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Abstract 

Background:  Floods are the most frequently occurring natural disaster and constitute a significant public health 
risk. Several operational satellite-based flood detection systems quantify flooding extent, but it is unclear how far the 
choice of satellite-based flood product affects the findings of epidemiological studies of associated public health 
risks. Few studies of flooding’s health impacts have used mixed methods to enrich understanding of these impacts. 
This study therefore aims to evaluate the relationship between two satellite-derived flood products with outpatient 
attendance and diarrhoeal disease in northern Ghana, identifying plausible reasons for observed relationships via 
qualitative interviews.

Methods:  A convergent parallel mixed methods design combined an ecological time series with focus group 
discussions and key informant interviews. Through an ecological time series component, monthly outpatient attend‑
ance and diarrhoea case counts from health facilities in two flood-prone districts for 2016–2020 were integrated 
with monthly flooding map layers classified via the Moderate Resolution Imaging Spectroradiometer (MODIS) and 
Landsat satellite sensors. The relationship between reported diarrhoea and outpatient attendance with flooding was 
examined using Poisson regression, controlling for seasonality and facility catchment population. Four focus group 
discussions with affected community members and four key informant interviews with health professionals explored 
flooding’s impact on healthcare delivery and access.

Results:  Flooding detected via Landsat better predicted outpatient attendance and diarrhoea than flooding via 
MODIS. Outpatient attendance significantly reduced as LandSat-derived flood area per facility catchment increased 
(adjusted Incidence Rate Ratio = 0.78, 95% CI: 0.61–0.99, p < 0.05), whilst reported diarrhoea significantly increased 
with flood area per facility catchment (adjusted Incidence Rate Ratio = 4.27, 95% CI: 2.74—6.63, p < 0.001). Key inform‑
ants noted how flooding affected access to health services as patients and health professionals could not reach the 
health facility and emergency referrals were unable to travel.

Conclusions:  The significant reduction in outpatient attendance during flooding suggests that flooding impairs 
healthcare delivery. The relationship is sensitive to the choice of satellite-derived flood product, so future studies 
should consider integrating multiple sources of satellite imagery for more robust exposure assessment. Health teams 
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Introduction
Floods are the most frequently occurring form of natu-
ral disaster [1], affecting an estimated 2.8 billion peo-
ple between 1980 and 2013 [2]. Floods are predicted to 
become more frequent in smaller catchments globally 
given more intense rainfall events. Population exposure 
to flooding is predicted to increase, particularly in Asia, 
Africa, Central and South America as intense tropical 
cyclones become more frequent [3]. With 37,600 dams 
higher than 15 m worldwide in 2014 and a further 3,700 
planned or under construction [4], fluvial flood regimes 
(where rivers overflow their banks) are increasingly 
mediated by dams. Whilst some dams are constructed 
explicitly to mitigate flood risk [5], the effects of the 
majority are more complex and may profoundly affect 
the livelihoods of downstream populations [6]. Given 
this context, it is important to understand their impacts 
on public health, so as to inform flood preparedness and 
mitigation efforts, particularly downstream of dams.

Flooding has often been found to increase diarrhoeal 
disease risk alongside that for other waterborne diseases, 
but there is less evidence on its impact on healthcare uti-
lisation. In a systematic review of flooding and diarrhoea 
disease risk, 19 out of 25 quantitative analyses of the 
relationship reported a significant positive association, 
with plausible dose–response relationships observed in 
several studies [7]. Positive relationships have been iden-
tified in studies in low and middle income countries for 
cholera, rotavirus, cryptosporidiosis, but also diarrhoea 
not attributable to a specific pathogen [8]. Many water-
borne disease outbreaks associated with extreme weather 
events such as flooding result in deaths [9]. Flooding can 
mobilise pathogens in soils, animal or human faeces, and 
sediments, with pathogens associated with resuspended 
sediments. For example, increased concentrations of 
enteric viruses have been observed in surface waters dur-
ing extreme flood events [10]. Flooding can also contami-
nate groundwaters, both directly and as the subsurface 
becomes saturated, facilitating pathogen transport [7]. 
Alongside greater potential for food contamination dur-
ing floods, sanitation and water infra-structure may also 
be compromised by flooding, with backflows contaminat-
ing water systems. Through disruption to travel, flood-
ing may also affect health facility utilisation. However, 
despite several studies of diarrhoea risk from flooding 
relying on outpatient records [11, 12], no studies of flood-
ing’s impact on attendance for routine or preventative 

healthcare were identified in a recent systematic review 
[13]. Subsequently, a Cambodian study found that flood-
ing had no impact on attendance for childbirth and a 
moderate impact on outpatient attendance in some dis-
tricts only [14].

For ecological studies seeking to quantify health risks 
from flooding, a key issue is how to assess population 
flood exposure status. One approach is to use time series 
of flood imagery from satellite remote sensing for expo-
sure assessment. Several such data sets are routinely 
produced, including daily near-real time global flood 
mapping from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) satellite sensor [15]. Whilst 
there is general agreement between these different prod-
ucts for large flood events, detailed spatio-temporal pat-
terns vary in data-sparse regions such as Africa [16]. The 
impact of MODIS-derived flooding on health outcomes 
and healthcare utilisation has previously been assessed 
in Cambodia [14], but it is unclear whether the observed 
strength of relationships could be affected by the choice 
of flood data product. Although flood exposure misclas-
sification has attracted little attention in related system-
atic reviews [13], it has consequent potential implications 
for quantifying health risks associated with flooding via 
epidemiological studies.

