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Abstract 

Background:  This study aims to explore appropriate model for predicting the disease burden of pneumoconiosis 
in Tianjin by comparing the prediction effects of Autoregressive Integrated Moving Average (ARIMA) model, Deep 
Neural Networks (DNN) model and multivariate Long Short-Term Memory Neural Network (LSTM) models.

Methods:  Disability adjusted life year (DALY) was used to evaluate the disease burden of occupational pneumoco‑
niosis. ARIMA model, DNN model and multivariate LSTM model were used to establish prediction model. Three perfor‑
mance evaluation metrics including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute 
Percentage Error (MAPE) were used to compare the prediction effects of the three models.

Results:  From 1990 to 2021, there were 10,694 cases of pneumoconiosis patients in Tianjin, resulting in a total of 
112,725.52 person-years of DALY. During this period, the annual DALY showed a fluctuating trend, but it had a strong 
correlation with the number of pneumoconiosis patients, the average age of onset, the average age of receiving dust 
and the gross industrial product, and had a significant nonlinear relationship with them. The comparison of predic‑
tion results showed that the performance of multivariate LSTM model and DNN model is much better than that of 
traditional ARIMA model. Compared with the DNN model, the multivariate LSTM model performed better in the train‑
ing set, showing lower RMES (42.30 vs. 380.96), MAE (29.53 vs. 231.20) and MAPE (1.63% vs. 2.93%), but performed less 
stable than the DNN on the test set, showing slightly higher RMSE (1309.14 vs. 656.44), MAE (886.98 vs. 594.47) and 
MAPE (36.86% vs. 22.43%).

Conclusion:  The machine learning techniques of DNN and LSTM are an innovative method to accurately and 
efficiently predict the burden of pneumoconiosis with the simplest data. It has great application prospects in the 
monitoring and early warning system of occupational disease burden.
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Background
Pneumoconiosis is a group of heterogenous occupational 
interstitial lung diseases related to the corresponding 
reactions of inhaled mineral dust and lung tissue, which 
eventually leads to irreversible lung injury [1]. Due to 
the lack of prevention of workplace dust, failure of early 
diagnosis of diseases, and limited effective treatment of 
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diseases, Pneumoconiosis is still a serious global public 
health problem.

According to the Global Burden of Disease (GBD) 
Study 2017 [2], the global incidence of pneumoconiosis 
increased from 2.30 per 100,000 people in 1990 to 2.94 
per 100,000 people in 2006, and decreased to 2.50 per 
100,000 people in 2019. Although the mortality rate has 
a certain downward trend, it remains at 0.30–0.40 per 
100,000 [3]. Pneumoconiosis is a serious occupational 
disease with the largest number of patients in China. 
According to the estimation of the National Health Com-
mission of China, the number of newly reported pneu-
moconiosis cases in China has exceeded 20,000 each year 
since 2010, and the proportion of newly reported pneu-
moconiosis cases in the total number of newly reported 
occupational diseases is close to 90%. By the end of 2018, 
a total of 873,000 pneumoconiosis cases were reported 
in China, accounting for about 90.0% of the total num-
ber of reported occupational diseases [4]. As one of the 
most important industrial cities in northern China, Tian-
jin is famous for its manufacturing industry. Pneumoco-
niosis has been the most serious occupational disease in 
Tianjin. Although China has taken a variety of measures 
to prevent and control pneumoconiosis in the past few 
decades, such as in 2019, the Chinese government took 
occupational health as one of the main health projects 
in the action of Healthy China 2030, and issued a key 
action plan for the prevention and treatment of pneu-
moconiosis. It clearly stated that the proportion of newly 
diagnosed pneumoconiosis cases among workers who 
had been exposed to dust for less than 5 years should 
continue to decline [5, 6]. However, compared with the 
United States and Britain, China ‘s occupational health 
field is still in its infancy, and the situation of pneumo-
coniosis prevention and control is still grim. Pneumoco-
niosis causes huge disease burden and economic losses to 
Chinese workers, families and society every year [7, 8].

