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Abstract 

Background:  There is still a relatively serious disease burden of infectious diseases and the warning time for differ‑
ent infectious diseases before implementation of interventions is important. The logistic differential equation models 
can be used for predicting early warning of infectious diseases. The aim of this study is to compare the disease fitting 
effects of the logistic differential equation (LDE) model and the generalized logistic differential equation (GLDE) model 
for the first time using data on multiple infectious diseases in Jilin Province and to calculate the early warning signals 
for different types of infectious diseases using these two models in Jilin Province to solve the disease early warning 
schedule for Jilin Province throughout the year.

Methods:  Collecting the incidence of 22 infectious diseases in Jilin Province, China. The LDE and GLDE models were 
used to calculate the recommended warning week (RWW), the epidemic acceleration week (EAW) and warning 
removed week (WRW) for acute infectious diseases with seasonality, respectively.

Results:  Five diseases were selected for analysis based on screening principles: hemorrhagic fever with renal syn‑
drome (HFRS), shigellosis, mumps, Hand, foot and mouth disease (HFMD), and scarlet fever. The GLDE model fitted the 
above diseases better (0.80 ≤ R2 ≤ 0.94, P <  0. 005) than the LDE model. The estimated warning durations (per year) of 
the LDE model for the above diseases were: weeks 12–23 and 40–50; weeks 20–36; weeks 15–24 and 43–52; weeks 
26–34; and weeks 16–25 and 41–50. While the durations of early warning (per year) estimated by the GLDE model 
were: weeks 7–24 and 36–51; weeks 13–37; weeks 11–26 and 39–54; weeks 23–35; and weeks 12–26 and 40–50.

Conclusions:  Compared to the LDE model, the GLDE model provides a better fit to the actual disease incidence 
data. The RWW appeared to be earlier when estimated with the GLDE model than the LDE model. In addition, the 
WRW estimated with the GLDE model were more lagged and had a longer warning time.
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Background
Infectious diseases currently represent a major threat to 
human health. According to the National Health Com-
mission of the People’s Republic of China, in 2019, the 
reported incidence of statutory infectious diseases was 
733.57 per 100,000 and the reported mortality rate was 
1.81 per 100,000 [1]. Infectious diseases are extremely 
diverse, with different routes of infection and complex 
influencing factors [2–4]. Humans exposed to the natu-
ral environment are therefore always exposed to infec-
tious agents in the environment and within the human 
body, and the prognosis of infected populations varies 
depending on factors such as personal characteristics 
and the medical environment [5–7]. At the same time, 
as vaccines for some infectious diseases are still being 
developed, interventions in the transmission pathways 
of diseases are the main means of preventing the onset 
of infectious diseases [8–11]. Therefore, it is important 
to know when to start preventive measures against any 
given diseases, in order to prevent outbreaks of infectious 
diseases in time and to promote the optimal use of public 
health resources.

The main methods that can be used to model and pre-
dict the prevalence of infectious diseases are statistical 
models, individual random models, logistic differential 
equation (LDE) models and transmissibility dynamics 
models [12–19]. As the LDE models have an S-shaped 
curve, it can be used to describe the trend of “fast-slow-
fast” in the cumulative number of incidences in the 
population during the spread of infectious diseases, so it 
is possible to calculate the point at which the epidemic 
starts to accelerate, the point at which it reaches its peak, 
and the point at which it decreases. It is therefore par-
ticularly suitable for modelling the fluctuations in the 
epidemiological profile of acute infectious diseases with 
seasonal and cyclical epidemics at each outbreak during 
the course of the epidemic [20–22]. At the same time, 
the LDE model is easy to understand and simple to cal-
culate, making it suitable for the health sector to provide 
early warning of high incidence and seasonal fluctuations 
of acute infectious diseases. The model can also pro-
vide timely early warning signals, which can effectively 
control disease outbreaks and avoid wastage of medical 
resources.