A systematic mapping of flooding’s health impacts [17] 
also identified a paucity of mixed methods studies, rec-
ommending that such studies be used to deepen under-
standing of impacts. Although there have subsequently 
been mixed methods studies of flooding’s impacts on 
integrated community case management in Bangladesh 
[18] and its long-term wellbeing impacts in the UK [19], 
such studies remain scarce.

In northern Ghana, rainfall is associated with diar-
rhoea in sludge applying communities [20], implying that 
floods could have a greater impact. Furthermore, extreme 
weather events limit client’s ability to reach health facili-
ties in urban northern Ghana [21] but the perception of 
service providers and their capacity to render services in 
floods is less understood. There is a lack of studies linking 
dam-mediated flood events and routine health data with 
contextual explanations from the communities impacted. 
Thus, observing flood events from satellite imagery in the 
study area [22], and the availability of routine health data 
provides the opportunity for a mixed methods study.

The aim of this study is therefore firstly to assess the 
relationship between dam-mediated flooding as detected 

and communities should plan spatially targeted flood mitigation and health system adaptation strategies that explic‑
itly address population and workforce mobility issues.
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via the MODIS versus Landsat satellite sensors and 
reported outpatient attendance at health facilities. Sec-
ondly, we aim to assess the effect of dam-mediated flood-
ing as detected via the two sensors on monthly acute 
diarrhoea cases reported by health facilities. Thirdly, via 
qualitative fieldwork, we aim to explain flooding’s impact 
on healthcare provision and utilisation. In doing so, we 
aim to develop a methodology that integrates remotely 
sensed data concerning floods, routinely collected outpa-
tient data, and related geospatial data on attending popu-
lations and travel.

Methodology
Overview
This study used a convergent parallel mixed meth-
ods design approach that combined an ecological time 
series with focus group discussions and key inform-
ant interviews. Through a quantitative, ecological study 
component, we examined the relationship between out-
patient attendance and acute watery diarrhoea (reported 
monthly by health facilities) with dam-mediated flood-
ing, whilst controlling for rainfall. We use two satellite-
derived flood data products to quantify flood-affected 
area and population to examine how the choice of flood 
exposure metric affects the strength of relationship with 
healthcare utilisation and diarrhoea. Through Focus 
Group Discussions (FGDs) and Key Informant Inter-
views (KIIs), the qualitative component examined flood 
impacts on healthcare delivery, access and health out-
comes from the perspectives of flood-affected communi-
ties and healthcare workers.

Setting
The study area comprises Savelugu district in Northern 
Region and Talensi district in Upper East Region. Tal-
ensi had a population of 87,021 in 2021, whilst Savelugu’s 
population was 122,888 [23]. Both districts are affected 
by widespread flooding from planned overspills from the 
Bagre Dam, a multi-purpose dam in Burkina Faso on the 
White Volta constructed in 1992 [24]. When the dam 
water reaches a critical level (235 m above sea level), typi-
cally following rains in August and September, its waters 
are released to minimise risk of dam wall collapse. Dam 
overspill has inundated downstream riverine communi-
ties in northern Ghana in every study year except 2017. 
Working with other institutions and non-governmental 
organisations, Ghana’s National Disaster Management 
Organisation (NADMO) issues advance warnings of dam 
releases, raising public awareness of flooding, and man-
aging mitigation measures such as organising Disaster 
Volunteer Groups [25].

Both districts have benefitted from national initiatives 
to achieve universal health coverage. To address financial 

barriers to healthcare utilisation, Ghana operates a 
National Health Insurance Scheme, in which 73% of its 
population were enrolled nationally by 2017 [26]. The 
implementation of a Community-based Health Planning 
and Services (CHPS) initiative has densified the network 
of primary care facilities and overcome geographic bar-
riers to healthcare utilisation, though issues such as vari-
able healthcare quality remain problematic [27].

Secondary data sources
Diarrhoea disease and outpatient data
Monthly counts of outpatients attending primary and 
secondary healthcare facilities, together with monthly 
reported cases of acute watery diarrhoea, were obtained 
at facility level from Ghana Health Services (GHS)’ 
District Health Management Information System II 
(DHIMS2) database [28], together with facility loca-
tions. We chose monthly Outpatient Department (OPD) 
attendance and diarrhoea case counts for 2016 to 2020 
following consultation with GHS staff, reflecting greater 
reporting completeness from 2016 onwards. The impact 
of flooding on outpatient attendance was assessed to 
identify whether flooding reduced facility attendance for 
diarrhoea treatment through disruption to patient travel.