Disease burden assessment is an important public 
health tool to guide risk reduction and prevent diseases 
caused by workplace exposure. Disability adjusted life 
year (DALY) was developed by WHO and the World 
Bank to quantify human disease burdens and injuries 
in the Global Burden of Disease Study [9]. As a disease 
burden indicator, DALY combines the estimation of 
time lived with disability and time lost due to prema-
ture mortality [10]. For different age groups and time 
periods, DALY can be given different age weights and 
discount rates. Therefore, this provides an objective and 
quantitative description of the gap between ideal health 
status and actual population health status [11]. Due to 
these irreplaceable advantages, DALY method has been 
applied in many fields, such as cancer [12], cardiovas-
cular diseases [13], and the impact of environmental 

pollution on health [14]. However, it is relatively less 
applied in the field of occupational diseases.

Also known as historical extension forecasting 
method, time-series forecasting method is an extrapo-
lation and forecasting method to reflect the devel-
opment trend of things through time-series [15]. 
Common traditional time-series prediction meth-
ods include autoregressive integrated moving aver-
age (ARIMA) model and Holt-Winters exponential 
smoothing method, among which ARIMA model is 
the most classical and popular model [16, 17]. ARIMA 
model involves the invariance of trend change, random 
disturbance, periodic change and other related random 
variables in the process of time-series analysis. Due to 
the advantages of simple structure, strong applicabil-
ity and ability to interpret data sets, ARIMA model has 
been successfully applied in the past medical and health 
fields [18].

In recent years, deep learning technology has devel-
oped rapidly and is widely used to extract information 
from various data. Deep Neural Networks (DNN) is 
state-of-the-art in deep learning and has been used in 
many fields to solve complex problems such as disease 
prediction, but it is unable to build models for changes 
in time series [19]. In terms of time-series model predic-
tion, recurrent neural networks (RNN) model dominates 
and has higher prediction accuracy than traditional artifi-
cial neural network [20, 21]. However, when the sequence 
length is too large, the training time of RNN is signifi-
cantly increased and it is prone to gradient disappearance 
and gradient explosion [22]. Based on the above prob-
lems, a novel recursive network structure called Long 
Short-Term Memory Neural Network (LSTM) was pro-
posed [23]. It combines the appropriate gradient-based 
learning algorithm, improves the hidden layer of RNN 
and extends the storage function of the network, so that 
the model can obtain more persistent information and 
control the amount of data transmitted [24, 25]. There-
fore, LSTM has been widely used in many fields [22, 26]. 
As far as we know, no studies using deep learning tech-
nology to predict pneumoconiosis disease burden.

This study intended to analyze the epidemic trend of 
pneumoconiosis disease burden in Tianjin based on the 
DALY index according to the follow-up survey data of 
pneumoconiosis in Tianjin. By comparing the prediction 
effects of ARIMA model, DNN model and multivariate 
LSTM model, a method suitable for predicting the dis-
ease burden level of pneumoconiosis was explored. Ulti-
mately, using the results obtained by this study, it should 
be possible to create a model that can predict the annual 
disease burden level of pneumoconiosis. Such a model 
can not only accurately and timely grasp the disease 
burden of pneumoconiosis in Tianjin with the simplest 
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information, but also establish a disease burden monitor-
ing and early warning system.

Methods
Data source
The data of gross industrial production come from 
Tianjin Bureau of Statistics. The case data of pneumo-
coniosis in this study were collected from the follow-up 
survey of occupational pneumoconiosis patients in China 
‘s National Programme of Action for the Prevention 
and Treatment of Pneumoconiosis. The basic informa-
tion of pneumoconiosis patients in 2005 and before was 
obtained by the epidemiological survey data of pneumo-
coniosis, and the data of occupational pneumoconiosis 
cases reported from 2006 to 2019 was obtained by the 
occupational disease reporting system. A total of 10,694 
pneumoconiosis patients were included in the study.

The basic information of pneumoconiosis patients such 
as gender, age, survival, region, industry classification, 
dust exposure time, pneumoconiosis type, stage, diagno-
sis date, death date and other information were collected.

