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Abstract 

Background: Concentrated disadvantaged areas have been disproportionately affected by COVID-19 outbreak in 
the United States (US). Meanwhile, highly connected areas may contribute to higher human movement, leading to 
higher COVID-19 cases and deaths. This study examined the associations between concentrated disadvantage, place 
connectivity, and COVID-19 fatality in the US over time.

Methods: Concentrated disadvantage was assessed based on the spatial concentration of residents with low 
socioeconomic status. Place connectivity was defined as the normalized number of shared Twitter users between 
the county and all other counties in the contiguous US in a year (Y = 2019). COVID-19 fatality was measured as the 
cumulative COVID-19 deaths divided by the cumulative COVID-19 cases. Using county-level (N = 3,091) COVID-19 
fatality over four time periods (up to October 31, 2021), we performed mixed-effect negative binomial regressions to 
examine the association between concentrated disadvantage, place connectivity, and COVID-19 fatality, considering 
potential state-level variations. The moderation effects of county-level place connectivity and concentrated disadvan-
tage were analyzed. Spatially lagged variables of COVID-19 fatality were added to the models to control for the effect 
of spatial autocorrelations in COVID-19 fatality.

Results: Concentrated disadvantage was significantly associated with an increased COVID-19 fatality in four time 
periods (p < 0.01). More importantly, moderation analysis suggested that place connectivity significantly exacerbated 
the harmful effect of concentrated disadvantage on COVID-19 fatality in three periods (p < 0.01), and this significant 
moderation effect increased over time. The moderation effects were also significant when using place connectivity 
data from the previous year.

Conclusions: Populations living in counties with both high concentrated disadvantage and high place connectiv-
ity may be at risk of a higher COVID-19 fatality. Greater COVID-19 fatality that occurs in concentrated disadvantaged 
counties may be partially due to higher human movement through place connectivity. In response to COVID-19 and 
other future infectious disease outbreaks, policymakers are encouraged to take advantage of historical disadvantage 
and place connectivity data in epidemic monitoring and surveillance of the disadvantaged areas that are highly con-
nected, as well as targeting vulnerable populations and communities for additional intervention.
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Introduction
Concentrated disadvantage, also known as neighbor-
hood disadvantage, or deprivation index in some cases, 
refers to areas with a high proportion of people with 
low socioeconomic status. Concentrated disadvantaged 
areas aggregate groups such as low-income earners, 
welfare recipients, and single households [1], and some 
may also include ethnic minority groups [2]. These 
groups face a great number of challenges in socioeco-
nomic development [2] and health wellbeing [3]. Due 
to social and cultural segregation, the disintegration 
of collective cohesion, limited institutional resources, 
dirty and disorderly environment, higher disadvantaged 
areas are associated with higher levels of crime rates 
[4] and fear of crime [5], antisocial behavior [6], inti-
mate partner violence [7], violent victimization among 
youths [8], alcohol abuse [9], lower life satisfaction [10], 
adult unemployment and earnings [11], and negative 
educational outcomes [12]. Meanwhile, many stud-
ies have revealed the significant relationships between 
concentrated disadvantages and differential forms of 
health inequalities, such as the increased risk of breast 
cancer [13], increased incidence rate of lung cancer 
[14], diabetes and cholesterol control [15], obesity [16], 
pediatric obstructive sleep apnea [17], DNA methyla-
tion [18], adolescent brain cognitive development [19], 
depression [3, 20, 21], and worse mental health status 
[22].

Concentrated disadvantaged areas are more likely to 
suffer disproportionate COVID-19 infection [23] and 
deaths [24]. Some studies have also found a significant 
link between proxies of concentrated disadvantage 
(e.g., income) and case fatality rate (use fatality in the 
following section) [25]. The residents of concentrated 
areas are more likely to have poorer socioeconomic 
status and be essential workers in professions such as 
grocery delivery, truck drivers, and cleaners [26, 27]. 
Most of these jobs are difficult to perform remotely 
and lack the conditions to maintain social distancing. 
Meanwhile, disadvantaged populations may use public 
transportation more frequently, as a study in New York 
City found that areas with low-income people, essential 
workers, and non-white populations had more mobil-
ity extracted from subway data during the pandemic 
[28]. These groups also live in mostly poor house condi-
tions, with many live together and without good post-
infection isolation [29]. These factors of physical status, 
work environment, commuting patterns, and house 
conditions may contribute to a higher risk of exposure 

to COVID-19 and the increased likelihood of COVID-
19 infection and fatality in socioeconomically disadvan-
taged populations.

