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Abstract 

Background:  The health and development of children during their first year of full time school is known to impact 
their social, emotional, and academic capabilities throughout and beyond early education. Physical health, motor 
development, social and emotional well-being, learning styles, language and communication, cognitive skills, and 
general knowledge are all considered to be important aspects of a child’s health and development. It is important 
for many organisations and governmental agencies to continually improve their understanding of the factors which 
determine or influence development vulnerabilities among children. This article studies the relationships between 
development vulnerabilities and educational factors among children in Queensland, Australia.

Methods:  Spatial statistical machine learning models are reviewed and compared in the context of a study of 
geographic variation in the association between development vulnerabilities and attendance at preschool among 
children in Queensland, Australia. A new spatial random forest (SRF) model is suggested that can explain more of the 
spatial variation in data than other approaches.

Results:  In the case study, spatial models were shown to provide a better fit compared to models that ignored the 
spatial variation in the data. The SRF model was shown to be the only model which can explain all of the spatial 
variation in each of the development vulnerabilities considered in the case study. The spatial analysis revealed that 
the attendance at preschool factor has a strong influence on the physical health domain vulnerability and emotional 
maturity vulnerability among children in their first year of school.

Conclusion:  This study confirmed that it is important to take into account the spatial nature of data when fitting 
statistical machine learning models. A new spatial random forest model was introduced and was shown to explain 
more of the spatial variation and provide a better model fit in the case study of development vulnerabilities among 
children in Queensland. At small-area population level, increased attendance at preschool was strongly associated 
with reduced physical and emotional development vulnerabilities among children in their first year of school.
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Introduction
Hospitals have started engaging their local populations 
in recent years to improve outreach and preventive 
health activities. Many of these efforts are being carried 
out under the name of enhancing “population health”. 
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As Casalino and colleagues [1] stated, “Everyone in 
health care is working to improve population health 
these days. Or will be very soon. Or feel that they ought 
to be”. Hospitals which have typically focused on pri-
mary health care have started to acknowledge popula-
tion health as a core component of their community 
commitment and strategic programs. Mutual service, 
health improvement, physical and environmental 
change and economic growth are supported through 
population health services [2].

Research conducted in 2017 by the American Hospi-
tal Association found that children’s hospitals invested 
a higher share of their overall community service costs 
than adult general hospitals [3]. Some children’s hos-
pitals see population health as an opportunity for new 
initiatives to be adopted, to resolve the social deter-
minants of health and to understand the need to shift 
current cultural institutional society to meet their 
objectives [1].

Participating in preschool programs the year before 
entering school has been reported to help children 
acquire healthy habits and can help to lessen dispari-
ties in development outcomes for vulnerable groups 
[4]. Preschool attendance has emerged as a national 
policy issue in many countries, including Australia. 
A variety of variables might impact whether or not a 
child attends preschool; for example, cultural obstacles 
to preschool participation might exist for non-English 
speaking and Indigenous households. Furthermore, the 
quality and quantity of preschool services available to 
children in rural and remote places may be less than in 
major cities [5].

The Australian Early Development Census (AEDC) 
[6] is a population-based cross-sectional census of early 
childhood development, derived from the Canadian Early 
Development Instrument. The AEDC elicits information 

about children’s demographics and early development 
outcomes (physical health and well-being, social com-
petence, emotional maturity, language and cognitive 
skills (school-based), communication skills and general 
knowledge). Teachers complete the AEDC for all Aus-
tralian children in their first year of compulsory school. 
Figure 1 shows the five domains of children development 
vulnerabilities measured by AEDC for children in their 
first year of school.

For reasons of privacy or communication, popula-
tion health data and associated socio-demographic data 
collected about patients, families and constituent com-
munities are often released at the level of small area 
aggregates. In Australia, these small areas are referred 
to by the Australian Bureau of Statistics (ABS) as statis-
tical areas (SA1-SA4) [7]. The statistical areas are typi-
cally determined on the basis of health management or 
statistical divisions. It is common to practice to map 
these small statistical area data and assess demographic 
patterns in order to promote resource distribution and 
evidence-based policy making and planning. However, 
statistical analysis of aggregated spatial data presents 
specific challenges, particularly in assessing spatial pat-
terns or identifying associations between health, poten-
tial socio-demographic factors and other potential 
explanatory variables. Using regression or classification 
approaches that ignore the spatial structure of data can 
be insufficient [8].