DALY calculation
DALY can be defined as the total loss of healthy life years 
from onset to death [27], which consists of Years of Life 
Lost (YLLs) due to premature mortality and Years Lived 
with Disability (YLDs) due to disability [11]. The basic 
formula for calculating DALY in terms of specific disease 
could be expressed as

Several social preference values should be considered 
in the calculation of DALY, such as the disability weight 
between 0 and 1, the larger the value indicates the more 
loss of health life. The age weight is used to distinguish 
the relative life value of different age groups [28] and the 
time discount rate to distinguish the relative value of 
health life loss occurs in different periods. However, there 
have always been debates on whether or not the social 
preference values adopted are suitable and/or justifiable. 
We use the simplified DALY calculation method com-
monly used by WHO, which ignores the age weight and 
time discount, as shown in Eq. (2) and Eq. (3), respec-
tively [10]:

where, N: number of premature deaths caused by a spe-
cific disease; L: standard life expectancy loss for each 
death in Eq. (2) or average duration of disease in Eq. (3); I: 
number of disabilities caused by a specific disease; and D: 
disability weight [29].

(1)DALY = YLLs + YLDs

(2)YLL = N × L

(3)YLD = I × D × L

ARIMA model
ARIMA model has two parts: autoregressive (AR) and 
moving average (MA). In general, the model is expressed 
as ARIMA (p, d, q), p means the order of auto-regression, 
d means the order of difference and q means the order 
of moving average [30]. ARIMA needs to transform the 
non-stationary time-series into a stationary time-series, 
and then a model is established by regression of the lag 
value of the dependent variable and the present value 
and lag value of the random error term. The basic idea 
is to regard the data formed by the predicted object over 
time as a random sequence, describe the autocorrelation 
in the sequence with the corresponding mathematical 
model, and predict the future value by using the poten-
tial relationship between the past value and the present 
value of the sequence. The three main steps of establish-
ing ARIMA time-series model are as follows: (1) Data 
preprocessing, observing the time-series diagram, auto-
correlation analysis diagram and using the Augmented 
Dickey-Fuller (ADF) unit-root test to estimate whether 
the time-series is stable. If the sequence is a non-sta-
tionary sequence, the corresponding difference is used 
to smooth the sequence, and white noise test is carried 
out to test whether the difference sequence is white noise 
sequence; (2) Model identification, order determination 
and model parameter estimation. Autocorrelation Func-
tion (ACF) graph and Partial Autocorrelation (PACF) 
graph are used to estimate parameters, and the optimal 
model types and parameters can be screened by com-
bining Akaike information criterion (AIC) and Bayes-
ian information criterion (BIC), usually with the lowest 
AIC or BIC values [31]; (3) The Q-Q plots are used to test 
whether the residuals of the model meet the independent 
normal distribution, and the white noise analysis of the 
residuals is used to diagnose and test the optimal model. 
Finally, the better fitting model is used to predict [32].

DNN model
A DNN is an extension of an artificial neural network 
(ANN) with multiple hidden layers using a supervised 
learning technique called back propagation. The feedfor-
ward neural network consists of an input layer, an out-
put layer and one or more hidden layers. In addition to 
the input nodes, each node uses a nonlinear activation 
function. If the number of hidden layers is more than one 
then it qualifies the term “deep”, so it is called deep neu-
ral network [33]. As shown in Fig. 1, the neurons in each 
layer of DNN use the following equation to calculate the 
function σ and activation function f(σ).(Eq. (4), Eq. (5)) 
[19].

(4)σ : Sum = w • x + b
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where b is the bias; x is the input; y is the output; w is the 
weight; σ is the calculation function; f(σ) is the activation 
function.

LSTM model
LSTM is a machine learning algorithm with recursive 
neural network structure, which aims to avoid long-term 
dependency problems by remembering historical infor-
mation [34].. According to the defined parameters and 
algorithms, LSTM neural network adds three gates struc-
ture to control the state of memory cells in each neuron: 
the input gate, the output gate and the forget gate (Fig. 2), 
all of which are controlled by the Sigmoid unit (0,1) [35].

The first forgetting gate ft is used to control the histori-
cal information last stored by the hidden layer node in 
the last time (Fig. 3):

where ft is the forget gate; σ is the sigmoid function; Wx is 
the weight for the respective gate neurons; xt is the input 
and ht − 1 is the output of the hidden layer at the previous 
time; bf is the bias for the respective gate.

The input gate it is used to processes xt and ht − 1 in the 
current cell state (Fig. 4).

(5)y : f (σ ) = f (w • x + b)

(6)ft = σ Wf [ ht−1, xt ]+ bf

The output gate ot is used to control the output of the 
currently hidden layer node (Fig. 5).