Place connectivity is another key factor in predict-
ing COVID-19 transmission among concentrated dis-
advantaged areas. The connectivity of a place can be 
described as the strength of a connection between a 
place and one or more places, and this connection is 
generally manifested in terms of the road, train, air, and 
social media, among others. Unlike direct population 
movements, connectivity is more stable, as it is closely 
related to geographical location, transportation facili-
ties, and other related static factors. Place connectivity 
affects socioeconomic development and health outcomes 
of a region. Transportation connectivity (road, Internet, 
and air travel connectivity) improvements can promote 
economic growth by increasing market access and con-
necting intermodal terminals [30–32], as well as improve 
regional development by allowing different areas within 
the region to fully collaborate and reap the socio-eco-
nomic benefits of integration [33, 34]. Greater accessibil-
ity is also associated with greater economic resilience in 
the region [35].

In terms of health effects, place connectivity can result 
in both positive and negative consequences. Trans-
portation connectivity increases access to health care 
[32]. High transportation connectivity is also linked to 
lower levels of mental health distress [36]. Connectiv-
ity, on the other hand, is associated with some negative 
health outcomes, particularly infectious disease trans-
missions [37] (i.e., dengue outbreaks [38], influenza out-
breaks [39], and HIV transmission [40]. For example, the 
intensity of air travel has been shown to be a significant 
predictor of virus arrival time [41]. The greater the con-
nectivity between areas, the higher level of population 
mobility between these areas. Higher connectivity could 
be associated with a higher risk of exposure, and greater 
risk of COVID-19 infection. Several studies have found 
that air connectivity [37], high-speed train connectiv-
ity [42], road connectivity [43], and Twitter-based place 
connectivity [44] are associated with the initial outbreak 
of COVID-19. Particularly, Twitter-based connectivity, 
representing the extent to which a place shares the same 
users with other places, gives a comprehensive measure 
of the degree of connectivity in all aspects of transporta-
tion in that place, which can be a more direct proxy for 
population mobility and exposure risk [44].

There are a few studies with mixed results regarding 
the association between connectivity and COVID-19 
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clinical consequences (including fatality). Some studies 
have shown a significant association between air connec-
tivity index and increased death [45] and death risk [46] 
in early-stage, while another suggested that pedestrian-
oriented street connectivity is associated with lower 
COVID-19 death rates, because residents in this built 
environment engage in more physical activity and have 
lower levels of obesity and chronic disease [47].

Despite the above-mentioned studies, there are 
still knowledge gaps in investigating the relationships 
between concentrated disadvantage, place connectivity, 
and COVID-19 fatality. First, while several studies have 
investigated the effects of concentrated disadvantage and 
connectivity on COVID-19, most studies have focused 
on the incidence and mortality, with a paucity of studies 
linking concentrated disadvantage and COVID-19 fatal-
ity. As fatality is more influenced by pre-existing health 
conditions and the quality of the healthcare system [48], 
we hypothesize a significant association between con-
centrated disadvantage and COVID-19 fatality because 
concentrated disadvantage will be linked to health infra-
structure in the area, access to health services, and pre-
existing health conditions of a population on COVID-19 
clinical outcomes.

Second, to the best of our knowledge, no study has 
yet evaluated the moderation effect of connectivity on 
the association between concentrated disadvantage and 
COVID-19 fatality. As many studies have confirmed [26, 
49], people living in high concentrated disadvantaged 
areas may have higher needs to travel because most of 
them are essential workers and have limited resources to 
support remote working. In this case, if the area is also 
highly connected, these people may be more likely to take 
advantage of the convenient connectivity conditions (e.g., 
transportation) to go to work. Under the implementation 
of non-pharmacological interventions (NPIs) like travel 
restrictions during the pandemic, a high-connectivity 
place with a concentration of disadvantaged groups may 
have higher mobility compared to other high connectivity 
places without a concentration of disadvantaged groups. 
Higher mobility is associated with higher rates of infec-
tion [37, 42]. For people living in disadvantaged areas, a 
higher infection rate is usually linked with higher fatality 
given their poor pre-existing health conditions [50] and 
barriers to access to healthcare services [51]. Therefore, 
we hypothesize that connectivity may amplify the nega-
tive impacts of concentrated disadvantage on COVID-19 
fatality.

Third, few studies investigate the associations 
between concentrated disadvantage, place connec-
tivity, and COVID-19 outcomes across time [52, 53]. 
COVID-19 is constantly mutating and spreading, and 

the non-pharmaceutical COVID-19 prevention poli-
cies change over time. Place connectivity may not con-
tribute to population movement in the same way at 
different periods, so the effect of place connectivity on 
concentrated disadvantage and COVID-19 fatality may 
vary. Travel restrictions were much stricter in the early 
period of the pandemic, resulting in decreased human 
mobility. In this situation, the impact of concentrated 
disadvantage on COVID-19 fatality may be less influ-
enced by place connectivity. When life returns to nor-
mal and travel restrictions are lifted, such as during the 
Omicron variant period, the role of connectivity may 
become increasingly significant. As a result, we hypoth-
esize that the moderation effect of place connectivity 
on the link of place connectivity – COVID-19 fatality 
varies along with the period of the pandemic.