According to previous research [23, 24], the LDE 
model is mostly used to explore the fitting and early 
warning studies of certain infectious diseases, but the 
application of the model to early warning of infectious 

diseases requires a symmetrical distribution of disease 
data. Due to the timely intervention of preventive and 
control measures during infectious disease outbreaks, 
the epidemiological curves of infectious diseases in most 
cases do not strictly conform to a symmetrical distri-
bution, thus leading to errors in the determination of 
warning times. To solve this problem, a shape parameter 
λ is added to the LDE model in this study to improve 
the accuracy of the model, and the adjusted model is 
referred to as the generalized logistic differential equa-
tion (GLDE) model [25–27]. At the same time, the GLDE 
model is applied for the first time to the main functions 
of fitting and early warning of the incidence of infectious 
diseases in Jilin Province, and the model is well validated. 
For the selection of diseases, the actual incidence data of 
acute infectious diseases with seasonal and cyclical char-
acteristics among 22 infectious diseases with different 
routes of transmission in Jilin Province were selected for 
15 years. The LDE and GLDE models were applied to fit 
the incidence curve of the same acute infectious disease 
and estimated its warning week respectively. The dif-
ference in warning times calculated by the two models 
was compared to determine the optimal model for acute 
infectious disease warning using the logistic differential 
equation, to find the annual warning timeline for the 
province, to fill the gap that no study has yet conducted 
for multiple diseases in one area at the same time, and to 
suggest priorities for the implementation of prevention 
and control measures for different infectious diseases at 
different times and seasons in similar areas in the future.

Materials and methods
Study design
This study was conducted in accordance with the route 
of determining and constructing the LDE and GLDE 
models for the fitting and comparison of the effects of 
infectious diseases, and the estimation of warning times 
and comparison of differences between the two models. 
The GLDE is constructed by first introducing the shape 
parameter λ into the LDE. As LDE models were suitable 
for early warning of seasonal or cyclical diseases, acute 
infectious diseases with seasonal or cyclical characteris-
tics were selected according to the weekly data collected 
for the prevalence and incidence of the disease. For the 
selected diseases, the epidemic cycle was segmented 
and the actual number of incidences (in weeks) was fit-
ted using the two models respectively, and the goodness-
of-fit test was performed on the data from the LDE and 
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GLDE models. The parameters obtained in the fit were 
used to estimate the epidemic acceleration weeks (EAW) 
and the recommended warning weeks (RWW), and to 
compare the differences in warning durations estimated 
by the two models. The research design methodology 
involved is shown in Fig. 1 below.

Data collection and criteria for inclusion and exclusion
In this study, the data on diseases were obtained from 
the China Information System for Disease Control and 
Prevention (CISDCP). Data were collected for 22 infec-
tious diseases in Jilin Province from January 1, 2005 
to December 31, 2019, where the data information 
included the date of disease onset. Diagnosis of all dis-
eases followed the diagnostic criteria for infectious dis-
eases developed by the National Health Commission of 
the People’s Republic of China. Demographic data were 
obtained from the Jilin Provincial Statistical Yearbook, 
including the total population, birth rate and death rate 
of Jilin Province for each year. The LDE models for early 
warning of the onset of chronic infectious diseases did 
not have practical application, and the LDE models were 
suitable for the early warning of seasonal and periodic 
infectious diseases. Therefore, in this study, the 22 dis-
eases collected were classified into acute infectious dis-
eases (HFMD, Mumps, Shigellosis, Scarlet fever, HFRS, 
Influenza, Rubella, Measles, Hepatitis A, Acute hemor-
rhagic conjunctivitis, Pertussis, Meningococcal menin-
gitis, Typhoid and paratyphoid, Malaria) and chronic 
infectious diseases (Tuberculosis, Hepatitis B, Hepatitis 
C, Syphilis, Brucellosis, Gonorrhea, Hepatitis E, AIDs) 

according to their onset progression rate [28–30], and the 
acute infectious diseases with seasonal or cyclical char-
acteristics were selected to be included in the fitting and 
early warning of the LDE models.

Model building
LDE model
As early as 1845, Verhust proposed the LDE model, 
which is an ordinary differential equation (ODE) based 
on Malthus’ quantification of total biological growth to 
characterize the self-growth of disease in a population 
[16, 31]. In recent years the model has been widely used 
in the analysis of epidemiological characteristics of infec-
tious diseases and the study of early warning mechanisms 
of infectious diseases [32]. Its main feature is the fitting 
of data to determine the particular specific time of the 
development of infectious diseases, with the following 
equation:

Where dn/dt is the rate of change of the cumulative 
number of infectious disease cases n at time t, k is the 
correlation coefficient and N is the upper limit of cumu-
lative infectious disease cases. The general solution of eq. 
(1) is as follows:

(1)
dn

dt
= kn 1−

n

N

(2)n =
N

1+ e−kt−c

Fig. 1  Research and design technology roadmap. (n is the cumulative number of infectious disease cases; N is the upper limit of cumulative 
infectious disease cases; k is the correlation coefficient; c is a constant; λ is a shape parameter; SD is the standard deviation; EAW is epidemic 
acceleration week; RWW is recommended warning week; WRW is warning removed week)
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This equation includes three parameters k, N and c. 
The meanings of k and N are the same as in eq. (1) and 
directly determine the trend of the cumulative number 
of cases n with t. The c is a constant calculated by inte-
gration during the solution of eq. (1) and is important 
when solving for the three inflection points of the logistic 
curve. The first order derivative of eq. (2) is expressed in 
terms of time t. The eq. (3) is as follows:

The equation expresses the curve of new cases over 
time. If we take the derivative of eq. (3), which is the sec-
ond order derivative of eq. (2), we can obtain an equation 
for the curve of the rate of increase or decrease in the 
number of new cases. The rate of change in the number 
of new cases is zero at the peak of the epidemic, so let 
the second order derivative of eq. (2) be equal to zero and 
solving for the inflection point from increase to decrease 
of the number of new cases i.e., solving for the value of t 
at the peak of the epidemic, where t = − c

k
 . The second-

order derivative of eq. (3), which is the third-order deriv-
ative of eq. (2), gives the equation for the “acceleration” 
curve of the increase and decrease in new cases, and if 
this “acceleration” is equal to 0, the “acceleration” of new 
cases can be obtained. If this “acceleration” is equal to 0, 
the inflection point of the change in the “acceleration” of 
new cases can be obtained, as shown in eq. (4):

These two inflection points divide the process of infec-
tious disease epidemic development into a gradual 
increase, a rapid increase and a slow increase, and the 
horizontal coordinate of the first inflection point cor-
responding to the gradual increase to the rapid increase 
is t1 = −c−1.317

k
 [20]. The horizontal coordinate corre-

sponding to the second inflection point from the fast to 
the slow growth period is t2 = −c+1.317

k
 [20].

GLDE model
The GLDE model is improved to introduce the shape 
parameter λ into the LDE model, thus improving the model 
warning accuracy with the following differential equation:

Where dn
dt

 is also the rate of change of cumulative 
infectious disease cases n at time t, the significance of 
the k and N parameters is consistent with the signifi-
cance of the parameters in the LDE model above. Then 
the general solution of eq. (5) is as follows:

(3)
dn

dt
=

Nke−kt−c

1+ e−kt−c

(4)t =
−c ± 1.317

k

(5)
dn

dt
=

kn

�

[

1−
(

n

N

)�
]

The equation includes four parameters, k, N, c and λ, 
where k and N have the same meaning as in eq. (5) and 
directly determine the trend of the cumulative number of 
cases n with t. c is a constant resulting from the integra-
tion of eq. (5), which is important when solving for the 
3 inflection points of the generalized logistic curve. λ is 
the shape parameter that determines the location of the 
distribution of the generalized logistic curve. When λ is 
greater than 0 and less than 1, the distribution is skewed 
to the left. When λ is greater than 1, the distribution is 
skewed to the right, and when λ is equal to 1, it is symmet-
rical, that is, the general logistics distribution. Expressing 
the first order derivative of eq. (6) in terms of time t, the 
eq. (7) is as follows:

This equation expresses the curve of new cases over 
time. If we take the derivative of eq. (7), which is the sec-
ond order derivative of eq. (6), we can obtain an equation 
for the rate of increase or decrease in the number of new 
cases. The rate of change in the number of new cases is 
zero at the moment when the epidemic reaches its peak, 
so let the second order derivative of eq. (6) be equal to 
zero and finding the inflection point at which there is an 
increase to decrease of the number of new cases, that is, 
the value of T at the peak of the epidemic, by solving for 
T = − c+ln �

k
 . The second-order derivative of eq. (7), which 

is the third-order derivative of eq. (6), gives the equation 
for the “acceleration” curve of the increase and decrease 
in new cases, and if this “acceleration” is equal to 0, the 
“acceleration” of new cases can be obtained as the inflec-
tion point for the change in “acceleration” of new cases is

These two inflection points divide the development 
process of infectious disease epidemic into progressive, 
rapid and slow phases. The horizontal coordinate of the 
first inflection point from progressive to rapid phase is: 
T1 = −

c−ln

�

3−

√

5

2
�

�

k
 , and the horizontal coordinate of the second 

inflection point from rapid to slow phase is T2 = −

c−ln

�

3+

√

5

2
�

�

k
.