A range of statistical machine learning models are now 
available that take into account the spatial nature of the 
data. Simple approaches include adding geographic coor-
dinates or distance metrics to familiar models such as 
linear regression, random forests and neural networks 
[9]. More sophisticated geographic extensions of these 
approaches, as well as combinations of models, have also 
been proposed [10–14].

Fig. 1  Five domains of children development from AEDC
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Interestingly, we found that these spatial models may 
not capture all of the spatial autocorrelation in the data. 
The presence of spatial autocorrelation in the residu-
als after fitting a model suggests that the model esti-
mates and predictions could be imprecise or biased [15]. 
In this article, we suggest a spatial random forest (SRF) 
model that can explain more of the spatial variation in 
the data than other common statistical machine learning 
approaches. We describe this approach in the context of 
a review of established popular aspatial and spatial sta-
tistical machine learning models, and compare the meth-
ods in a case study of development vulnerabilities among 
children in Queensland, Australia. The aims of the study 
are two fold: to evaluate spatial variation in these vul-
nerabilities, and to assess the relationship between the 
proportion of vulnerable children and the proportion of 
children attending preschool, based on aggregated small 
area data.

Materials and methods
This section discusses the case study area and sources of 
data, then provides a short review of aspatial and spatial 
linear models, random forests and neural networks. A 
new spatial random forest method is also introduced in 
this section.

Study area
Queensland is the second largest and third most popu-
lous Australian State or Territory, and is located in the 
northeast of the country. With strengths in mining, agri-
culture, tourism, international education, insurance, and 
banking. Queensland also has the third largest economy 
[16, 17]. The State is divided geographically into 528 non-
overlapping statistical area level 2 (SA2) regions (accord-
ing to the ASGS 2016 boundaries of the Australian 
Bureau of Statistics, ABS). SA2 regions are medium-sized 
general purposed areas that are designed to represent a 
community that interacts together socially and economi-
cally (www.​abs.​gov.​au). This is the smallest area for the 
release of ABS non-census and inter-censal statistics, 
including the estimated resident population and health 
data, and data from the 2016 Census of Population and 
Housing.

In this study, health and socio-demographic data are 
obtained at the SA2 level for 526 SA2s, excluding those 
with zero population and with offshore/migratory or 
undefined location.

The data repository
The outcome variables considered in this study were 
development vulnerabilities, provided by the Australian 
Early Development Census (AEDC). The AEDC takes 

place every three years and is the world’s most extensive 
data gathering for children. Classroom teachers complete 
the census for their students in their first year of full time 
school, and their answers are used to construct domain 
scores. Each child is given a score between zero and ten 
for each of the AEDC domains, using the cut-offs estab-
lished as a baseline in 2009, children falling below the 10th 
percentile in a domain, taking into account the age differ-
ences, are categorised as “developmentally vulnerable”. In 
Queensland, the percentage of children who are develop-
mentally vulnerable in at least one domain in 2018 was 
around 26%, and the overall percentage of attendance at 
preschool was around 75.4% These are the lowest rates 
among all states and territories of Australia. There is also 
substantial geographic variation in rates across the state.

In this study, the outcome variable of interest is the 
SA2 level development vulnerability score for each 
domain, which is the age matched proportion of devel-
opmentally vulnerable children in the SA2. Five develop-
ment vulnerabilities were considered in this study. These 
include: physical health and well-being domain vulner-
ability (PHD), social competence domain vulnerability 
(SCD), emotional maturity domain vulnerability (EMD), 
language and cognitive skills domain vulnerability (LCS), 
communication skills and general knowledge domain 
vulnerability (CS), and two development domain indica-
tors which are vulnerable on one or more domain(VOD), 
and vulnerable on two or more domains (VTD).

The covariate information was extracted from the 
ABS and AEDC for each SA2. The covariates of interest 
obtained from the ABS included a geographic remote-
ness category, a Socio-Economic Index for Area (SEIFA) 
score, specifically an Index of Relative Socio-Economic 
Disadvantage (IRSD), mother’s language, country of 
birth, Indigenous status, and attendance at preschool. 
These covariates are also gathered as part of the survey 
AEDC and aggregated for research purposes.