In this paper, we use Twitter data to measure place 
connectivity. Twitter-based place connectivity is a com-
prehensive connectivity measurement among places, as 
previous studies have noted that it reflects connectivity 
not only in terms of transportation, but also in terms of 
social networks, geography, and socioeconomics [44]. 
Meanwhile, given the close association with these rela-
tively static factors, place connectivity is a stable fac-
tor across years [44]. This study uses historical place 
connectivity to analyze its relationship with current 
COVID-19 fatality, which will be useful in guiding the 
role place connectivity may play in future infectious 
disease prevention and control.

In sum, this paper proposes that place connectivity 
can intensify the harmful effects of county-level con-
centrated disadvantage on county-level COVID-19 
fatality. If a county with a concentration of disadvan-
taged populations is also a highly connected county, 
the disadvantaged group will have higher mobility 
through place connectivity and a greater probability 
of exposure to the virus, which may contribute to the 
deleterious effect of concentrated disadvantage on 
COVID-19 fatality. Our study will help to address the 
existing knowledge gaps and advance the understand-
ing of complicated interaction between concentrated 
disadvantage, place connectivity, and COVID-19 fatal-
ity across pandemic periods. Specifically, we present 
the following hypotheses:

H1: Concentrated disadvantage is associated with 
higher COVID-19 fatality.
H2: The association between concentrated dis-
advantage and COVID-19 fatality is stronger in 
counties of high Twitter-based place connectivity 
compared to counties of low place connectivity.
H3: The moderation effect of place connectivity 
may vary along with the period of the pandemic.
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Methods
Data sources and study area
We obtained the county-level data for confirmed 
COVID-19 cases and deaths from the start of the out-
break on January 21, 2020, to December 1, 2022, in 
the contiguous US from the New York Times (https:// 
github. com/ nytim es/ covid- 19- data). This data was ini-
tially collected from the Center for Disease Control and 
Prevention (CDC), multilevel health departments, and 
other related sources. For data on county-level socio-
economic variables, we used the American Community 
Survey (ACS) 5-year estimates (2015-2019). Data from 
ACS 1-year or 3-year were not used because these data 
are limited to areas with populations over 20,000, and 
the current study intended to ensure data availability for 
smaller counties with populations less than 20,000 [26]. 
Twitter is one of the most popular social media platforms 
in the US and a very prevalent source of geospatial social 
media data in academia. We used place connectivity 
derived from Twitter in 2018 and 2019 [44].

The study area includes 3,091 of 3,108 counties (The 
District of Columbia is treated as a county equivalent) 
in the contiguous US. Omitted counties are due for two 
reasons. First, Twitter-based connectivity data covered 
3,105 counties in the contiguous US. Second, since the 
subsequent empirical analysis used fatality for four time 
periods, we removed those counties with 0 cumulative 
COVID-19 cases in each time period, respectively. The 
spatial unit of this study is the county level.

Measures
COVID‑19 fatality
COVID-19 fatality is the outcome variable, which is the 
cumulative COVID-19 deaths divided by the cumulative 
COVID-19 cases up to a time period. The CDC evaluated 
key indicators for three periods of high COVID-19 trans-
mission using data from three surveillance systems and a 
healthcare database [54]. According to the CDC report, 
there are three periods of high-COVID-19 transmission: 
December 1, 2020–February 28, 2021 (winter period); 
July 15, 2021–October 31, 2021 (Delta predominance); 
and December 19, 2021–January 15, 2022 (Omicron 
predominance). Correspondingly, the remaining were 
three normal-COVID-19 transmission periods. Because 
Omicron is less lethal and not quite the same as previous 
virus variants, we then selected data up to October 31, 
2021, to test our hypotheses.

More specifically, this study includes models for four 
time periods, based on fatality data up to December 1, 
2020 (period 1), up to February 28, 2021 (period 2), up 
to July 15, 2021 (period 3), and up to October 31, 2021 
(period 4), respectively. We did not use single-period data 

(e.g., 12/1/2020-2/28/2021) to calculate fatality because 
the death population for a single period did not always 
belong to the cases in that single period.