The expression of the current input unit state 
∼

Ct =tanh 
(Wc· ht − 1 +Wc· xt + bc); The current unit state is the 
last unit state multiplied by the element to the forgetting 
gate, plus the current input unit state multiplied by the 
element to the input gate: Ct = ft ∗ Ct − 1 + it ∗

∼

Ct ; Final 
output of LSTM model: ht = ot *tanh (Ct). Where Ct rep-
resents the cell states at time t, 

∼

Ct is the candidate for cell 
state; tanh is the hyperbolic tangent function [22, 26, 36].

Model comparison
Three performance metrics including root mean square 
error (RMSE), mean absolute error (MAE) and mean 
absolute percentage error (MAPE) were used to com-
pare and evaluate the fitting and prediction accuracy 
of the three models. The smaller the values of the three 
metrics, the better the prediction effect. MAE is the 

(7)it = σ
(

Wi [ ht−1, xt ]+ bf
)

(8)ot = σ(W0 [ ht−1, xt ]+ b0)

Fig. 1  DNN neuron structure

Fig. 2  LSTM neural network unit structure

Fig. 3  Forgetting gate
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simplest measure of fitting and prediction accuracy 
that determines the average prediction error. MAPE is 
the mean value of unsigned percentage error, which can 
solve the problem of distinguishing large error from 
small error, but it may underestimate the rare error. The 
root mean square error is extremely sensitive to rare 
errors by amplifying the prediction error, which can 
better reflect the accuracy of the prediction results. The 
specific calculation formulas are as follows [37]:

Where ŷi is the predicted value, yi is the actual value, 
and n is the number of predicted data.

(9)RMSE =

√

1

n

∑n

i=1

(

Oyi − yi
)

2

(10)MAE =
1

n

∑n

i=1
|Oyi − yi |

(11)MAPE =
100%

n

∑n

i=1
|
Oyi − yi

yi
|

Statistical analysis
Excel 2019 software was used to establish a database, 
and the World Health Organization disease burden Excel 
template was used to calculate the DALY of pneumoconi-
osis. In our study, spearman correlation analysis was used 
to explore the correlation between variables. Restricted 
cubic splines (RCS) were used to study the nonlinear 
relationship between DALY caused by pneumoconiosis 
and the number of patients, the average age of onset, the 
average dust exposure time and the gross industrial pro-
duction. These analytical methods were performed using 
R4.2.0.

The data from 1990 to 2016 were used as the train-
ing set, and 2017–2021 were used as the testing set to 
establish the prediction model. Python 3.9.5 was used 
to establish ARIMA model, multivariate LSTM model 
and DNN model. ARIMA model was mainly realized by 
statsmodels library, LSTM model and DNN model were 
mainly constructed based on PyTorch framework library 
of Anaconda environment. In this study, the statistical 
significance level of all hypothesis tests was set to 0.05.

Results
Descriptive analysis
Descriptive statistics for the annual number of pneu-
moconiosis patients, average age of onset, average dust 
exposure time, total DALY value and Gross industrial 
productive in Tianjin from 1990 to 2021 are summa-
rized in Table  1. From 1990 to 2021, there were 10,694 
pneumoconiosis patients in Tianjin, resulting in DALY 
112725.52 person-years. The average age of onset was 
54.19 ± 10.26 years old, and the average dust exposure 
time was 26.08 ± 9.11 years, and the average gross indus-
trial production was 2008.42 billion yuan.

The univariate Spearman correlation analysis showed 
that DALY was significantly associated with the number 
of pneumoconiosis patients, the average age of onset, 
the average dust exposure time, and the gross industrial 
production in Tianjin. The strongest correlation with the 
number of pneumoconiosis patients was 0.966, and the 
weakest correlation with the average age of onset was 
0.475(Fig. 6).

The RCS model of 3 knots was used to simulate the 
nonlinear relationship between DALY and the number of 
patients, the average age of onset, the average dust expo-
sure time, and the gross industrial production (all P value 
of nonlinear < 0.01). Under the control of other variables, 
the annual DALY of pneumoconiosis increased with the 
increase of the number of pneumoconiosis patients, the 
average dust exposure time and the gross industrial pro-
duction. In addition, the annual DALY of pneumoconio-
sis decreased with the increase of average age of onset. 