Satellite‑derived flood imagery
Two satellite-derived flood imagery time series were col-
lated for 2016–2020: the near real-time (NRT) Global 
MODIS Flood Mapping product and the Landsat-derived 
Global Surface Water (GSW) database [29]. The MODIS 
flood product is derived from a band ratio water detec-
tion algorithm [15]. The detected water is compared to a 
reference water layer that shows the extent of persistent 
water features, and any pixels found outside the persis-
tent water extent are marked as flooded. The product is 
available globally at approximately 250 m spatial resolu-
tion with daily coverage. Multi-day composite products 
are available to minimize cloud cover issues includ-
ing 2-day, 3-day, and 14-day composites [30]. We used 
14-day composites to generate monthly maximum flood 
extent from 2016–2020 to align with outpatient reporting 
periods. To assess the sensitivity of findings to the choice 
of flood data product, monthly maximum flooding extent 
was also identified from the Landsat-derived GSW prod-
uct [29]. This product comprises monthly map layers of 
permanent and seasonal surface water generated using 
Landsat 5, 7, and 8 imagery from 1984–2019 [29]. For 
flood exposure assessment, seasonal surface water areas 
were treated as flooded for 2016–2019.

Population counts
To model flood-affected populations and populations 
within each facility catchment, gridded population count 
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estimates for 2010 and 2015 were downloaded from 
WorldPop at a resolution of 100 × 100 m. These estimates 
were generated via a random forest algorithm by combin-
ing map layers of human settlement patterns and land 
cover with areal population counts from the 2010 Ghana-
ian census [31].

Travel time model data
Land cover, elevation, road networks and water bodies 
were used to generate an impedance surface for model-
ling patient journey times to healthcare facilities. An 
impedance surface is a model that assigns time penalties 
to grid cells within a landscape to estimate travel times 
between origins and destinations. Road networks and 
water bodies (rivers and lakes) were obtained from the 
OpenStreetMap global database [32] to represent ena-
blers and barriers to travel, respectively, in our travel time 
model. A digital elevation map layer, the Void-filled Shut-
tle Radar Topography Mission with a spatial resolution of 
30 m, was used to account for terrain effects on patient 
travel, whilst a 100  m resolution layer, the Copernicus 
Global Land Cover types for 2019 [33], represented land 
cover effects on travel.

Rainfall
To control for rainfall’s effect on diarrhoea and outpa-
tient attendance, a gridded rainfall dataset, the Climate 
Hazards Group InfraRed Precipitation with Station data 
(CHIRPS), was retrieved for 2016–2020 [34]. CHIRPS 
incorporates 0.05° resolution satellite imagery with in-
situ meteorological data to create a gridded daily rainfall 
time series.

Secondary data preparation and integration
Patient travel to the nearest health facility was modelled 
via the impedance surface within ArcGIS Desktop 10.8, 
assuming patients walked to the nearest road and then 
travelled by motorised transport, following previous 
patient travel modelling studies in Ghana [35]. The effect 
of terrain on walking speed was modelled via Tobler’s 
hiking function [36]. Motorised travel speeds were 
based on maximum speed limits of 90  km/hr, 50  km/
hr, and 30  km/hr for primary, secondary and tertiary 
roads respectively. The secondary and primary health-
care facility that lay closest to each grid cell in terms of 
modelled travel time was separately identified and used 
to represent facility catchments. Catchment boundaries 
were overlaid on monthly rainfall estimates and gridded 
population data, linearly projecting population counts 
between 2010 and 2020. For each facility, the monthly 
proportion of its catchment area and population affected 
by flooding was calculated, using both the Landsat GSW 
and NRT MODIS data products. Monthly facility-level 

data concerning flooding and rainfall were then inte-
grated with DHIMS2 records. Since the GHS database 
does not differentiate zero case counts from nulls, null 
monthly case counts were treated as zeros where a health 
facility had returned outpatient attendance figures in that 
month.

Key informant interviews and focus group discussions
A phenomenological approach was adopted for the quali-
tative study phase. Two researchers, MA (male) and FTG 
(female), with substantial qualitative research experience, 
and based outside the White Volta catchment, facilitated 
the FGDs and KIIs. FGD participants were flood-prone 
community members not previously known to the facili-
tator. The flood-affected communities were identified via 
satellite imagery and purposively selected after visiting 
the district NADMO office to validate the satellite obser-
vations and discuss the feasibility of interviews. Based on 
a maximum variation sampling strategy, residents of four 
flood-affected communities were selected via referral 
through a local NADMO officer and assembly member (a 
local elected representative). All participants were adults 
at least 18 years old and resident in the community for at 
least ten years and thus with experience of flooding. Par-
ticipants were selected to represent community leaders 
(district assembly members or chiefs), community opin-
ion leaders (i.e. influential figures such as community 
health volunteers, the highly educated such as teachers or 
nurses, agricultural leaders, or female trade association 
heads), or household heads.

Participants were recruited face-to-face and asked 
to identify other suitable participants. Four FGDs were 
conducted in Frafra, Dagbani or English, with eight indi-
viduals in each group, separated by gender to moderate 
power and so allow more open expression of opinions by 
participants [37]. Only invited participants attended the 
FGDs, which lasted an hour and took place on 16th and 
21st September 2020 (following spilling of the Bagre Dam 
on 10th August 2020) at Savelugu and Talensi. The discus-
sion reached saturation on the fourth FGD. Each focus 
group discussed flooding history, impacts on health and 
healthcare utilisation and related coping strategies (see 
Additional file 1). The group met at a local government 
office and communicated in Dagbani (Savelugu) and Fra-
fra (Talensi).