Concentrated disadvantage
Data on concentrated disadvantage in each county were 
retrieved from the 5-year estimate American Community 
Survey (2015-2019). We first defined the concentrated 
disadvantage variable following previous studies [1, 26]. 
We then performed the principal component analysis of 
five variables and identified these variables loading onto 
a single factor that accounted for 58.24 % of the observed 
variation with high reliability (Cronbach’s Alpha α = 
0.762). Concentrated disadvantages include five items, 
the civilian unemployment rate; the percentage of 
female-headed families; the percentage of the population 
over the age of 25 that are high school dropouts; the per-
centage of households with an annual income < $15,000; 
the percentage of households receiving public assistance. 
These items are combined into an index by taking the 
average of their z-scores. Higher values refer to a more 
concentrated disadvantage index.

Place connectivity
Place connectivity in this study is calculated based 
on place connectivity index (PCI) extracted through 
geotagged Tweets [44]. Unlike real-time population 
movement between places, PCI provides a relatively 
stable measure of the strength of connectivity between 
two places through spatial interaction. PCI refers to the 
normalized number of shared Twitter users between the 
two places in a year (Equation. 1). For instance, if a user 
is observed in both counties over a year, the user is con-
sidered a shared user in two counties. In this study, we 
aggregated the PCI values of a county with all other con-
nected counties as the place connectivity of this county 
(Equation. 2). For instance, if county A has shared Twitter 
users with other 1,500 counties, that means county A has 
1,500 PCI values. The place connectivity of county A is 
calculated by summing the 1,500 PCI values. Place con-
nectivity is the moderator variable of this study. We cal-
culated the place connectivity of each county separately 
for 2019 and 2018.

In the equations, Si is the number of unique Twit-
ter users in county i within time T; Sj is the number of 
unique Twitter users in county j within time T; Sij is the 

(1)PCIij =
Sij

SiSj
i, j ∈ [1, n]

(2)Place connectivityi =
n

i
PCIin i ∈ [1, n]

https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data
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number of shared users between county i and j within 
time T; and  n is the number of counties in the study area.

Covariates
We also controlled for other main variables that may 
affect COVID-19 fatality. For socioeconomic aspects, 
population density, and uninsured population were 
included to account for their potential impacts [23]. For 
demographics, the percentage of the population aged 65 
and older was included to control for high-risk groups 
with high COVID-19 fatality [23]. The percentage of 
black or African Americans was included to control for 
the impact of racial factors on COVID-19 [26]. In addi-
tion, the percentage of public transportation commuting 
was included to account for the impact of public trans-
portation on COVID-19 transmission [55]; the percent-
age of ICU beds was also included to adjust for possible 
variation in COVID-19 deaths due to differences in avail-
ability of healthcare services [56]. For geographic factors, 
the geographical census region (Northeast, Midwest, 
South, and West) was to adjust for the potential impacts 
of environment-related factors (e.g., temperature and 
humidity) on the spread and severity of COVID-19 [4]. 
Core-based statistical area (CBSA) regions were included 

to adjust for the potential impact of urban and rural 
factors on COVID-19 fatality [57]. Just as some stud-
ies have used geographically weighted models to exam-
ine COVID-19 transmission and mortality to control 
for the role of spatially autocorrelated factors [23], this 
study incorporates spatially lagged fatality to ensure 
that the model can reduce the effect of spatially autocor-
related factors. Detailly, Moran’ I value of county-level 
COVID-19 fatality in the US were statistically signifi-
cantly greater than 0 for different time periods, indicating 
that COVID-19 fatality was spatially correlated, we then 
included spatially lagged fatality (i.e., COVID-19 fatality 
in surrounding adjacent counties) to account for spatial 
autocorrelation of fatality. Table 1 summarized all the key 
variables in this study.

Statistical analysis
The count data for COVID-19 deaths were highly right-
skewed and overdispersed. As Poisson regression could 
not capture overdispersion, the negative binomial model 
is more appropriate. Considering the differential impact 
of COVID-19 fatality rates by state-level policies such as 
social distance, face masks, and home orders, we further 
selected a mixed-effects negative binomial regression 

Table 1 Definitions of key variables

Variables Definitions

Outcome
 COVID-19 fatality The cumulative COVID-19 deaths divided by the cumulative COVID-19 cases up to a time period

County‑level predictors
 Demographic characteristics

  Concentrated disadvantage For counties with high percentages of residents of low socioeconomic status (welfare receipt, 
poverty, unemployment, uneducated, female-headed households)

  Place connectivity The total PCI value of the county

  Spatially lagged fatality The average fatality in the surrounding counties

  Population density (per square miles) The rate of total population to land area in the county

  % of population aged 65 + Proportion of population aged 65 + to total population

  % of no health insurance coverage Proportion of population with no health insurance coverage to total population

  % of black or African Americans Proportion of population of black or African descent to total population

  % of workers 16 years and over who commute 
by public transportation

Proportion of population of workers 16 years and over who commute by public transportation

  ICU bed per 100,000 people The rate of ICU beds to total population in the county multiplied by 100,000