Fig. 4  Input gate

Fig. 5  Output gate
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The nonlinear relationship is more obvious when the 
average age of onset is over 50 years old, the average dust 
exposure time is over 25 years and the gross industrial 
production is less than 2000 billion yuan (Fig. 7).

Fitting models with ARIMA
Sequence stabilization
The original sequence diagram of the training set showed 
a fluctuating trend (Fig.  8a), The ADF unit-root test 
showed that t = − 0.777, P = 0.826, which could not reject 
the original hypothesis. Therefore, the sequence could be 

determined to be non-stationary according to the above 
information, and differential processing is needed.

The sequence diagram of the original sequence tended 
to be stable after twice difference (Fig. 8b). The ADF unit-
root test suggested that t = − 7.999, P < 0.0001, rejecting 
the original hypothesis and meeting the requirements of 
sequence stability. Therefore, the parameter d was set to 
2.

Model identification and screening
The ACF (Fig.  8c) and PACF (Fig.  8d) diagrams of 
time-series showed that the ACF does not drop rapidly 

Table 1  Descriptive statistics for the annual number of pneumoconiosis patients, average age of onset, average dust exposure time, 
total DALY value and Gross industrial productive in Tianjin from 1990 to 2021

year Number of patients 
(cases)

Average age of onset 
(year)

Average dust exposure time 
(year)

Gross Industrial 
Production
(billion yuan.)

DALY
(person-year)

1990 68 44.81 ± 8.31 24.49 ± 8.96 165.59 746.51

1991 78 47.33 ± 6.21 22.87 ± 8.53 179.75 832.24

1992 103 46.86 ± 7.10 24.02 ± 8.93 212.80 1064.80

1993 78 46.58 ± 9.71 23.77 ± 8.90 280.73 865.19

1994 195 44.38 ± 7.40 23.87 ± 8.70 371.43 2080.37

1995 259 42.24 ± 6.73 26.44 ± 7.28 467.93 2672.10

1996 158 42.60 ± 7.35 24.21 ± 8.32 549.81 1747.73

1997 68 47.32 ± 6.42 24.96 ± 7.52 609.65 768.68

1998 67 49.40 ± 8.68 24.49 ± 8.43 613.31 792.50

1999 142 48.88 ± 6.02 27.65 ± 7.90 641.82 1594.31

2000 148 47.85 ± 5.76 24.72 ± 7.56 716.71 1653.14

2001 161 48.77 ± 7.90 25.40 ± 8.70 768.58 2391.75

2002 205 50.08 ± 6.17 24.35 ± 7.74 830.45 2443.65

2003 196 48.31 ± 5.77 24.74 ± 8.09 1021.20 2084.33

2004 269 50.90 ± 8.70 25.38 ± 8.85 1207.17 2841.49

2005 517 52.25 ± 8.47 27.94 ± 8.71 1451.34 5577.44

2006 458 50.36 ± 7.60 28.57 ± 7.74 1644.59 5458.25

2007 514 52.00 ± 8.81 27.44 ± 8.37 1888.57 5628.17

2008 396 52.20 ± 8.19 26.33 ± 8.22 2370.22 4571.67

2009 441 51.44 ± 8.21 27.87 ± 8.32 2478.72 5287.21

2010 451 53.51 ± 9.18 27.89 ± 8.80 2837.27 5233.12

2011 482 53.96 ± 9.56 28.11 ± 9.41 3231.33 5426.24

2012 465 55.44 ± 9.73 27.84 ± 9.06 3575.24 5300.71

2013 483 56.36 ± 9.02 23.11 ± 9.13 3814.68 4896.83

2014 794 56.99 ± 9.84 26.34 ± 9.13 3972.44 6607.73

2015 896 58.98 ± 9.74 29.03 ± 9.33 3815.09 7116.71

2016 711 59.05 ± 10.15 26.80 ± 9.53 3773.04 6657.38

2017 751 60.14 ± 9.62 30.02 ± 9.69 3942.48 7090.00

2018 476 60.87 ± 10.17 29.44 ± 10.1 4276.91 5787.81

2019 353 59.55 ± 11.57 26.55 ± 9.92 4372.27 4689.73

2020 174 63.53 ± 10.76 26.55 ± 9.68 4188.13 1439.20

2021 137 61.34 ± 8.88 23.39 ± 9.40 4000.13 1378.53

Total 10,694 54.19 ± 10.26 26.08 ± 9.11 2008.42 112,725.52
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to 0 after several orders of lag, and there is obvious 
trailing phenomenon. The PACF decayed rapidly after 
the first order, and fluctuated in a small range around 
the zero axis and basically falls within the confidence 
interval. As shown in Fig.  8e, AR represents p, MA 
represents q. When p is 0 and q is 1, the minimum BIC 
value is 415.89, so the optimal model is ARIMA (0,2,1).