The ABS classification of geographical remoteness is 
major city, inner-regional, outer-regional, remote and 
very remote. In Queensland there are 294 SA2 areas cat-
egorised as major cites, 113 SA2 areas as inner regional, 
96 SA2 areas as outer regional, 11 SA2 areas as remote 
and 14 SA2 areas as very remote area [18].

The SEIFA score is a broad socioeconomic index that 
summarises a variety of data on individual and family 
economic and social condition in a given area. This factor 
is coded from 1 to 10. A low score suggests that the area 
in general is at a disadvantage. For example, low-income 
households, or people without qualifications or in low 
skill occupations.

Binary classifications were used for mother’s language 
(English, other), Indigenous status (Indigenous, not), 

http://www.abs.gov.au


Page 4 of 12Draidi Areed et al. BMC Public Health         (2022) 22:2232 

Country of birth (Australia/not Australia) and attendance 
at preschool (yes, no).

The data custodians listed the above data over different 
time periods. In this study, we collect annual data only 
from 2018-2019. This study used the latest publicly avail-
able data from the 2018-2019 census. All count covari-
ates acquired in this study have been transformed into 
proportions of children in an SA2 region with the feature 
of interest. Between 3% and 6% of the data were miss-
ing variables in the dataset. Missing continuous data was 
imputed using spatial neighbourhood averages. For cat-
egorical data, imputation was instead taken as the high-
est frequency neighbourhood category. In two instances, 
missing values for two islands could not be filled, as the 
regions have no contiguous neighbours. As a result, the 
analysis carried out in this study was reduced to the 
remaining 526 SA2 regions.

Overall measures of spatial variation
Moran’s I [19] and Geary’s C [12] are popular measures 
to determine whether the data are geographically clus-
tered, randomly distributed, or uniformly distributed 
in space. The semi-variogram, which depicts the range 
and rate at which spatial autocorrelation decreases, is 
another tool for measuring spatial dependency [20]. The 
semi-variance of a dataset with spatial autocorrelation 
typically grows to a maximum value before levelling off. 
The range of Moran’s I is between -1 and 1, where -1 is 
perfect dissimilarity clustering, 0 means that there is no 
spatial autocorrelation, and 1 indicates perfect similarity 
clustering.

Tangos’ maximized excess events test (MEET) [21] is 
another way to detect the spatial variation inside the data. 
This measure assumes a range of spatial scale parameters 
and depends on a weight function. Tango’s (MEET) has 
been shown to have very good statistical power in detect-
ing global disease clustering [21]. Tango [22] proposed 
a distance based exponential weight function for MEET, 
but other choices of weights are also possible. one fea-
ture of this test is that it considers a range of spatial scale 
parameters, adjusting for the multiple testing Tango’s 
(MEET) has been shown to have very good statistical 
power in detecting global disease clustering. For more 
details see the Appendix.

Statistical machine learning algorithms
Random forests for spatial data
A number of approaches have been proposed for apply-
ing a random forest to spatial data. Longitude and latitude 
were introduced as covariates in several efforts to integrate 
a spatial context into machine learning [13, 23, 24]. For 
example, Behrens [13] used x- and y-coordinates and dis-
tances to the corners and center of a bounding box around 

the sampling locations as covariates. Random Forest for 
Spatial Prediction (RFsp) was developed by Hengl [9], 
and uses buffer distance maps from observation points as 
covariates. In the next section we discuss another popular 
approach, the geographical random forest (GRF).

Geographical random forests
The GRF is a disaggregation consisting of several local 
sub-models [14]. It uses a similar idea to geographi-
cal weighted regression (GWR) [25]. Here, a local RF is 
computed for each location i based only on nearby obser-
vations. Thus for each training data point, a RF is devel-
oped, each with its own efficiency, predictive ability, and 
feature importance. As a result, the stability of the RF is 
measured locally rather than globally.

A GRF can be used to achieve two goals: firstly to 
enhance predictions over a standard RF, and secondly 
to extract spatially differentiated model parameter infer-
ences. The degree of spatial variation in the data and the 
required bandwidth selection determine the increase 
in efficiency. Moreover, a GRF model can be used as a 
simple guide to investigate the data’s local structure and 
improve our understanding of how spatial processes 
affect this structure. For more details see the Appendix.