Simulation method and statistical analyses
In this study, diseases were fitted in segments accord-
ing to the epidemiological cycle of the disease, based 
on the fluctuation of the disease epidemic curve. This 
was done using Berkeley Madonna 8.3.18 (developed 

(6)n =
N

(

1+ e−kt+c
)
1

�

(7)
dn

dt
=

kn

�
e
−kt−c

(8)T = −
c − ln

(

3±
√
5

2
�

)
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by Robert Macey and George Oster of the University 
of California at Berkeley. Copyright©1993–2001 Rob-
ert I. Macey & George F. Oster) for modelling and the 
system of equations was solved using Runge–Kutta 
method of order four to find the best-fit curve and 
parameters. SPSS 21.0 (IBM Corp, Armonk, USA) was 
used to determine the goodness of fit of the model fit 
curve. The index for determining the goodness of fit 
was the root mean square (RMS) of the simulated and 
actual data [33, 34], and the larger the R2, the better the 
fit between the actual and simulated data and the test 
was P = 0.005.

Establishing the timing of the warning
Equation (4) and Eq. (8) were used to calculate the 
two inflection points at which the speed of disease 
changes from slow to fast and from fast to slow in 
each epidemic cycle, namely the EAW and the warning 
removed weeks (WRW). As it takes time to implement 
health decisions and interventions and to produce the 
corresponding prevention and control effects, leaving 
the epidemic to develop until the “epidemic accelera-
tion time” would result in a lag. Therefore, the mean 
and standard deviation (s) of the EAW for each epi-
demic cycle of the diseases were calculated. It is pos-
sible to consider an early warning time of 1–2 standard 
deviations ahead of the epidemic acceleration time, 
namely the RWW.

Results
Based on the incidence of 22 infectious diseases in Jilin 
Province, the cumulative number of cases of all infec-
tious diseases collected in Jilin Province from 2005 to 
2019 was found to be 928,530 cases. The average annual 
incidence rates of tuberculosis, hepatitis B and hepatitis 
C were higher among the chronic infectious diseases, at 
69.17/100,000, 51.31/100,000 and 22.34/100,000 respec-
tively. Among the acute infectious diseases, Hand, foot and 
mouth disease (HFMD), mumps, shigellosis, scarlet fever, 
and Hemorrhagic fever with renal syndrome (HFRS) had 
higher average annual incidence rates and were seasonal, at 
38.17/100,000, 14.01/100,000, 10.43/100,000, 8.33/100,000, 
and 3.39/100,000 respectively, where mumps had only one 
peak (summer) in 2015 and 2016 respectively, and scarlet 
fever had one peak (summer) in 2009. Both diseases had 
two peaks in the remaining years (summer and winter); 
HFRS had one peak in 2015 (summer), three peaks in 2019 
(spring, summer, winter) and two peaks in the remaining 
years (summer and winter); HFMD and shigellosis had 
one peak in each year from 2005 to 2019(summer). Based 
on the above, these five diseases were therefore selected 
for the calculation of early warning weeks. The results are 
shown in Fig. 2.

Model fitting results of HFRS, shigellosis, mumps, HFMD 
and scarlet fever in Jilin Province
The start of the epidemic cycle for HFRS, shigellosis, 
mumps, HFMD, and scarlet fever, i.e., the first week of 
2005, was used as the starting time for LDE and GLDE 
models fitting. The results showed that the GLDE model 
fitted the epidemic data of these five diseases from 2005 
to 2019 better than the LDE model, with values ranging 
from 0.80–0.94, and the differences were all statistically 
significant (P <  0. 005). The data simulated by the GLDE 
model were also closer to the actual number of reported 
cases. The results are shown in Fig.  3 and Table  1. The 
parameters k, N and c for each year during summer-
autumn and winter-spring seasons for each disease fit-
ted by the LDE model are shown in Additional file 1. The 
parameters k, N, c, λ for the GLDE model fitted for each 
disease for each year in the summer-autumn and winter-
spring seasons are shown in Additional file 2.