Core-based statistical area (CBSA)

 No-CBSA 0

 Micropolitan statistical area 1

 Metropolitan statistical area 2

 Region

 Northeast 0

 Midwest 1

 South 2

 West 3
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model to account for state-level random effects on 
COVID-19 fatality at the county level [26]. In each model, 
to calculate the fatality, the number of COVID-19 deaths 
was the dependent variable, and the number of COVID-
19 cases was the offset term. To avoid numerical singu-
larities in estimating the models, we log-transformed 
certain variables (population density, place connectivity, 
and spatially lagged fatality) to ensure accurate analytical 
results. Before the regression analysis, we used Pearson 
correlation and VIF analysis to examine possible co-col-
linearity. The results show that no significant co-colline-
arity exists between variables (VIF values less than 4). We 
performed statistical analyses in Stata SE version 15.

Results
Descriptive statistics and spatial characteristics
Table 2 presents the descriptive statistics of the variables. 
By October 31, 2021 (period 4), the county-level average 
fatality is 0.018. The score range for concentrated dis-
advantage was from -1.442 to 4.916, with a mean value 
of -0.073. The average place connectivity in 2019 was 

5,634.516, varying from 1,167.885 to 24,065.32. The sta-
tistics of other variables were shown in Table 2.

The geospatial distribution of fatality in the contiguous 
US shows that the high fatality area was widely distrib-
uted and tends to be concentrated in the South (Fig-
ure  1). Economically developed regions like California 
did not show an excessive fatality. From the four time 
periods, the areas of high fatality changed over time. Ini-
tially, hotspots were in the Northeast and Southwest, and 
then gradually spread to the interior and surrounding 
regions. This may be related to coronavirus transmission, 
as the outbreak first occurred in the metropolitan areas 
of the east and west coasts.

Figure 2 showed the geospatial distribution of Twitter-
based place connectivity and concentrated disadvantage. 
It can be observed that high connected counties were like 
those major transportation nodes. The Northeast and 
Southwest were areas of higher place connectivity, which 
contained some notable metropolitan areas, such as San 
Francisco, Los Angeles, and New York City. The spatial 
distribution of place connectivity was similar in 2019 
and 2018. The map of concentrated disadvantage showed 

Table 2 The descriptive statistics of the variables

Mean SD Min Max

Fatality in time period 1 0.02 0.018 0 0.196

Fatality in time period 2 0.019 0.011 0 0.111

Fatality in time period 3 0.02 0.01 0 0.111

Fatality in time period 4 0.018 0.008 0 0.075

Concentrated disadvantage -0.073 0.592 -1.442 4.916

Place connectivity 2019 5,634.516 2,884.957 1,167.885 24,065.32

Place connectivity 2018 6,048.58 3,164.618 1,154.232 26,156.29

Spatial lagged fatality in time period 1 0.02 0.011 0.001 0.094

Spatial lagged fatality in time period 2 0.019 0.007 0.004 0.053

Spatial lagged fatality in time period 3 0.02 0.006 0.004 0.052

Spatial lagged fatality in time period 4 0.018 0.005 0.004 0.045

population density 219.266 811.391 0.207 18,654.76

% of population aged 65 + 18.835 4.591 3.2 56.71

% of no health insurance 9.558 4.972 0.67 40.91

% of black or African population 9.164 14.579 0 87.23

% of workers 16 years and over who commute by 
public transportation

0.891 2.321 0 43.3

ICU beds per 100,000 population 12.686 23.591 0 749.584

Frequency Percentage

CBSA (Non-CBSA) 701 22.68

Micro 854 27.63

Metro 1,536 49.69

Region (Northeast) 210 6.79

Midwest 1049 33.94

South 1,421 45.97

West 411 13.3
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that high disadvantaged counties were mainly located in 
the South, while coastal areas and some northern areas 
showed lower levels of disadvantage (Figure 2).

The results of mixed‑effects negative binomial regression 
models
The results used the incidence rate ratio (IRR) to rep-
resent the association between the variables. An IRR 

Fig. 1 County-level COVID-19 fatality across the contiguous US. Note: The figures on the left side from A to D show the distribution of fatality for 
period 1, period 2, period 3, and period 4, respectively

Fig. 2 Twitter-based place connectivity across the contiguous US. Note: A and B refer to place connectivity for 2019 and 2018, separately. C refers to 
the map of concentrated disadvantage
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greater than 1 represents a positive association between 
county-level factors and COVID-19 fatality. In contrast, 
an IRR less than 1 represents a negative association, and 
an IRR equal to 1 represents no positive or negative asso-
ciation. Model 1 in Tables 3 and 4 showed the results of 
mixed-effect negative binomial regression analysis up to 
the four-time points. In each period, counties with higher 
disadvantages had higher fatality than those with lower 
disadvantages (IRR > 1, p < 0.01). For example, in period 
4, compared to counties with lower concentrated disad-
vantage, the fatality in counties with higher concentrated 
disadvantage was 1.157 times higher. (IRR = 1.157, 95% 
CI: 1.125-1.189, p < 0.01). It indicates hypothesis 1 is con-
firmed. The effects of place connectivity were significant 
in period 2, 3, & 4 (IRR <1, p < 0.01), but not in period 
1(IRR < 1, p > 0.05). Specifically, counties with higher 
place connectivity had lower fatality than counties with 
lower place connectivity.