Neural networks for spatial data
One way of using neural networks for spatial data is to 
use the longitude and latitude as a covariate. We call this 
method a spatial neural network (SNN). Another recent 
extension of NN for spatial data is the geographically 
weighted artificial neural network (GWANN) [26]. Each 
output neuron of GWANN has as a geographic location 
associated to it. This allows the spatial distances between 
the observations and the output neuron’s location to be 
calculated. As a result, the connection weights between 
the hidden and output layers can be understood as a geo-
graphical weighted regression GWR model when esti-
mated using a geographically weighted error function.

Garson [27] devised a method for calculating the rela-
tive importance of each of the input variables based on 
the connection weights. In this algorithm each variable’s 
input is stored as a weight in the network model, and 
the contribution of each of these variables to the out-
put is largely determined by the magnitude and direc-
tion of these link weights. A positive connection weight 
enhances the magnitude of the network output, whereas 
a negative weight suppresses the value of the response 
variable [28]. For more details see the Appendix.

Linear models for spatial data
The generalized linear model (GLM) can be extended to 
include non-normal responses via a generalized linear 
model, or additive terms via generalised additive model 
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GAM. A spatial GLM or a spatial GAM is another way 
to model the spatial data. Non-Gaussian error distribu-
tions and non-linear correlations between response and 
predictor variables are supported by these regression 
techniques.

In the most simple form, latitude and longitude can 
be used as model inputs [29].

The spatial autoregressive (SAR) model proposed by 
Whittle [30] is a spatial approach for describing the 
connection between dependent and independent varia-
bles by taking the spatial effect into account. It features 
an autoregressive structure that represents the spatial 
dependency of the attributes using a precision matrix 
that is generally a function of the proximity between 
regions [31]. Moran’s I [19] can be used to confirm the 
presence of spatial variation before the SAR model is 
used. Weights are used to indicate the impact of loca-
tion effects on the data [32]. For more details see the 
Appendix.

Conditional Autoregressive Model (CAR)
Bayesian models are especially well adapted to spatial 
modelling because the information particular to each 
region may be represented as priors, and both corre-
lated and uncorrelated spatial effects can be investi-
gated [33]. For more details see the Appendix.

Non of the aforementioned algorithms can explain 
the spatial autocorrelation. Spatial autocorrelation 
in data can inflate bias in statistical analyses [15, 34, 
35]. Failing to appropriately address this issue will 
likely lead to three major statistical problems. First, 
the standard errors might be underestimated. Conse-
quently, that will make the regression model itself unre-
liable [36, 37]. Second, parameter estimates, such as the 
regression coefficients might be biased [38]. The infla-
tion or deflation of predictors’ coefficients will induce 
the over or under-estimation, respectively, of their pre-
dictive power [39].

Spatial random forest
In the GRF method [14], the authors introduced a local 
version of the RF algorithm for geographical data, 
where the RF ran locally for each location and its neigh-
bourhood. The principal idea of GRF is similar to geo-
graphically weighted regression, in which they move 
to local computation rather than the global one. This 
means that a local RF is computed for each location but 
only includes a number of nearby observations. In this 
section we introduce an alternative to the GRF meth-
ods [14], based on an extension of the global random 
forest algorithm [40]. Here, a second stage is added to 

the RF to absorb residual spatial autocorrelation in the 
data. This algorithm is described as a set of three steps.

Step 1: Determine a neighbourhood for each spa-
tial region. (In our case study we adopt a contigu-
ous neighbour definition that accepts any region 
that shares at least one boundary). See Fig. 2.
Step 2: Find the global random forest (RF): 

Step 3: Find the residual using the neighbourhoods 

Here, yi is the observed values, ŷi is the estimated 
values using RF1 , and j ∼ i denotes all regions j in the 
neighbourhood of the ith region. Note that, in con-
trast to common measures such as mean absolute error 
(MAE) and mean square error (MSE), the neighbour-
ing residuals are simply summed in the above equation. 
This is consistent with the concept of spatial correla-
tion, in the set of residuals with different signs indicate 
a weaker spatial sign nature compared to a set with 
consistently positive region or negative signs.