For KIIs, two respondents were selected from each 
district health management team. We used a purposive 
homogenous sampling strategy for KIIs, selecting par-
ticipants because of their district healthcare roles. Inter-
views were conducted on the 17th and 22nd September 
2020 at Savelugu and Talensi respectively. Face-to-face 
interviews in English lasted 45 min in participants’ offices 
using a mixture of semi-structured and open-ended 
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questions. The interviewers had no previous relationship 
with respondents. Interview sessions followed a topic 
guide (see Additional file  2) that included questions on 
healthcare delivery and access, flood mitigation interven-
tions, and health promotion issues in their respective dis-
tricts. All FGD and KII interviews were audio-recorded, 
transcribed and field notes taken. No participant declined 
to participate in both FGD and KII.

Data analysis
Facility-level analyses were conducted using random 
effects Poisson regression with robust standard errors 
that adjusted for seasonality and the logged total catch-
ment population for each health facility. All the models 
adjusted for a month-year time interval to control for 
both seasonality and long-term trend in the time series 
data. We fitted separate models for flooding detected 
via LandSat versus via MODIS. Successive models of 
monthly outpatient attendance assessed the effects of 
mean monthly precipitation and patient travel time per 
facility, percentage of facility catchment area flooded per 
month, and both flooding and patient times together. 
Similarly, consecutive models of monthly reported diar-
rhoea cases examined flood-affected population per 
catchment and mean precipitation, percentage flood-
affected area per catchment, and both flood-affected area 
and flood-affected population together. We compared 
different Poisson regression models, using the Akaike 
Information Criterion (AIC). Statistical analyses were 
conducted using Stata MP version 16 [38] and a p-value 
less than 0.05 was considered statistically significant.

For the qualitative component, MA and FTG tran-
scribed the recordings and translated interviews, compar-
ing results for omissions and accuracy. Transcriptions of 
KIIs and FGDs were analysed inductively and deductively 

using a thematic and content analysis approach [39] with 
NVivo 12 [40]. MA and FTG created a codebook, based 
on the study questions, observations, field notes, and 
information from the transcripts. All transcripts were 
coded line by line, with both researchers comparing cod-
ing. Extra codes emerging from analysis were introduced 
to collect new data. Re-coding was performed until the 
final themes and sub-themes were produced (Table  1). 
KIIs and FGDs were triangulated. To assess the validity 
of responses, comparable themes and follow-ups were 
employed to improve the data’s resilience. Via meetings in 
March 2022, findings were disseminated to stakeholders 
responsible for disaster management, health profession-
als, and community members including the participants 
for their feedback and input. Quantitative and qualita-
tive findings were integrated during interpretation [41], 
triangulating quantitative findings with FGD and KII 
data sources to develop comprehensive understanding of 
flooding’s impacts via a mixed methods approach.

Results
Trends in outpatient attendance and reported diarrhoea 
cases
The study analysed routine health data from 54 health 
facilities, 21 in Savelugu and 33 in Talensi districts. Most 
health facilities provided primary care (41 CHPS com-
pounds or clinics; 11 health centres) with one public hos-
pital in each district providing secondary care. In total, 
1329 null monthly reports were excluded from the anal-
ysis, of which 660 monthly reports were from 11 CHPS 
facilities that never returned monthly reports. However, 
a further 488 null reports were considered as zero diar-
rhoea cases because there were outpatient cases within 
those reporting periods. There were 1,423 records (health 
facility-month-years) with diarrhoea cases. Diarrhoea 

Table 1  Thematic framework

Themes Sub-themes

Healthcare access Access to healthcare facilities during flooding

Access to healthcare professionals during flooding

Inaccessible road network
• Impediments to emergency referral
• Mobility of healthcare providers
• Transporting of logistics and medical supplies

Flooding impacts on healthcare facilities

Healthcare delivery Inadequate staffing levels in community health facilities

Few healthcare facilities serve more communities

Health-seeking behaviour change among some community members

Greater uptake of traditional medicine (e.g. herbal treatments)

Water, Sanitation, and Hygiene Poor sanitation practice

Impacts on community drinking water sources
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reporting trends at facility level, including patterns of 
null reports, are further visualised in Additional file 3.

Between January 2016 and December 2020, there were 
a total of 216 diarrhoea cases per 1000 population (6.4% 
of all outpatient cases). A monthly median four diarrhoea 
cases per 1000 population was recorded over the period 
(minimum = 2, maximum = 8). On average, each person 
in the study area had 3.4 appointments for any health 
condition within the five year period. OPD attendance 
peaked seasonally during August–September, but there 
was no obvious seasonal pattern to reported diarrhoea 
cases as seen in Fig.  1. Outpatient attendance was high 
in 2016 in Savelugu, whilst diarrhoea cases peaked in 
2016 and 2017 in Savelugu and 2017 in Talensi (Fig.  1). 
Monthly outpatient attendance and reported diarrhoea 
trends by health facility are displayed in Additional file 3.