Establishment of recommended warning week 
and warning removed week
The parameters of the LDE model were brought into eq. 
(4), and the parameters of the GLDE model was brought 
into eq. (8) to calculate the EAW for each epidemic 
cycle of HFRS, shigellosis, mumps, HFMD, and scarlet 
fever in Jilin Province from 2005 to 2019, respectively. 
The mean EAW for HFRS in summer and autumn were 
approximately week 15 (range: week 12–18) and week 
10 (range: week 7–14), with standard deviations of 3.31 
and 3.69 weeks, respectively, while the mean values of the 
EAW in winter and spring were approximately week 43 
(range: week 42–44) and week 40 (range: week 38–41), 
with standard deviations of 1. 28 and 1.45 weeks, respec-
tively. The mean EAW for shigellosis in summer and 
autumn were approximately week 23 (range: week 21–25) 
and week 16 (range: week 13–19), with standard devia-
tions of 2.37 and 3.03 weeks, respectively. The mean of 
the EAW for mumps in summer and autumn was about 
week 17 (range: week 15–19) and week 12 (range: week 
11–14), with standard deviations of 1.87 and 1.72 weeks, 
respectively, while the mean of the EAW in winter and 
spring was about week 44 (range: week 41–46) and week 
40 (range: week 37–44), with standard deviations of 2.72 
and 3.70 weeks, respectively. The mean EAW for HFMD 
in summer and autumn were approximately week 27 
(range: week 24–30) and week 25 (range: week 23–27), 
with standard deviations of 2.78 and 1.98 weeks, respec-
tively. The mean of the EAW for scarlet fever in summer 
and autumn was about week 18 (range: week 16–19) and 
week 14 (range: week 12–16), with standard deviations 
of 1.49 and 1.84 weeks, respectively, while the mean of 
the EAW in winter and spring was about week 43 (range: 
week 42–45) and week 42 (range: week 40–43), with 
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standard deviations of 1.15 and 1.34 weeks, respectively. 
According to previous studies [31, 35], the RWW for 
HFMD and mumps should be 2 weeks earlier than the 
EAW, as it is better to implement outbreak control meas-
ures earlier rather than later. It is therefore recommended 
that the RWW for HFRS are pushed forward by 3 and 
4 weeks for both summer-autumn and winter-spring 
respectively, and that the RWW for shigellosis are pushed 
forward by 2 and 3 weeks for summer-autumn respec-
tively, The RWW for scarlet fever are pushed forward 
by 2 weeks for both summer-autumn and winter-spring 
respectively. The results are shown in Fig. 4.

Based on the median number of EAW and WRW for 
each disease at each seasonal peak, as derived from LDE 
and GLDE models, the early warning timeline for high 
seasonal incidence in Jilin Province was drawn in chrono-
logical order. Overall, the start of warning for these five 
diseases was calculated using GLDE model to be earlier 

than that of LDE model and the duration of warning was 
longer than that of LDE model. According to the LDE 
model, the EAW and WRW for these five diseases show 
that Jilin Province should be under the warning status of 
the above five infectious diseases from week 12 to 36 and 
week 40 to 52 of the year, with two warning periods for 
HFRS, mumps and scarlet fever, and one warning period 
for shigellosis and HFMD. HFRS was first warned in the 
12nd week of summer-autumn and lasted for 12 weeks to 
end the warning and in the 40th week of winter-spring 
and lasted for 11 weeks to end the warning; shigello-
sis is first warned in the 20st week of summer-autumn 
and lasted for 17 weeks; mumps is first warned in the 
15th week of summer-autumn and 43nd week of winter-
spring and lasted for 10 weeks; HFMD is first warned in 
the 26th week of summer-autumn and lasted for 9 weeks. 
Scarlet fever is first warned in summer-autumn week 
16 and winter-spring week 41 and ends after 10 weeks. 