Step 4: Apply 

Note that this method borrows conceptually from the 
conditional autoregression (CAR) approach. Our sug-
gested algorithm, the spatial random forest (SRF) 
approach, better account for spatial auto-correlations 
by including an additional term representing the neigh-
bourhood average of the difference between the esti-
mated and observed response values. Our algorithm 
starts with running the RF algorithm and then com-
putes and includes an additional term in a second run 
of the algorithm.

Model evaluations
We use three well-established and reliable measures to 
assess model fit and accuracy: coefficient of determina-
tion R2 , root mean square error (RMSE) and Moran’s I. 
Here,

and

(1)RF1 ∼ (y, xi),

(2)ri =
j∼i(yj − ŷj)

nj

(3)RF2 ∼ (y, {xi, r})

(4)RMSE =

√

√

√

√

1

n

n
∑

i=1

(xi − yi)2,

(5)R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)2

,
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where n is the total number of points, yi , ŷi and yi are the 
actual values, estimated values, and the averaged values, 
respectively. Moran’s I [19] was discussed earlier and is 
another way to judge the consistency of a model applied 
to geographical and spatial data.

The importance of variables for the RF, SRF, GRF can 
be determined by the mean square error (iMSE) and 
impurity reduction. The impurity reduction introduced 
by a split is maximised using RF splitting criteria. A split 
with a significant decrease in impurity is considered 
important for the impurity. In addition, the impurity 
importance for a variable xi is calculated by the sum of 
all impurity decrease measures of all nodes in the forest. 
Consider splitting a regression tree T at a node t. Let s 
be a proposed split for a variable X that splits t. Regres-
sion node impurity is determined by within node sample 
variance

where Yt  is the sample mean for t and N is the sample 
size of t [41].

(6)δ(t) =
1

N

∑

xi∈t

(Yi − Yt)
2
,

Case study analysis
For this case study, a number of data processing steps 
were required before the application of statistical mod-
els. First, relevant AEDC and ABS data were collected 
and converted to proportions at the SA2 level. This was 
achieved by dividing each region’s data by the population 
of children in their first year of school. To conduct ade-
quate spatial analysis, the longitude, latitude, centroids, 
and contiguous boundaries were determined for each 
SA2 region and added to the data set. Figure 2 shows the 
contiguous centroids for each SA2 region in Queensland.

This data was then used inside statistical machine 
learning after splitting the data into training (80%) and 
testing (20%) sets. This division of data for training and 
testing is common in machine learning literature [42], 
with training data validated using 10-fold cross valida-
tion. A range of hyper-parameters were specified prior 
to model implementation, e.g., number of hidden layers, 
bandwidth, etc. See Appendix for more details.

The statistical analysis was conducted using the R pro-
gramming environment [43–45] and utilised a number of 
packages, including Random Forest [46] for random 
forest calculations, ggplot2 [47] for visualizing the 

Fig. 2  Queensland Centroid for SA2
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data, caret [48] for data preparation and separation, 
spatialML [49] for geographical random forest (GRF) 
model, neuralnet [50] for neural network and spatial 
neural network, GWANN [26] for geographical weighted 
artificial neural network and CARBayes [51] for Bayes-
ian spatial linear regression modelling.  In the random 
forest models analyses, the impurity reduction and the 
iMSE values were calculated using the testing data for 
each parameter to determine variable importance. The 
longitude and latitude were included as a covariates for 
spatial neural network and the relative importance was 
calculated. For the GAM model, cubic spline smooth-
ing functions were used between the cut points. Cross 
validation was used to determine the optimal number of 
knots, and interactions between the covariates were also 
included in the model. After implementing the statistical 
machine learning methods, the values of R2 , RMSE and 
Moran’s I were calculated for each model.

Results
Figure  3  shows the correlation plot between the five 
domains of vulnerabilities and two indicators in the case 
study. The strongest correlation is between vulnerabil-
ity on one or more domains (VOD) and vulnerability on 
two or more domains (VTD), where the Pearson corre-
lation coefficient is 0.9. while the weakest correlation is 
between physical health domain vulnerability (PHD) and 
emotional maturity domain vulnerability (EMD) which is 
around 0.51.

Table 1 show the values of the coefficient of determina-
tion R2 and the RMSE for the models considered in this 
study.