Trends in flooding patterns and rainfall
Figure  2 shows more rainfall was recorded in Talensi 
compared to Savelugu. Although monthly peak rainfall 
was lower in 2020, minimum monthly rainfall was greater 
than in earlier years at approximately 1000 mm. Figure 3 
shows that the estimated population exposed to flooding 
was broadly comparable for LandSat GSW compared to 
MODIS, with both suggesting the greatest population 
exposure was in Savelugu from 2018 onwards.

Figure 4 no facilities lay directly within flooded areas, 
but two of 54 facilities (4%) and 15 of 54 facilities (28%) 
were within 1  km of MODIS-derived and LandSat-
derived flooding respectively. Additional file  3 displays 

the monthly flooding patterns per facility as detected via 
MODIS and LandSat.

Effect of flooding on outpatient attendance
As shown in Table 2, the Landsat-based estimate (Model 
4) of percentage flooded area per facility catchment bet-
ter predicted OPD attendance than the MODIS-based 
model (Model 5) (AIC = 579,883.7 and 693,203.7 respec-
tively). Model 4 estimates are presented in Table 3.

There was a statistically significant association between 
outpatient attendance and the percentage of each facil-
ity’s catchment area covered by flooding (Table  3). If 
the flooded area in a facility catchment increased by 
one percent, the outpatient attendance rate ratio would 
be expected to decrease to 78% (95% CI: 61%—99%, 
p < 0.05), controlling for a health facility’s catchment pop-
ulation and holding other variables constant. Similarly, 
a minute’s increase in travel time to the nearest health 
facility decreased the rate ratio of outpatient attendance 
0.97 times (95% CI: 0.96 – 0.97, p < 0.001).

Impact of flooding on facility‑reported diarrhoea cases
When comparing regression model performance, the AIC 
results (Table 4) showed that using percentage of flooded 
area and flood-affected population per facility catchment 
based on Landsat predicted monthly diarrhoea cases bet-
ter than the other five models (AIC = 115,512.5).

As shown in Table  5, the percentage of flooded area 
per facility catchment and monthly flood-affected pop-
ulation were both significantly associated with reported 

Fig. 1  Trends in a reported diarrhoea cases and b outpatient attendance for Savelugu and Talensi districts, Ghana, 2016–2020
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diarrhoea cases. For each additional person inundated 
by floods, reported diarrhoea cases were expected to 
decrease 0.95 times (95% CI: 9.94 – 0.96, p < 0.001). In 
contrast, when the flooded area in a facility catchment 
increased by one percent, the reported diarrhoea rate 
ratio would be expected to increase 4.27 times (95% CI: 
2.74 – 6.63, p < 0.001), controlling for each health facil-
ity’s catchment population and seasonality.

Healthcare access and health impacts reported 
via qualitative interviews and discussions
There was consensus that healthcare access was 
restricted during flooding for both staff and patients. A 
related theme emerged reflecting challenges with health 
service provision (Table  1). Sub-themes reflect inacces-
sible health facilities during flooding for both residents 
and healthcare workers. Particularly, health professionals 

Fig. 2  Monthly rainfall estimated via CHIRPS product from 2016 to 2020 in Savelugu and Talensi Districts, Ghana

Fig. 3  Population resident in inundated areas estimated via LandSat and MODIS-derived flood products from 2016 to 2020 in Savelugu and Talensi 
Districts, Ghana
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in both districts recounted how their staff struggled with 
referrals and travel to facilities in cut-off communities. 
They reported their inability to conduct outreach services 
for vaccination, growth monitoring and follow-up home 
visits., with some staff using canoes to reach health facili-
ties during flooding. Community respondents suggested 

that some health workers resided in towns beyond flood-
plains to avoid flooding impacts. Consequently, some 
health professionals who commuted from nearby towns 
were absent from facilities for up to a week, only resum-
ing work when floodwaters receded. They described 
how limited healthcare access during flood season was 

Fig. 4  Map of health facilities in relation to maximum flood extent for 2016–2020, showing a locations of Savelugu and Talensi Districts relative to 
the Bagre Dam; b Flooding detected via either sensor c Flooding as detected via MODIS d Flooding as detected via Landsat

Table 2  Measures of performance for five models of monthly outpatient attendance at health facilities in Savelugu and Talensi 
districts, Ghana

Model specification AIC BIC

Model 1: mean travel time to health facility + mean monthly precipitation per facility catchment, controlling for total popu‑
lation per health facility catchment and seasonality

692,590.0 692,672.4

Model 2: Percentage of facility catchment area flooded (based on MODIS), controlling for total population per health facility 
catchment and seasonality

1,234,578.0 1,234,655.0

Model 3: Percentage of facility catchment area flooded (based on LandSat), controlling for health total facility catchment 
population and seasonality

1,099,016.0 1,099,090.0

Model 4: Percentage of facility catchment area flooded (based on LandSat) + mean travel time to health facility, controlling 
for total population per health facility catchment and seasonality

579,883.7 579,962.8

Model 5: Percentage of facility catchment area flooded (based on MODIS) + mean travel time to health facility, controlling 
for total population per health facility catchment and seasonality

693,203.7 693,286.1
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exacerbated by lower staffing levels given flood-related 
commuting disruption among health professionals, but 
also as more patients attended those few facilities that 
remained open during flooding. A health professional 
noted:

“The health staff can’t access some communities 
and their health facilities. Sometimes even refer-
ring emergency cases to a hospital from smaller 
health centres becomes a problem”  (KII, Health 
Professional, Female, Savelugu).