Fig. 2  Overview of the incidence of 22 infectious diseases in Jilin Province, 2005–2019
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According to the GLDE model for these five diseases, 
it can be seen that from the 7th week of the year to the 
2nd week of the following year, Jilin Province should be 
under the warning status of the above five infectious dis-
eases. HFRS was first warned in the 7th week of summer-
autumn and lasted for 18 weeks to end the warning and in 
the 36th week of winter-spring and lasted for 16 weeks to 
end the warning; shigellosis was first warned in the 13th 
week of summer-autumn and lasted for 25 weeks to end 
the warning; mumps was first warned in the 11th week of 
summer-autumn and in the 39th week of winter-spring 
and lasted for 16 weeks to end the warning; HFMD was 

first warned in the 23rd week of summer-autumn and 
lasted for 13 weeks to end the warning; and scarlet fever 
was first warned in summer-autumn week 12 and lasted 
15 weeks and winter-spring week 40 and lasted 11 weeks. 
The results are shown in Fig. 5.

Discussion
Currently, there are a number of models used for the 
fitting and early warning of infectious diseases, such 
as time series models, grey models and transmis-
sion dynamics models [18, 36–39]. The autoregressive 
moving average model (ARIMA) is one of the most 
common time series analysis and forecasting mod-
els, which can be combined with multiple models to 
analyze the stochasticity, smoothness and seasonality 
of time series data, and is suitable for short-term fore-
casting. Grey models are more commonly used in the 
fitting and prediction of infectious diseases, requir-
ing less raw data, and can better predict the epidemio-
logical trends of infectious diseases in the short term; 
transmission dynamics models build mathematical 
models that reflect the dynamics of infectious diseases 
based on their occurrence, transmission and devel-
opment patterns within populations, and show the 
development process of diseases as well as reveal their 

Fig. 3  Fitted effectiveness of HFRS, shigellosis, mumps, HFMD and scarlet fever in Jilin Province, 2005–2019

Table 1  Goodness - of - fit test of HFRS, shigellosis, mumps, 
HFMD and scarlet fever in Jilin Province

Type of diseases LDE GLDE

R2 P R2 P

HFRS 0.646 <  0.005 0.798 <  0.005

Shigellosis 0.856 <  0.005 0.877 <  0.005

Mumps 0.646 <  0.005 0.898 <  0.005

HFMD 0.846 <  0.005 0.937 <  0.005

Scarlet fever 0.869 <  0.005 0.879 <  0.005
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Fig. 4  Early warning weeks for HFRS, shigellosis, mumps, HFMD and scarlet fever in Jilin Province in each year. (RWW is recommended warning 
week)
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epidemiological patterns through quantitative analysis 
and numerical simulation of the models. The models 
are used to show the development of diseases, reveal 
their epidemiological patterns and make short-term 
and long-term predictions. However, the above math-
ematical modelling methods are complicated to operate 
for grassroots disease control personnel, and the simu-
lation results of the models require a solid theoretical 
foundation and extensive practical experience to make 
professional judgments, so they are less popular in the 
primary health care system. The logistic differential 
equation model is easy to understand, simple to calcu-
late and can be used to estimate the point of inflection 
of the epidemic based on the results of the epidemic 
curve fitting, and adjust the intensity of preventive and 
control measures according to the warning time. There-
fore, the early warning schedule for infectious diseases 
calculated in this study can be used as a theoretical ref-
erence for adjusting the timing of different prevention 
and control policies for different infectious diseases 
throughout the year in Jilin Province, and can then be 
extended to other regions with similar incidence of 
infectious diseases as Jilin Province. The model and 
methodology used in this study can also be applied to 
the calculation of early warning weeks for other diseases 
in other regions.

Due to the limitations of the LDE model, the data 
information required is more stringent, that is, the two 
segments of the waveform of its epidemic peak should 
be symmetrically distributed. However, in the disease 
process of many chronic infectious diseases there will 
not be obvious peaks and troughs, while even for dis-
eases with more obvious seasonal fluctuations, when 
the infectious disease epidemic shows an upward trend, 
the intensity and effect of intervention measures taken 