Model test and prediction
As shown in Fig. 8f, the quantile plot method (Quan-
tile-Quantile Plot, Q-Q plot) was used to prove that 
the residual of the model conforms to the normal dis-
tribution. The D-W test suggested that the D-W value 
was 2.149 close to 2, it is likely that there is no auto-
correlation. The test results of residual white noise 
(Ljung-Box) showed that P = 0.526 > 0.05, it is likely 
that the residual is a white noise sequence. The above 
tests showed that ARIMA (0, 2, 1) model is an effective 
model that meets the requirements.

Fitting models with DNN
Taking the number of patients, the average age of onset, the 
average dust exposure time and the gross industrial pro-
duction as the input layer and DALY as the output layer, a 
two-layer DNN model is constructed. There are 512 neu-
rons in the first hidden layer and 128 neurons in the second 
hidden layer (Fig. 9). In the process of model training, ReLu 
was used as activation function, Adam was used as opti-
mizer, the learning efficiency was set to 0.01, and we used 
8 times with k-folds verifications and performed up to 2000 
periods. For each run, the prediction capacity determined 
by MSE is calculated by randomly dividing the dataset into 
two subsets: training and verification (Fig.  10). To avoid 
overfitting, we used a dropout rate of 0.5.

Fitting models with LSTM
Data normalization processing
In order to improve the convergence speed and fitting 
accuracy of the model, the minimum and maximum 
standard ‘MinMaxScaler ()’ was used to convert the 

Fig. 6  Analysis of correlation between annual DALY and other variables of pneumoconiosis. Note: *: p < 0.05;**p < 0.01; **p < 0.001; Cases stands for 
the number of patients; AOO stands for average age of onset; ADET stands for the average dust exposure time; GIP stands for the Gross Industrial 
Production
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original data to 0 ~ 1, and the standardized data was 
used to model. Finally, the results of the model output 
are restored.

Establishment of LSTM model
The LSTM model established in this study has 4 input 
layers, 2 hidden layers and the output layer as the pre-
dicted value. The ReLU function was used as the acti-
vation function. The optimizer used Adam, batch_size 
was set to 2, the output layer was set to linear func-
tion tanh for output. The number of iterations was set 
to 2000. Mean_squared_error was used to calculate 
the loss function value of each step of training and the 
loss value decreased with the increase of training times 
(Fig.  11). In order to prevent the over-fitting of the 
training set, L2 regularization was adopted and Drop-
out function was added between the hidden layers. The 
model adjusted the value of look_back to find the opti-
mal situation of the current network structure.

Comparison of prediction results
The comparison of the predicted results of the three 
models with the actual results and the performance 
evaluation metrics of the three models are shown in 
Fig. 12. Among the three models, the prediction effects 
of multivariate LSTM model and DNN model are far 
better than those of ARIMA model. The prediction 
curves and real values of the three models were com-
pared (Fig. 12a, b, c). It was found that compared with 
ARIMA model, the predicted values of multivariate 
LSTM model and DNN model are closer to the actual 
values, especially in the test set.