Community members also explained how flooding 
limited healthcare access, leading some to seek alter-
native forms of healthcare, exposing some to compli-
cations arising from untreated health conditions, and 

placing others at risk when travelling to seek health-
care. For instance, a mother recounted losing her baby 
in flood waters through an accident whilst returning 
from a health facility. Furthermore, they recounted 
how referred patients unable to reach a hospital during 
flooding could develop complications or die. Commu-
nity respondents described how some patients sought 
alternative treatment, such as home-based herbal rem-
edies, because they could not reach a health facility:

“We use herbal treatment (concoction) for some ill-
ness during this time since we cannot go to hospital 
when the whole place is flooded” (FGD, Participant 
4, Female, Talensi).
“How to even get to the district hospital in times 
of emergency becomes an issue. During this time, 
people are cut off from the district hospitals and 
some die as a result”  (FGD, Participant 1, Male, 
Talensi).

A final theme concerned exacerbation of open defeca-
tion’s health impacts and disruption to water and sanita-
tion access during flooding, with consequent increased 
diarrhoea risk. Both health professionals and community 
members described this pathway. Health professionals 
considered diarrhoea cases to be higher in flood season 
because flood waters transported faecal contamination 
from open defaecation sites to drinking water sources. 

Table 3  Adjusted incidence rate ratios derived from a random 
effects Poisson regression model of monthly outpatient attendance 
at health facilities in Savelugu and Talensi districts, Ghana

P-value notation: ***p < 0.001, **p < 0.01, *p < 0.05

Abbreviation: aIRR adjusted incidence rate

Model coefficients aIRR [95% CI]

Percentage of facility catchment area covered by 
flooding based on the Landsat product

0.78 [0.61–0.99]*

Mean travel time to health facility (minutes) 0.97 [0.96–0.97]***

Table 4  Measures of performance for six models of monthly diarrhoea cases reported by health facilities in Savelugu and Talensi 
districts, Ghana

Model specification AIC BIC

Model 1: Monthly flood-affected population based on the MODIS product + average monthly precipitation, controlling for total 
population per health facility catchment and seasonality

148,352.3 148,435.3

Model 2: Monthly flood-affected population based on the LandSat product + average monthly precipitation, controlling for 
total population per health facility catchment and seasonality

117,561.1 117,640.3

Model 3: Percentage of flooding in facility catchment area based on the MODIS product, controlling for total population per 
health facility catchment and seasonality

155,344.2 155,421.7

Model 4: Percentage of flooding in facility catchment area based on the LandSat product, controlling for total population per 
health facility catchment and seasonality

140,473.2 140,547.1

Model 5: Monthly flood-affected population based on the LandSat product + Percentage of flooding in facility catchment area 
based on the LandSat product, controlling for total population per health facility catchment and seasonality

115,512.5 115,591.7

Model 6: Monthly flood-affected population based on the MODIS product + Percentage of flooding in facility catchment area 
based on the MODIS product, controlling for total population per health facility catchment and seasonality

148,362.4 148,445.4

Table 5  Adjusted incidence rate ratios derived from a random effects Poisson regression model of monthly diarrhoea cases reported 
by health facilities in Savelugu and Talensi districts, Ghana

P-value notation: ***p < 0.001, **p < 0.01, *p < 0.05

Notation: aIRR adjusted incidence rate ratio

Model coefficients aIRR [95% CI]

Monthly flood-affected population based on the LandSat product 0.95 [0.94–0.96]***

Percentage of flooding in facility catchment area based on the LandSat product 4.27 [2.74–6.63]***
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Similarly, community members attributed the higher 
diarrhoea cases to consuming contaminated water. 
Although communities were aware of diarrhoea risks 
from open defaecation and inadequate solid waste man-
agement, they felt helpless and unable to address these 
risks because of inadequate sanitation and waste man-
agement facilities. They noted greater risks for multiple 
health outcomes, including for diarrhoeal disease:

“Everywhere in our communities is now occupied by 
water. So, where we usually ease ourselves and dump 
our rubbish, it all gets collected back into our water 
bodies. These are our sources for drinking and doing 
all other household chores. So, when the flood comes, 
it takes all these things back into our water sources, 
and we go to drink them. We know of this, but we 
don’t have an option” (FGD, Participant 3, Female, 
Savelugu).