From these models we can see that the GAM with 
interaction performs better than the GAM without inter-
actions, which indicates non linear and complex relation-
ships between the socio-demographic and education 
covariates and the development vulnerabilities. This is 
reinforced by the improved fit of the RF and NN compared 
to the GAM and GLM models. The table also reveals that 
the value of including spatial information. The values of 
RMSE are reduced and the values of R2 are increased con-
siderably for SAR, GRF, RF, SGAM, GWANN and CAR 
models compared to their non-spatial counterparts.

Among the spatial models, the Bayesian CAR model 
provided the largest R2 value, and this model and GRF 
gave the smallest RMSE values for most of health out-
comes vulnerabilities.

The importance of attendance at preschool on the 
health outcomes vulnerabilities was assessed in the mod-
els that were considered to be reliable in term of good-
ness of fit R2 and accuracy RMSE.

Table  2  shows the relative importance of attendance 
at preschool for the RF, GRF, and NN models. It can be 
seen that the attendance at preschool variable plays a 
major role in the analyses of the physical health and well 
being domain, and the emotional maturity domain in the 
RF, GRF and SRF models. In contrast, attendance at pre-
school does not appear to play a major role for vulner-
ability on one or more domain or two or more domains. 
Furthermore, Garson’s algorithm showed evidence that 
as attendance at preschool increased, the development 
vulnerabilities decreased, based on SA2 level data.

Figure 4 show the values of the iMSE for the two vul-
nerabilities for which attendance at preschool was 
found to be important. It is apparent that attendance at 
preschool was the most important variable for physi-
cal health and wellbeing domain vulnerability, followed 
closely by IRSD, and second most important (after IRSD) 
for the emotional maturity domain vulnerability. These 
two variables, attendance at preschool and IRSD, were 
substantially more important than any of the other vari-
ables considered.

Table  3  shows the values of spatial autocorrelation 
(Moran’s I) for the residuals.

According to this table the new spatial random forest 
was the only model to adequately fully explain spatial 
variation in the data, for all the health outcomes vul-
nerabilities. None of the GRF, GWANN or CAR mod-
els captured as much of the spatial variation.

Finally, Table  4  shows that the posterior median 
is substantively different from zero, since the cred-
ible interval does not include zero. The negative value 
indicates as the proportion of attendance at preschool 
increases the proportion of vulnerabilities between 
children decreases.

Fig. 3  Correlation plot between different types of vulnerabilities
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The actual data and model estimates are presented 
as maps in the Supplementary material, for the SRF, 
GRF and CAR models.

Discussion
This study analysed data from the 2018-2019 Austral-
ian early development census and Australian Bureau 
statistics, exploring five AEDC domains and two indica-
tors across Queensland. For each domain and indicator, 
the proportion of vulnerable children in each small area 
(SA2) was mapped to highlight geographic variation and 
spatial patterns (see Appendix). The link between devel-
opment vulnerabilities and educational factors such as 
attendance at preschool was also explored.

Despite government efforts to promote universal pre-
school attendance in Australia, the proportion of children 

attending preschool in Queensland is still the lowest 
in the nation. Universal access can ensure that a pre-
school program is available to all children whose parents 
desire them to attend, but it does not guarantee univer-
sal acceptance of this service [52]. Parental attitudes and 
preferences, child characteristics, and cultural norms are 
all variables that impact parents’ decisions to enrol their 
children in preschool [53]. Increasing preschool attend-
ance can help all children achieve their developmental 
potential while also providing an opportunity to address 
disparities in developmental outcomes for children [54].

Consistent with previous studies [55–57], we found 
strong evidence that preschool attendance is inversely 
associated with child developmental vulnerability in 
the physical health domain. Preschool-age children 
are often perceived to be highly physically active, and 
previous studies have shown that 3- to 5-year-olds are 
more physically active than children in older age groups 
[57]. However, studies suggest that very young children 
are not as active as many believe [58]. Little is known 
about children’s physical activity levels while they 
attend preschools or how activity levels vary across 
preschools [59]. Our study found a high inverse asso-
ciation between attendance in preschool and vulner-
ability in the physical health domain.