by the health prevention and epidemiological depart-
ments will change with the progress of the epidemic. 
This in turn will lead to a change in the speed of the 
disease incidence trend, when the progress of the epi-
demic is not in line with the natural law of disease dis-
sipation, and the waveform symmetry of the epidemic 
peak will change and the fit will become worse, result-
ing in the applicability of the LDE model being affected. 
This study addresses this problem by introducing a 
shape parameter λ into the LDE model and construct-
ing a GLDE model to eliminate the effect of changes in 
the shape of the prevalence curve on the model fit and 
warning accuracy. To test the above hypotheses and to 
assess the applicability of the LDE and GLDE models, all 
statutory infectious disease epidemics in Jilin Province 
from 2005 to 2019 were selected for this study in order 
to compare the differences in the main applications of 
the two LDE models to infectious diseases. As chronic 
infectious diseases have a long incubation period, when 
epidemic fluctuations occur, this indicates that there 
has been a more widespread spread in the population, 
whereas the LDE models calculate the warning time 
based on the fluctuation curve of disease incidence, so 
for chronic infectious diseases warning and emergency 
prevention and control measures at the occurrence of 
a large number of cases does not have a better control 
effect on a large-scale spread that occurred a long time 
ago. Therefore, the need for early warning in an area is 
greatest for acute infectious diseases that are cyclical or 
seasonal in origin. In this study, data on the incidence 
of five selected seasonal and cyclical acute infectious 
diseases were counted on a weekly basis [40–45], and 
the results showed that for fitting the same disease, the 
GLDE model fitted better than LDE model. This indi-
cates that the GLDE model can effectively adjust for the 

Fig. 5  Duration of warning for HFRS, shigellosis, mumps, HFMD and scarlet fever in Jilin Province. (EAW is epidemic acceleration week; RWW is 
recommended warning week; WRW is warning removed week)
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effects of fluctuations in infectious disease epidemiolog-
ical trends that do not conform to symmetry, and there-
fore the GLDE model is more suitable for periodic or 
seasonal acute infectious disease incidence data.

The principle of the logistic differential equation model 
for early warning is mainly to calculate the inflection 
point of the change in speed when the epidemic fluctu-
ates. By estimating the peak months of an epidemic based 
on past disease seasons, it is possible to avoid the spread 
of epidemics due to untimely warnings, as well as the 
waste of health resources due to a year-round state of pre-
vention and control of the disease. In this study, the LDE 
and GLDE models were used to study the epidemiological 
characteristics of HFRS, shigellosis, mumps, HFMD and 
scarlet fever in Jilin Province during the period 2005–2019 
and to determine the warning times for these five dis-
eases in Jilin Province. Considering that the epidemic has 
already reached a high level by the time the EAW occurs, 
it means that there will be a lag in warning with this indi-
cator. The RWW proposed in this study is a standard 
deviation before the epidemic changes from slow to fast 
early in the epidemic season, which is of great practical 
importance in preparing for the development and imple-
mentation of interventions. From the results obtain dur-
ing an estimation of the early warning time, it can be seen 
that compared with the LDE model, the GLDE model has 
a longer warning duration for the same disease, with both 
the suggested RWW and EAW ahead, and the WRW lag-
ging behind. This suggests that the GLDE model is more 
sensitive to the speed of change of epidemic curve fluc-
tuations, and can calculate the warning signal in time 
when the epidemic starts to start slightly, thus more 
effectively avoiding the further spread of the epidemic. 
When the epidemic has completely subsided, the early 
warning elimination signal can be calculated to avoid the 
re-emergence of the epidemic due to the premature lift-
ing of forced control measures. In disease early warning 
analysis, the GLDE model is therefore a more suitable 
early warning model under the regular prevention and 
control of infectious diseases. This means that early warn-
ing times are calculated for situations where the disease 
incidence curve waveform is asymmetrical, local health 
resources are more scarce and the severity of the disease 
is higher. Due to the shortcomings of the logistic differen-
tial equation model and the restrictions of the data, there 
are still some limitations in this study. The model is based 
on analysis of historical epidemiological data from Jilin 
Province and does not take into account the transmission 
dynamics of the disease. For instance, the epidemic cycles 
of HFRS, shigellosis, mumps, HFMD and scarlet fever are 
influenced by climatic conditions, and mumps and HFMD 
are also influenced by immunization levels, which were 
not considered in this study [46–50].

Conclusion
For data on the incidence of acute infectious diseases 
that are seasonal or cyclical, the GLDE model is recom-
mended for data fitting. LDE and GLDE models are both 
better at estimating and calculating warning schedules 
for these five highly prevalent acute infectious diseases 
in Jilin Province, but the GLDE model calculates a more 
accurate warning schedule. Overall, the recommended 
warning times estimated using the GLDE model were 
earlier than those calculated by the LDE model, the cal-
culated warning removal times were more lagged, and 
the average warning duration was longer.
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