Discussion
To our knowledge, our study is the first to explore how 
choice of satellite-based flood product affects analyses 
of flood impacts on healthcare utilisation and diarrhoea. 
For both the NRT MODIS and Landsat-derived flood 
products, we find a significant reduction in reported 
outpatient attendance during flooding (Tables  2 and 3). 
Qualitative interviews with health professionals in both 
districts suggest that this decline in outpatient attend-
ance may partly have been associated with staff travel 
disruptions during flooding, limiting the number of 
outpatients seen during flood periods. Although flood-
related disruption to patient travel to facilities has been 
reported via key informant interviews in urban Ghana 
[21], disrupted journeys by healthcare staff to rural facili-
ties has not. Both KIIs and FGDs suggested some health-
care staff lived in towns distant from rural health facilities 
to avoid flooding at these rural sites. As a consequence, 
both patients and service providers were unable to access 
health facilities during flooding.

After controlling for seasonality, monthly reported 
diarrhoea cases significantly increased in relation to 
the proportion of flood-affected area per catchment 
(Table 5), suggesting a positive exposure–response rela-
tionship. This effect was however somewhat mediated 
by the flood-affected population within each catch-
ment. Consistent with this finding, the majority of 
included studies in two systematic reviews of diarrhoea 
risk from flooding found a positive relationship [7, 13].
Given the known risk of food and water contamination 
[42], alongside pathogen transport, population displace-
ment inhibiting safe water access, and damage to water 
and sanitation infrastructure during flooding [7], the 

observed increase in reported diarrhoea cases during 
flood months is epidemiologically plausible.

Our study has implications for using satellite-derived 
flood products for health risk assessment. To date, few 
studies have used satellite remote sensing to assess flood 
exposure for health risk assessment. Studies of diarrhoea 
risk included in a systematic review [7] mostly used other 
methods to assess exposure, such as river levels [43]. 
Some subsequent studies of health impacts have used 
geospatial disaster databases [44] and NRT MODIS satel-
lite imagery [14] to assess flood status. Satellite-derived 
flood maps constitute an objectively defined measure 
of flood exposure that is internationally consistent and 
available in data-sparse regions, which could thus address 
a known lack of comparable exposure assessment metrics 
in many studies of flooding’s health impacts [9]. How-
ever, our study suggests that the performance of models 
predicting healthcare utilisation and health outcomes is 
sensitive to the choice of satellite-derived flood product, 
since we find better performing models of both health-
care utilisation and reported diarrhoea based on a Land-
Sat product compared to NRT MODIS (Tables 2 and 4). 
This likely reflects underlying differences in the two flood 
products, noted in other studies [16]. The finer spatial 
resolution of LandSat (30 × 30  m) relative to MODIS 
(300 × 300 m) could reduce mixed pixel problems (clas-
sification difficulties arising from different land surfaces 
being present in the same grid square), thereby enabling 
detection of smaller flooding patches. However, whilst 
MODIS has a two day revisit time (the time elapsed 
between repeat observations of the same area), Land-
sat 8 has a 16 day revisit time [16], so LandSat imagery 
may not capture peak flood extent and so under-estimate 
exposure. Both products are also subject to common 
limitations. Neither product measures floodwater depth, 
which is important for assessing impassability of roads 
[45] and thereby patient travel disruption. Both optical 
sensors are affected by cloud cover [46], which may lead 
to under-estimation of flood exposure. Since recent stud-
ies [47] have integrated LandSat with synthetic aperture 
radar imagery from the Sentinel-1 sensor to map flood-
ing despite cloud cover, we suggest that this approach 
would be appropriate in future studies of flooding’s pub-
lic health impacts in data-sparse regions.

Given increased dam construction worldwide [4], Our 
study also provides evidence of the healthcare utilisation 
impacts of dam-mediated flooding on downstream popu-
lations [6]. However, whilst flooding in northern Ghana 
has increased despite declining rainfall since 1980, since 
the dam releases are one of several interacting drivers 
of flooding such as land cover change [25], it is difficult 
to attribute impacts to the Bagre Dam release schedule. 
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Nonetheless, a hydrological modelling study [48] sug-
gested that dam release could exacerbate flooding, rais-
ing White Volta water levels by 75  cm at 100-150  km 
downstream of relative to levels without dam operation. 
Management of dam water release schedules involves 
trade-offs between different impacts of such operations. 
Typically, trade-offs between power generation and water 
availability for irrigation are modelled in planning dam 
release schedules [49], but the impacts on health out-
comes and healthcare utilisation have not been quanti-
fied when assessing trade-offs. In principle, health or 
healthcare utilisation impacts could be incorporated into 
trade-off modelling for dam release schedule manage-
ment, but our study suggests that establishing health risk 
attributable to dam release would be complex and highly 
uncertain, limiting usefulness of such an extended mod-
elling framework.