Further, the results showed that the interaction 
between concentrated disadvantage and place con-
nectivity was significant in three time periods (IRR 
> 1, p < 0.01), except for period 1(IRR > 1, p > 0.05), 
after the inclusion of an interaction term (Model 2, 
Tables  3  and  4). It supports hypothesis 2, implying that 
concentrated disadvantage is associated with a relative 

increase in the county-level COVID-19 fatality, especially 
for those counties with high place connectivity. Interest-
ingly, the IRR of this interaction increased with the time 
periods, indicating an increasing robust interaction effect 
(Tables 3 and 4 and Figure 3), which confirms hypothesis 
3. Figure  3 shows the graphical illustration of the inter-
action between concentrated disadvantage and place 
connectivity using results from Model 2, Tables 3 and 4. 
The relationship between concentrated disadvantage and 
fatality becomes stronger as the value of place connectiv-
ity increases.

Most control variables also showed consistent results 
across time (Model 1, Tables  3  and  4). Each 1 standard 
deviation increase in spatial lagged fatality rate was asso-
ciated with a significant relative increase in the IRR of 
COVID-19 fatality (IRR > 1 and p < 0.01). A higher per-
centage of people aged 65 and older was associated with 
a higher COVID-19 fatality (IRR > 1 and p < 0.01). Simi-
larly, a higher percentage of Black or African Americans 
was associated with a higher COVID-19 fatality (IRR > 1 
and p < 0.01). In addition, except for period 1, micro and 
metropolitan counties had lower COVID-19 fatality than 
rural counties (IRR < 1 and p < 0.01). The region factor 
was not consistently significant. Over time, the signifi-
cant regional differences in COVID-19 fatality gradually 

Table 3 Mixed-effects negative binomial regression models of county-level COVID-19 fatality (periods 1 & 2)

IRR Incidence rate ratio, PC Place connectivity 2019, CI Confidence interval
* : p < 0.05
** : p < 0.001

Period 1 Period 2

Factors Model 1 Model 2 Model 1 Model 2

IRR (95% CI) IRR (95% CI) IRR (95% CI) IRR (95% CI)

Concentrated disadvantage 1.185(1.119,1.255) ** 1.188(1.121, 1.258) ** 1.156(1.117,1.197) ** 1.166(1.126,1.206) **

Log (PC) 0.93(0.812,1.065) 0.908(0.791, 1.044) 0.878(0.812,0.951) ** 0.852(0.786,0.923) **

Concentrated disadvantage * Log (PC) 1.142(0.958, 1.361) 1.267(1.141,1.406) **

Log (Spatially lagged fatality) 2.519(2.2,2.884) ** 2.526(2.207, 2.892) ** 2.799(2.467,3.176) ** 2.795(2.464,3.169) **

Log (population density) 1.089(1.03,1.152) ** 1.094(1.034, 1.157) ** 1.026(0.992,1.06) 1.031(0.997,1.066)

% of population aged 65 + 1.039(1.033,1.046) ** 1.039(1.033, 1.045) ** 1.035(1.032,1.039) ** 1.035(1.031,1.038) **

% of no health insurance 1(0.993,1.007) 1.000(0.993, 1.007) 1.008(1.004,1.013) ** 1.008(1.004,1.012) **

% of black or African Americans 1.004(1.002,1.006) ** 1.004(1.002, 1.006) ** 1.002(1,1.003) ** 1.002(1,1.003) *

% of workers 16 years and over who com-
mute by public transportation

1.008(0.998,1.018) 1.008(0.998, 1.018) 1.005(0.999,1.011) 1.005(0.999,1.011)

ICU beds per 100,000 population 1(0.999,1.001) 1(0.999, 1.001) 1(1,1.001) 1(1,1.001)

CBSA (Non-CBSA)

 Micro 0.963(0.9,1.03) 0.961(0.898, 1.028) 0.961(0.924,1) * 0.958(0.921,0.996) *

 Metro 0.968(0.906,1.034) 0.965(0.903, 1.031) 0.95(0.914,0.987) ** 0.946(0.91,0.983) **