Our findings also support the previous study on the 
association between attendance at preschool and the 
emotional vulnerability domain [60, 61]. The emo-
tional domain suggests that the emotional goals of 
classrooms are consistent with and may even promote 
preliteracy skills. In other words, emotional goals are 

Table 1  Values of the R2 and RMSE for different statistical machine learning models

PHD physical health and well-being domain, SCD social competence domain, EMD emotional maturity domain, LCS language and cognitive skills domain, CS 
communication skills and general knowledge domain, VOD vulnerable on one or more domain, VTD vulnerable on two or more domains, GLM generalized linear 
model, SAR spatial autoregressive model, RF random forest, GRF geographical random forest, SRF spatial random forest, GAM generalized additive model, SGAM patial 
generalized additive model, NN Neural network, SNN spatial neural network, GWANN geographical weighted artificial neural network, CAR​ conditional autoregression 
model

Methods PHD SCD EMD LCS CS VOD VTD

R
2 RMSE R

2 RMSE R
2 RMSE R

2 RMSE R
2 RMSE R

2 RMSE R
2 RMSE

GLM 0.299 0.091 0.212 0.082 0.166 0.096 0.385 0.082 0.372 0.063 0.417 0.093 0.411 0.061

SAR 0.336 0.042 0.224 0.040 0.214 0.034 0.555 0.033 0.382 0.036 0.429 0.049 0.426 0.041

RF 0.702 0.036 0.730 0.035 0.587 0.028 0.729 0.028 0.734 0.031 0.752 0.048 0.717 0.038

GRF 0.759 0.031 0.722 0.021 0.669 0.026 0.782 0.022 0.788 0.020 0.811 0.041 0.778 0.032

SRF 0.771 0.034 0.704 0.032 0.616 0.027 0.737 0.026 0.755 0.031 0.691 0.045 0.707 0.034

GAM 0.307 0.054 0.239 0.049 0.208 0.039 0.525 0.052 0.377 0.052 0.404 0.107 0.462 0.051

GAM with interaction 0.506 0.047 0.348 0.044 0.287 0.037 0.625 0.052 0.379 0.052 0.469 0.068 0.467 0.048

SGAM 0.559 0.042 0.472 0.052 0.323 0.037 0.623 0.038 0.42 0.038 0.614 0.066 0.623 0.044

NN 0.611 0.054 0.604 0.094 0.568 0.114 0.684 0.081 0.684 0.081 0.590 0.082 0.669 0.075

SNN 0.719 0.050 0.737 0.081 0.679 0.111 0.713 0.049 0.726 0.079 0.684 0.081 0.689 0.071

GWANN 0.694 0.054 0.705 0.50 0.662 0.038 0.707 0.047 0.737 0.047 0.671 0.067 0.691 0.052

CAR​ 0.879 0.031 0.729 0.034 0.787 0.026 0.875 0.290 0.771 0.029 0.802 0.056 0.826 0.034

Table 2  The importance proportion form RF,GRF, SRF respectively, 
and the relative importance values for NN, for proportion of 
attendance at preschool (educational factor)

Responses RF GRF SRF SNN

PHD 0.28 0.46 0.33 -0.06

SCD 0.09 0.13 0.08 -0.02

EMD 0.39 0.45 0.24 -0.03

LCS 0.07 0.01 0.04 -0.07

CS 0.13 0.06 0.09 -0.01

VOD 0.03 0.04 0.02 -0.02

VTD 0.02 0.03 0.03 -0.03



Page 9 of 12Draidi Areed et al. BMC Public Health         (2022) 22:2232 	

not at cross-purposes with academic goals and may 
help achieve them. Furthermore, researchers should 
continue efforts to create emotional assessment tools 
that educators may easily implement. With effective 

emotional assessment tools, educators may be better 
able to implement targeted interventions for specific 
emotional skill deficits. Broadening the focus of inter-
vention efforts to include emotional skills increases 
the likelihood that every child’s need is academically 
and socially met [62, 63].

An increase in the number of children attending the pre-
school program and the amount of time spent in these set-
tings. The number of physical activities children likely 
accumulate in preschool influences their health development.

It is also acknowledged that these findings should also 
be considered in light of other factors that may influ-
ence results, such as primary carer and parent education, 
weight at birth, single parent, and cultural sensitivity.