Aside from the issues affecting flood exposure assess-
ment via satellite remote sensing outlined above, our 
study is subject to several limitations. The coarse 
monthly temporal resolution of DHIS2 data could have 
limited our ability to detect flooding’s effect on outpa-
tient attendance and diarrhoeal disease. Weekly health 
facility reports could have enabled shorter lagged effects 
to be detected, but weekly reports are seldom completed 
for routine outpatient attendance since notifiable disease 
reporting takes priority. Similarly, our study findings may 
be affected by the accuracy and completeness of DHIS2 
reporting, although DHIS2 reporting completeness is 
high in Ghana [28]. Whilst total outpatient attendance 
counts have been previously used to assess flooding 
impacts on healthcare utilisation, the risk of some dis-
eases included within these counts could increase during 
flooding. For example, alongside diarrhoea risk, injury 
risk could increase during flood events [13], resulting in 
potential under-estimation of reduced outpatient attend-
ance from flooding. Previous studies have used health 
management information systems data for conditions 
unrelated to flooding alongside outpatient counts, most 
notably childbirth deliveries at facilities [14]. However, 
healthcare-seeking behaviour for childbirth may differ 
from that for other health conditions. In relating popu-
lation exposure to flooding with facility-level outpatient 
data, we did not model by-passing of health facilities, 
which is widespread for mothers’ journeys to give birth 
elsewhere in Ghana [50]. Given its ecological design, 
our study did not consider household or individual-
level characteristics such as water source type, sanita-
tion access, and socio-economic status [8, 51] that could 
moderate diarrhoeal disease risk from flooding.

In principle, the methods and workflow in this study 
can be generalised and replicated in settings where health 
management information system data are available. It 

could also be applied to other health conditions affected 
by flooding and recorded via DHIS2, such as injuries, 
skin or respiratory infections, and malaria [13]. Since the 
District Health Information System (DHIS2) platform 
deployed in Ghana as DHIMS2 is used in 60 countries at 
national level and 14 at pilot stage or sub-nationally [52], 
potentially these countries could replicate our study’s 
workflow, since the flood and population products we 
used are also global. However, despite the widespread 
international coverage of DHIS2 and increasing com-
pleteness in many countries such as Ghana [28], data 
quality remains problematic, varying between countries 
[53] and between system components, with for example 
lower accuracy for acute respiratory infection data com-
pared to antenatal data in Malawi [54].

Future research
Future work could further explore the uncertainties 
affecting the two flood exposure metrics we used and 
examine the relationship between alternative flood 
exposure measures and healthcare utilisation or health 
outcomes. Firstly, we examined residential population 
exposure to flooding using the WorldPop gridded popu-
lation map layer. However, the WorldPop surface is just 
one of several available modelled gridded population lay-
ers. Since the WorldPop and LandScan surfaces distrib-
ute more population onto floodplains, they generate a 
much higher estimate of flood-affected population than 
a third gridded population layer (HRSL), which assumes 
populations avoid floodplains [55]. Future studies should 
therefore assess residential population flood exposure 
using multiple gridded population surfaces. Secondly, we 
assessed inundation of healthcare facility sites since flood 
damage to facilities disrupts healthcare delivery [21, 56]. 
However, flooding also disrupts electricity supply with 
outages sometimes affecting sites beyond the inundated 
area [56]. There would thus be potential to use new 
night-time satellite remote sensing products that enable 
detection of power outages to represent flood impacts on 
healthcare delivery, such as NASA’s Black Marble Night-
time Light product [57].

Our FGDs and KIIs suggest further pathways by which 
flooding affects health and healthcare utilisation, which 
we did not measure in our study. These pathways entail 
disruption to referrals, patient travel to facilities, and 
staff travel to facilities. All three could be represented via 
satellite-derived flood products and explored via future 
studies. A Mozambican study recently incorporated flood 
extent from NRT MODIS into impedance surfaces, ena-
bling modelling of daily variation in travel time to near-
est healthcare facility [58]. It would be possible to use 
this approach to model patient travel disruption from 
flooding and thereby assess its impact on healthcare 
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utilisation. Since key informants in our study noted the 
impact of flooding on non-resident healthcare staff’s abil-
ity to travel to facility workplaces or to deliver commu-
nity-based services such as immunisation or post-natal 
home visits, these service delivery outcomes should also 
be considered in relation to healthcare staff travel disrup-
tion in future work. Healthcare staff at primary facilities 
have also reported that flooding disrupts their ability to 
refer patients to secondary care because of travel diffi-
culties [56], so there would be potential for future stud-
ies to assess disruption to patient referrals resulting from 
flooding.

Conclusions
Our study demonstrates how satellite-derived flood 
products can be combined with routine health man-
agement information systems data to quantify flood-
ing’s impact on health and healthcare utilisation. Given 
that Ghana’s DHIMS2 health management informa-
tion system is used in 60 countries worldwide, this 
approach is potentially internationally transferable. 
Such analyses could enable spatial targeting of flood 
mitigation or health system adaptation measures, such 
as use of temporary, more accessible locations for 
healthcare delivery during flooding. We recommend 
that communities and health system professionals 
should collaborate to plan spatially targeted adapta-
tion, mitigation and resilience strategies that explic-
itly address population and workforce mobility issues. 
Quantification of flooding’s impact could strengthen 
the business case for investing in these measures. The 
qualitative component of our study highlights a need 
for flood exposure metrics that capture further path-
ways by which flooding disrupts healthcare delivery, 
apart from population exposure to flooding and inun-
dation of health facilities. These metrics relate to dis-
ruption to referrals, outpatient travel to facilities, and 
staff travel to facilities and for community outreach 
and could be evaluated via future studies. District dis-
aster response, health, and local government teams 
should monitor such metrics to mitigate disruptions to 
healthcare delivery.
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