Region (Northeast)

 Midwest 0.616(0.511,0.742) ** 0.614(0.510, 0.740) ** 0.889(0.788,1.003) 0.884(0.784,0.997) *

 South 0.644(0.539,0.769) ** 0.645(0.540, 0.770) ** 0.822(0.731,0.923) ** 0.824(0.734,0.925) **

 West 0.62(0.507,0.758) ** 0.619(0.507, 0.757) ** 0.792(0.696,0.901) ** 0.79(0.694,0.899) **
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Table 4 Mixed-effects negative binomial regression models of county-level COVID-19 fatality (periods 3 & 4)

IRR Incidence rate ratio, PC Place connectivity 2019, CI Confidence interval
* : p < 0.05
** : p < 0.001

Period 3 Period 4

Factors Model 1 Model 2 Model 1 Model 2

IRR (95% CI) IRR (95% CI) IRR (95% CI) IRR (95% CI)

Concentrated disadvantage 1.172(1.137,1.208) ** 1.182(1.147,1.219) ** 1.157(1.125,1.189) ** 1.167(1.135,1.199) **

Log (PC) 0.885(0.826,0.948) ** 0.854(0.796,0.916) ** 0.923(0.867,0.983) * 0.888(0.834,0.946) **

Concentrated disadvantage * Log (PC) 1.303(1.189,1.428) ** 1.321(1.216,1.436) **

Log (Spatially lagged fatality) 2.766(2.449,3.124) ** 2.758(2.444,3.113) ** 2.909(2.578,3.283) ** 2.892(2.566,3.26) **

Log (population density) 1.016(0.987,1.046) 1.022(0.992,1.052) 1.009(0.983,1.036) 1.015(0.989,1.042)

% of population aged 65 + 1.035(1.032,1.039) ** 1.034(1.031,1.038) ** 1.033(1.03,1.036) ** 1.032(1.029,1.035) **

% of no health insurance 1.008(1.004,1.012) ** 1.008(1.004,1.011) ** 1.008(1.004,1.011) ** 1.008(1.004,1.011) **

% of black or African Americans 1.002(1.001,1.003) ** 1.002(1.001,1.003) ** 1.002(1.001,1.003) ** 1.002(1.001,1.003) **

% of workers 16 years and over who com-
mute by public transportation

1.004(0.999,1.009) 1.004(0.999,1.009) 1.003(0.999,1.008) 1.003(0.999,1.008)

ICU beds per 100,000 population 1(1,1.001) 1(1,1.001) 1(1,1.001) 1(1,1.001)

CBSA (Non-CBSA)

 Micro 0.958(0.926,0.992) ** 0.954(0.922,0.988) ** 0.973(0.943,1.004) 0.969(0.94,1) *

 Metro 0.957(0.925,0.99) ** 0.952(0.921,0.985) ** 0.968(0.939,0.998) * 0.963(0.935,0.993) *

Region (Northeast)

 Midwest 0.974(0.867,1.094) 0.968(0.862,1.087) 0.978(0.876,1.092) 0.973(0.872,1.086)

 South 0.924(0.826,1.034) 0.928(0.83,1.037) 0.951(0.856,1.058) 0.955(0.859,1.062)

 West 0.861(0.76,0.974) * 0.859(0.759,0.971) * 0.901(0.802,1.012) 0.899(0.801,1.009)

Fig. 3 The impacts of concentrated disadvantage on COVID-19 fatality by different place connectivity. Note: figures A to D refer to the models 
for time periods 1 to 4, respectively (the interaction for period 1 is not significant). CD refers to concentrated disadvantage, and PC refers to place 
connectivity
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disappeared. The remaining control variables did not 
show significant results.

We also ran the models using the 2018 place connec-
tivity data (Tables S1 to S2 in Supplementary Material), 
which showed consistent results to the model using 2019 
place connectivity data.

Discussion
Leveraging concentrated disadvantage and Twitter-based 
place connectivity, we examined the relationship between 
concentrated disadvantage and COVID-19 fatality in the 
US, and how this association is moderated by place con-
nectivity. In addition to examining the harmful effect of 
concentrated disadvantage, this study partially explored 
the mechanism of this effect. The significant interac-
tion between place connectivity and concentrated disad-
vantage suggests that socioeconomically disadvantaged 
groups in an area with high levels of place connectivity 
may be more likely to experience higher mobility, and 
thus face higher incidence and fatality risk. The results 
provide new insights into the association between con-
centrated disadvantage and COVID-19 fatality and may 
provide some guidance for future infectious disease con-
trol policies in socioeconomically disadvantaged areas.

