[7, 9, 33, 34]. This highlights that social groups might 
differ in their judgment of fundamental considerations 
based on cultural differences, social preferences or 
individual risks. Deliberation of privacy concerns and 
DCT effectiveness (voluntary vs. mandatory, decen-
tralized vs. centralized approaches) should be consid-
ered within the specific context of epidemics. Given 
epidemics with high case fatality rates, high numbers 
of infected individuals [35] and a collapsing health sys-
tem (e.g., the Ebola epidemic of 2014–2016), it is likely 
that measures for effective disease containment could 

be valued higher than data privacy concerns by the 
population. Perceived personal threat and lack of per-
sonal control are positively related to the acceptance 
of surveillance technologies [36, 37]. This is consistent 
with our study results, where a high overall accept-
ance of a DCT app was identified in a cohort of health 
workers who had previously also been confronted 
with a humanitarian crisis during the Ebola epidemic 
in 2014–16. In spite of this, however, we still detected 
a discrepancy between high reported overall accept-
ance of DCT and low levels of adherence to app use 
during the study. The high rates of switched off GPS, 
seen in the results of this study, in large parts can be 
explained by increased battery consumption in combi-
nation with limited energy supply (some participants 
could not use their power generator due to shortage of 
fuel during the study). Resolving the burden of limited 
internet access would increase the number of hours 
the DCT app tracked by 11.3%. Additional factors such 
as smartphone quality and technical experience have 
been identified to explain reduced compliance.

The detected reasons for the finding that only 1.1% 
of the maximum Hours Recordable (mHR) during the 

Fig. 7  Accuracy in buildings. Contact of 22 participants with an index smartphone within a distance < 5 m in multi-story building. Green dots 
represent distances derived from both GPS and Bluetooth. Orange dots represent distance derived from GPS only
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Fig. 8  GPS accuracy in public transportation (mean 10.35 m); tracked population was 23 participants

Fig. 9  GPS accuracy outdoors in urban environment (mean 10.4 m); tracked population was 18 participants
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study period was recorded by the participants using 
the DCT app (tHR) are consistent with the known 
drivers and barriers to uptake of DCT, which can be 
classified into four categories: motivation, access, 
skills and trust [38]. The main kinds of motivation 
are changes in the perception of risk and percep-
tion of effectiveness of DCT, convenience of app use 
(e.g., battery consumption, mobile data), the band-
wagon effect and whether DCT is mandatory or vol-
untary, which have a huge influence on app uptake. 
The accessibility (affordability/availability) of the 
necessary equipment for DCT (internet, electricity, 
hardware and software) determines whether people 
can participate in DCT. A sufficient level of techni-
cal or literacy skill and an easy-to-understand format 
of information are required to understand what DCT 
is and how it works. Trust in entities associated with 
DCT, such as governments, corporations (Google, 
Apple, etc.), data architecture (centralized vs. decen-
tralized) and data security biases the decision of peo-
ple to use DCT.

The decision to participate in DCT or not depends 
on the complex interaction of these factors. A depend-
ency on individual control of many of these factors has 
been reported [38]. Because during an epidemic the 
sense of loss of control is likely to increase, an essen-
tial question with respect to people’s decisions to par-
ticipate in DCT is: do people believe that their choices 
and actions create a positive change? Large-scale sur-
veys [39] found that individual control is correlated 
with perceived knowledge. Giving people information 
about (effective) DCT influences their sense of control 
and can lead to high levels of uptake and compliance 
because of the feeling of contributing to containing the 
epidemic.

To ensure effective communication at the commu-
nity level and to reach vulnerable and disadvantaged 
groups, we implemented a feature in the DCT app 
where relevant information could be shared:

•	 Education on the disease (written and illustrative 
images)

•	 Working principle, benefits and limitations of the 
DCT app

•	 Updated information on the outbreak and corre-
sponding measures

•	 Addressing of public misinformation

Managing misinformation is an important compo-
nent of a response strategy because, as seen during 
the Ebola epidemic in West Africa in 2014–16 [1, 39] 
and the COVID-19 pandemic [40], misinformation 

can inhibit effective epidemic containment. To meet 
the functional criteria and minimize the bureaucratic 
burdens for the implementation of a DCT app, we 
identified the involvement of health authorities (e.g., 
MoH) as an important operational success factor. 
Management and maintenance of a DCT app requires 
a considerable amount of qualified personnel, skills 
and experience from local health officials and institu-
tions. Additionally, proactive engagement of commu-
nity leaders and religious or cultural figures should be 
encouraged for high rates of acceptance throughout 
the population [38].

Conclusion
DCT is feasible as a supplement to traditional manual 
contact tracing. The finding that only 1.1% of the maxi-
mum Hours Recordable (mHR) during the study period 
was recorded by the participants using the DCT app 
(tHR), several limitations of the DCT found in our study 
together with the impairment of GPS accuracy in urban 
settings impede the sole use of a DCT app. The substan-
tial additional workload of managing a DCT app calls 
for supportive evidence of high rates of effectiveness to 
justify the significant investment of a DCT app by low-
income countries.

Limitations
To conduct this study, a Beta version of the DCT app was 
used to identify potential improvements prior to Version 
1.0. The beta version was engineered only for Android 
OS.

The selected study population is not representative 
of the overall population in low-income settings, due 
to the biases of participants all being employed and 
thus being economically more stable than the average 
population.

Although the paper-based approach enables only low 
precision measurements of distance and time, it provided 
the most accessible option to ensure documentation of 
contacts between participants as a reference standard for 
the DCT app.

The focus of this study was on the feasibility of 
DCT; consequently, little data about the functionality 
of the used smartphones was collected. In a further 
study, data about the smartphone operating time, e.g., 
exact time of switching on GPS/Bluetooth, power sav-
ing modes, runtime of the DCT app and the smart-
phone, usage of other apps and interfaces or devices in 
the environment that interfere with the smartphone, 
would help to further develop a DCT app for the tar-
geted population.
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