In addition, at the SA2 level, higher proportions of chil-
dren associated with Aboriginal or Torres Strait Islander 
background, non-English background, remote areas and 
the relative socio-economic disadvantage were consistently 

A B

Fig. 4  The importance plot using GRF for (A) physical health and well-being domain vulnerability (B) Emotional maturity domain vulnerability

Table 3  Moran’s I (P-values) for the residuals from the different models

Responses RF GRF SRF SNN GWANN CAR​

PHD 1e-04 1e-04 0.944 0.014 1e-04 0.001

SCD 0.012 0.002 0.942 0.0.231 0.001 0.796

EMD 1e-04 0.686 0.944 0.151 0.003 0.891

LCS 1e-04 0.008 0.944 0.0.027 1e-04 0.003

CS 0.104 0.0.002 0.942 0.489 0.003 0.003

VOD 1e-04 0.004 0.943 7e-04 0.005 0.004

VTD 0.003 0.021 0.943 0.024 0.004 0.101

Table 4  The posterior medians and 95% credible intervals for 
the association between child development vulnerabilities and 
attendance at preschool parameter from different domains

Responses Posterior median 95% Credible intervals

PHD -0.071 [-0.139,0.001]

SCD -0.071 [-0.134,-0.004]

EMD -0.046 [-0.102, 0.012]

LCS -0.058 [-0.115,-0.002]

CS -0.081 [-0.141,-0.022]

VOD -0.066 [-0.148, 0.018]

VTD -0.093 [-0.168,-0.026]
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associated with increased developmentally vulnerable in 
all domains. This highlights the strong influence of educa-
tion and socio-economic and socio-demographic circum-
stances on early developmental capacities.

We conducted this study using statistical machine learn-
ing techniques to allow for the complexity of the interac-
tions in the data. We also developed a new algorithm, the 
spatial random forest, which captures more of the spa-
tial variation in the data. This is important to reduce bias 
and increase robustness of the results and corresponding 
inferences, and to help identify geographic variation. A 
comparison among different statistical machine learn-
ing algorithms was also conducted. The type of models 
included spatial and non spatial models. The traditional 
non spatial models showed poorer performance and 
accuracy than the spatial models, suggesting that the lat-
ter models are less biased and more robust in identifying 
important predictors related to child development. Among 
the spatial models, the drawback for the existing geograph-
ical random forest (GRF) model was that it needed more 
time to run in comparison with our spatial random forest 
(SRF) model and existing spatial neural network (SNN) 
models: GRF required around 6.25 minutes to run for each 
type of vulnerability with 400 bandwidths, while the SRF 
and NN needed 4.3 and 5.6 seconds, respectively. Bayesian 
spatial linear modelling needed 2.6 minutes to run. This 
result shows not only an improved statistical result but a 
faster computational run-time.

In this study, the spatial neighbourhood was defined 
based on shared boundaries. However, other options can be 
considered. For example, considering the average distances 
between neighbours for each region might work well to 
explain spatial autocorrelation for the random forest model.

The findings from this study offer important insights 
into both advancements in methodologies for applying 
statistical machine learning in public health and under-
standing child development in Queensland. However, we 
must consider the results in light of certain study limi-
tations. First, although we assessed a wide range of non 
spatial and spatial model, it is acknowledged that other 
approaches may provide further insights into the case 
study. Moreover, further research is required to evalu-
ate other variables and their interaction. Additional limi-
tations relate to the reliance on survey data at a small 
area level of aggregation. Care must therefore be taken 
in making inferences at another level of aggregation or 
about individuals due to biases such as Simpson’s para-
dox [64] and the modifiable areal unit problem [65].

Conclusion
The performance of different statistical machine learn-
ing algorithms and their corresponding predictions con-
firmed that it is crucial to consider the spatial nature of 

data when fitting a statistical machine learning model 
to analyse population health data at the SA2 level. A 
new spatial random forest model was introduced and 
was shown to explain more of the spatial variation and 
provide a better model fit than existing non-spatial and 
spatial models in the case study of development vulner-
abilities among children in Queensland, Australia.

The study found increased associations between attend-
ance at preschool and a range of development vulner-
abilities, in particular, a strong inverse association with the 
physical health and emotional domains. These findings can 
help to inform early child health and education policies 
and facilitate more geographically targeted interventions.
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