We further found that the moderation effect of place 
connectivity increased over time, which may be related 
to increased mobility and the loosening of travel restric-
tions. At the early stages of the pandemic, COVID-19 
fatality was more severe, travel restrictions were higher, 
and people were also in a precautionary awareness to 
reduce their outside activities, so the effect of concen-
trated disadvantage on fatality may be less influenced 
by place connectivity. In contrast, with widespread vac-
cination, life returns to normal and daily travel is less 
restricted, thus the moderation effect of place connectiv-
ity on the link between concentrated disadvantage and 
COVID-19 fatality became increasingly significant.

The significant association between place connectiv-
ity and decreased COVID-19 fatality rate is observed 
in time periods 2 to 4. We found a moderate correla-
tion between population density, ICU percentage, and 
place connectivity. The high fatality was mostly found 
in districts with low population density due to poorer 
health care systems [58]. Rural areas hold less access to 
health facilities, but urban areas, which are more likely 
to encounter large numbers of cases, instead have bet-
ter health facility preparation and prevention to avoid 
more deaths [57]. It implies that highly connected areas 
are generally areas with higher population density and 
urbanization, and may have better medical conditions 
and facilities, leading to a lower fatality. This finding 
is consistent with associations between urbanization 

[59] and population density [58], and lower COVID-
19 fatality. However, the effect of place connectivity on 
COVID-19 was not significant in period 1, probably 
due to strict travel restrictions and low travel needs in 
the early stage, resulting in connectivity not working.

Our findings have public health implications in the 
practice of responding to infectious disease epidem-
ics/pandemics in terms of disease surveillance and 
monitoring as well as resource allocation and health 
equalities. Timely monitoring of outbreaks in con-
centrated disadvantaged areas with high place con-
nectivity can aid in identifying potential epidemic 
hotspots and vulnerable areas, which will contribute 
to evidence-based decision-making in secondary pre-
vention strategies and efforts. In addition, our study 
results suggest the importance of resource allocation 
measures favoring the areas with high socioeconomic 
disadvantage and high place connectivity. For exam-
ple, financial assistance integrated into the transpor-
tation restriction policy can significantly reduce the 
mobility of concentrated disadvantaged neighbor-
hoods. Vaccination promotion via free supplements 
and increased vaccine administration sites among the 
vulnerable population will improve community immu-
nity toward the virus. These strategies reduce dispro-
portionate COVID-19 fatality, interrupt transmission, 
and improve health equities among concentrated dis-
advantaged areas.

There are a few limitations to this study. First, place 
connectivity is measured from Twitter data, while is 
less used by some groups, such as the elderly and chil-
dren. Also, data in some counties where Twitter is less 
used may be underrepresented. Second, low-income 
populations may be less likely to report their illness 
when the symptoms are mild. Similarly, disadvantaged 
populations may be less likely to take COVID-19 testing 
at all due to the access barriers to relevant healthcare 
services. These will result in underestimating COVID-
19 cases and biasing the fatality. Third, utilizing county-
level data to understand the effects of concentrated 
disadvantage on COVID-19 fatality may ignore the role 
of neighborhood-level factors. There may exist several 
neighborhoods with high socioeconomic status even in 
concentrated disadvantaged counties. Last, this study 
used spatial-scale variables rather than individual-
level COVID-19 data, hence the results can only indi-
cate the associations between geospatial environment 
and COVID-19 outcomes and cannot be interpreted 
as individual-level associations or causalities. Future 
multilevel analyses could be applied, including data on 
individual characteristics and neighborhood factors, 
which could yield more robust findings.
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Conclusion
Concentrated disadvantage contributes to the geospatial 
disparities in county-level COVID-19 fatality in the US: 
counties with higher levels of socioeconomic disadvan-
tage reported higher levels of COVID-19 fatality. Place 
connectivity moderates the detrimental effects of con-
centrated disadvantage on fatality, and this moderation 
effect increases along with time periods. Our findings 
not only further explain the link between concentrated 
disadvantage and COVID-19 fatality, but also further 
highlights the role of place connectivity in combating 
COVID-19 and future infectious diseases.

Practically, more policies should be implemented to 
concentrated disadvantaged counties to reduce dispro-
portionate COVID-19 fatality in these areas. Particularly 
for counties with high socioeconomic disadvantage and 
high place connectivity, policies such as more financial 
assistance (to radically reduce the mobility of the poor) 
and vaccination supplement (to reduce the physical vul-
nerability of the poor) should be considered to reduce 
more disproportionate deaths in these areas. Timely 
monitoring of outbreaks in concentrated disadvantaged 
areas with high place connectivity can aid in identifying 
potential epidemic hotspots and vulnerable areas, which 
can contribute to evidence-based decision-making in 
resource allocation to combat the pandemic and poten-
tially other emerging infectious diseases in the future.
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