For the forecast accuracy, ARIMA model showed 
higher RMSE, MAE and MAPE than the other two mod-
els in training set and test set. It is worth noting that 
compared with the DNN model, the multivariate LSTM 
model performed better in the training set, showing 
lower RMES (42.30 vs. 380.96), MAE (29.53 vs. 231.20) 
and MAPE (1.63% vs. 2.93%), but performed less stable 
than the DNN on the test set, showing slightly higher 

Fig. 7  Nonlinear regression analysis of annual DALY and other variables of pneumoconiosis each year
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Fig. 8  (a) The DALY time series of pneumoconiosis in Tianjin for ARIMA modeling, 1990–2016 (b) Second Order Difference Graph of Logarithmic 
Original Sequence (c) ACF, autocorrelation function diagram (d) PACF, partial autocorrelation function diagram (e) The BIC values of ARIMA models 
with different p and q values (f) the Quantile-Quantile Plot of residual
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Fig. 9  Two-layer DNN model structure for disease burden prediction of pneumoconiosis

Fig. 10  Loss function of DNN model
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RMSE (1309.14 vs. 656.44), MAE (886.98 vs. 594.47) and 
MAPE (36.86% vs. 22.43%) (Fig. 12d, e, f ).

Discussion
Pneumoconiosis is the most serious occupational dis-
ease that endangers the health of workers in Tianjin, 
causing a huge disease burden every year. The data in 
this study come from the follow-up survey of occupa-
tional pneumoconiosis in Tianjin. We carried out strict 
quality control in the process of carrying out the survey 
to ensure the authenticity and reliability of the data. A 
total of 10,694 patients with occupational pneumoconio-
sis in Tianjin were investigated, and the sample size was 
unprecedented. Therefore, we believe that the results of 
this study are representative and convincing.

Moreover, DALY index and time series were used to 
evaluate the disease burden of occupational pneumo-
coniosis in Tianjin from 1990 to 2021. Previous studies 
have rarely applied DALY to evaluate the disease burden 
of pneumoconiosis, and the time span of this study was 
large enough, which was not available in other studies. At 
present, the health records of occupational population in 

China are in the initial stage. Due to the lack of informa-
tion such as course of disease, it is impossible to carry 
out pneumoconiosis disease burden monitoring. In this 
study, the most popular DNN model and the new time-
series LSTM model in machine learning were used to 
establish a pneumoconiosis disease burden prediction 
model with the incidence characteristics and industrial 
output as input characteristics. Compared with the tra-
ditional time-series ARIMA model, the method that can 
accurately predict the future burden of disease is deter-
mined, which provides a basis for establishing disease 
burden monitoring and early warning system and helps 
to improve the efficiency of pneumoconiosis prevention 
and control.

ARIMA model is a classical time-series model devel-
oped on the basis of linear regression model, which com-
bines the advantages of autoregressive model and average 
moving model [38]. It can reveal the dynamic law of data 
and unify the comprehensive effect of influencing fac-
tors into the time variable, which can not only avoid the 
influence of factors related to disease burden or the dif-
ficulty of obtaining data, but also overcome the random 

Fig. 11  Loss function of LSTM model
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Fig. 12  a Comparison results of the ARIMA (0,2,1) model; b Comparison results of the multivariate LSTM model; c Comparison results of the DNN 
model; d Comparison results of the RMSE in three models; e Comparison results of the MAE in three models; F Comparison results of the MAPE in 
three models
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interference problem. However, it has strict requirements 
on data and requires data to meet stationary sequences 
or stationary sequences after differential conversion. 
The model identification and calculation are relatively 
complex, and there are problems such as weak nonlin-
ear mapping performance and difficult to fit irregular 
sequences [17, 30]. In this study, the DALY of pneumoco-
niosis was non-periodic and seasonal data, and the fluc-
tuation range of data was large. It was necessary to use 
the quadratic difference to meet the requirements of the 
stationary sequence, but the difference data generated 
the corresponding information loss. Most importantly, 
the influencing factors of pneumoconiosis disease bur-
den are closely related to the disease status. If the model 
only depends on the relationship of time variables and 
does not combine with the relevant influencing factors, 
it is difficult to accurately predict its development trend, 
especially for the obvious change trend. Therefore, the 
effect of ARIMA model in predicting the disease burden 
of pneumoconiosis is general.

DNN model is a promising model in machine learning, 
because it can capture the complex correlation caused 
by a large number of input parameters, find some struc-
tures in the training data, and gradually modify the data 
representation to obtain excellent accuracy of the train-
ing network [39, 40]. In this study, the DNN model fully 
captured the complex nonlinear multi-level interaction 
between the annual pneumoconiosis DALY and the input 
characteristic variables, including the number of pneu-
moconiosis patients, the average age of onset, the average 
dust exposure time and the gross industrial production 
through training. Therefore, DNN showed excellent pre-
diction ability, which is far superior to the traditional 
ARIMA model also superior to the multivariate LSTM 
model in the test set. One possible explanation for this 
difference may be that the disease burden of pneumo-
coniosis is highly correlated with the influencing factors 
included in the study. The DNN model with stronger 
nonlinear fitting ability is most suitable for this type of 
data because it can make better use of the data and has 
better generalization ability. Another obvious advantage 
of DNN is that the model can be developed when more 
control factors are provided [41], which makes it possible 
to add more direct explanatory variables to improve pre-
diction performance. However, DNN is unable to model 
the changes in time series. There may be a certain cor-
relation between the change trend of pneumoconiosis 
disease burden in time, and the prediction effect of the 
model may be improved if the impact of DALY in previ-
ous years on the future is considered.

LSTM is an advanced recurrent neural network that 
aims to mine information from data itself, learn time 
patterns and capture nonlinear dependencies [22]. In 

the model, each neuron calls information circularly and 
transmits it to the next neuron. At the same time, the 
weights are adjusted by adding or subtracting infor-
mation to avoid the problems caused by long-term 
sequences and store useful memory in a longer time. 
Therefore, it can produce better prediction results 
when the number of data sets is large, and it is more 
suitable for data with large fluctuations [26, 34]. In this 
study, the multivariate LSTM model not only consid-
ered the time correlation but also combined the influ-
encing factors of DALY. Therefore, the performance of 
multivariate LSTM is much better than ARIMA model, 
but the performance of the test set is not as stable as 
DNN, which may be related to the small amount of 
time series data in this study, and the prediction effect 
may be more stable with the increase of sample size.

Pneumoconiosis is an occupational disease caused 
by long-term inhalation of productive dust in occupa-
tional activities. The disease burden of pneumoconiosis 
is bound to be associated with the level of dust expo-
sure. However, it is difficult to obtain the data of dust 
exposure concentration of all patients. The duration of 
dust exposure is one of the most important parameters 
in the relation between dust exposure and pneumoco-
niosis, which can evaluate the exposure level macro-
scopically [42]. Pneumoconiosis is an incurable disease, 
so the earlier the disease occurs, the heavier the burden 
is. In addition, the number of pneumoconiosis patients 
directly affects the annual disease burden of pneumo-
coniosis, and the development of social and economic 
production is closely related to the occurrence of occu-
pational diseases. Therefore, we choose gross industrial 
production as the socio-economic factors affecting the 
incidence of pneumoconiosis. The results showed that 
the DALY level of pneumoconiosis is strongly corre-
lated with the average number of patients, the average 
age of onset, the average dust exposure time and the 
gross industrial production. Therefore, the machine 
learning DNN and LSTM model combined with these 
explanatory variables can grasp the development trend 
of pneumoconiosis disease burden and show better 
prediction performance. This is also impossible for 
ARIMA model based on time series data.

Limitations
The key disadvantage of this study is that after con-
verting the data of all pneumoconiosis patients into 
time series data, the amount of data is relatively small, 
which may affect the prediction effect of the model. 
There are many influencing factors of pneumoconio-
sis disease burden. In addition to the characteristics of 
patients and industrial output, it is also closely related 
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to national policies and investment in protection funds. 
In the future, these factors should be considered. Dif-
ferent models have their own advantages and disadvan-
tages. The mixed use of models will greatly improve the 
prediction effect. In the future, we will try to establish a 
mixed model to predict.

Conclusion
In this study, DALY was used to evaluate the disease 
burden of pneumoconiosis in Tianjin and the related 
influencing factors were discussed. It also constructed 
traditional prediction model such as ARIMA, and deep 
learning prediction models such as DNN and LSTM. By 
comparing their prediction performance, it is proved that 
the deep learning model is most suitable for the predic-
tion of pneumoconiosis disease burden, which can be 
used to supplement the current lack of pneumoconiosis 
disease burden monitoring system. If this can simplify 
the support data needed to understand the disease bur-
den of pneumoconiosis with the most easily accessible 
data, it is possible to establish a pneumoconiosis disease 
burden monitoring and early warning system, reduce 
social costs and improve the efficiency of pneumoconi-
osis prevention and control, and it is possible to extend 
these methods to real-time monitoring and forecasting of 
other occupational diseases.
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