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Abstract 

Background:  Studies examining factors responsible for COVID-19 incidence have been mostly focused at the 
national or sub-national level. A global-level characterization of contributing factors and temporal trajectories of dis-
ease incidence is currently lacking. Here we conducted a global-scale analysis of COVID-19 infections to identify key 
factors associated with early disease incidence. Additionally, we compared longitudinal trends of COVID-19 incidence 
at a per-country level, and classified countries based on COVID-19 incidence trajectories and effects of lockdown 
responses.

Methods:  This is an observational cross-sectional study covering COVID-19 incidence over the first 6 months of the 
pandemic (Jan 1, 2020 to June 30, 2020). A retrospective analysis was performed using publicly available data for total 
confirmed COVID-19 cases by country, and using recent data on demographic, meteorological, economic and health-
related indicators per country. Data was analyzed in a regression modeling framework. Longitudinal trends were 
assessed via linear and non-linear model fitting. Competing models of disease trajectories were ranked by the Akaike’s 
Information Criterion (AIC). A novel approach involving hierarchical clustering was developed to classify countries 
based on the effects of lockdown measures on new COVID-19 caseloads surrounding the lockdown period.

Results:  Univariate analysis identified 11 variables (employments in the agriculture, service and industrial sectors, 
percent population residing in urban areas, population age, number of visitors, and temperatures in the months of 
Jan-Apr) as independently associated with COVID-19 infections at a global level (variable p < 1E-05). Multivariable 
analysis identified a 5-variable model (percent urban population, percent employed in agriculture, population density, 
percent population aged 15–64 years, and temperature in March) as optimal for explaining global variations in COVID-
19 (model adjusted R-squared = 0.68, model p < 2.20E-16). COVID-19 case trajectories for most countries were best 
captured by a log-logistic model, as determined by AIC estimates. Six predominant country clusters were identified 
when characterizing the effects of lockdown intervals on variations in COVID-19 new cases per country.

Conclusions:  Globally, economic and meteorological factors are important determinants of early COVID-19 
incidence. Analysis of longitudinal trends and lockdown effects on COVID-19 highlights important nuances in 
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Background
First manifesting as an acute respiratory illness from 
infection with a zoonotically derived novel coronavirus 
named severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) [1], the associated coronavirus disease 
of 2019 (COVID-19) has rapidly spread worldwide with 
devastating impacts on public health and global eco-
nomic activity [2], resulting in over 6.4 million reported 
deaths worldwide (as of July, 2022). Insights into the early 
epidemiological landscape of disease transmission, along 
with effects of public policy interventions, are crucial 
for providing evidence-based information that will help 
national authorities respond more effectively to future 
epidemics by tailoring public policy responses to specific 
geographic and social contexts. Along these lines, some 
important findings have been reported with respect to 
the effects of contact tracing and travel restrictions on 
COVID-19 spread [3, 4], as well as the evolving epidemi-
ology and transmission dynamics of disease [4, 5]. How-
ever, important gaps in our understanding of the global 
nature and the scope of original interactions between the 
virus and its environments still remain [6].

Although the devastating second and third waves of 
the pandemic currently underway in many countries are 
much discussed, these waves are largely a result of vari-
able viral mutations, diverse government policies and 
increased social interactions that has less to do with 
pre-existing natural and human factors that facilitated 
the pandemic in the first place [7, 8]. In this manuscript, 
we have focused exclusively on the association of these 
potential early factors to  COVID-19 transmission by 
restricting our examinations to the global spread of the 
pandemic over the first 6 months, ending June 30, 2020.

A large body of pre-existing literature makes it clear 
that virus transmission is the result of an interaction 
among several factors, including host behavior and 
defense mechanisms, virus infectivity, population density 
and environmental determinants [9]. Previous studies on 
respiratory disorders have also emphasized the prevalent 
role of meteorological parameters on virus transmission 
and infectivity [10, 11]. For coronavirus infections, epide-
miological and laboratory studies have identified ambi-
ent temperature to be a critical factor in the survival and 
transmission of other coronaviruses such as MERS-CoV 
and SARS-Cov-2 [12], and climate components includ-
ing temperature, rainfall and wind speed have been pos-
tulated as biological catalysts for human-COVID-19 

interactions in independent studies from several loca-
tions worldwide [11, 13, 14]. However, results from these 
studies are sometimes in conflict regarding the asso-
ciation between COVID-19 infection and the effect of 
temperature [15–20], highlighting the need for further 
investigations into these findings.

A retrospective analysis of government responses to 
epidemics and pandemics over the last century suggests 
that governments vary considerably in their adoption of 
non-medical interventions  including quarantine, social 
distancing and contact tracing to stem the tide of pub-
lic health disruptions [21]. In the absence of vaccines or 
effective pharmaceuticals, the majority of governments 
necessarily adopt some policy interventions to mitigate 
the spread of the disease. As COVID-19 assumed pan-
demic proportions, mitigating strategies by necessity had 
to become more stringent in order to flatten the curve of 
virus transmission. Consequently, contact suppression 
through lockdown emerged as the foremost administra-
tive defense strategy in almost all countries to reduce 
mortality, preserve health-care service capacity, and buy 
time to develop effective pandemic control measures. 
However, socioeconomic pressures also necessitate that 
lockdowns be relaxed or lifted, even if temporarily, to 
prevent economic collapse. How such imposition and 
lifting of mandatory lockdowns affects COVID-19 case-
loads is important for understanding the effectiveness of 
large-scale quarantine efforts.

Continuing along the lines of these prior reports, we 
have investigated the possible roles of specific pre-exist-
ing demographic, health, meteorological and economic 
variables in determining the first phase of COVID-19 
infection burden globally. Additionally, we have char-
acterized the heterogeneity in COVID-19 incidence 
trajectories across countries, and explored patterns in 
the differential influence of government-imposed lock-
downs on the trajectories of new cases surrounding 
the lockdown periods. The goal of the present work is 
not so much to build predictive models of disease inci-
dence or other outcomes, but rather to characterize the 
early factors associated with COVID-19 incidence, and 
investigate similarities and differences in the courses of 
disease incidence at a per-country level. Taken together, 
these analyses provide valuable  information on  global 
variations in disease incidence that would allow for more 
informed decision making for future infections.

country-specific responses to infections. These results provide valuable insights into disease incidence at a per-coun-
try level, possibly allowing for more informed decision making by individual governments in future disease outbreaks.
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Methods
Study design
This is an observational, cross-sectional study involving 
COVID-19 incidence data (total confirmed cases) from 
203 countries over the first 6 months of the pandemic 
(Jan 1, 2020 to June 30, 2020), along with data on selected 
demographic, meteorological, economic and health-
related determinants by country. All data are publicly 
available, aggregated at the country level, and do not con-
tain any individual identifications.

Data collection
Data for COVID-19 confirmed cases was obtained from 
https://​ourwo​rldin​data.​org/​coron​avirus-​source-​data, 
which is updated daily, and in turn is based on data main-
tained by Johns Hopkins University. Data on additional 
demographic, meteorological, health or economic vari-
ables were downloaded from a variety of sources listed in 
Table  1. For each variable, values from the most recent 
year for which data on the greatest number of countries 
were available were utilized (varied between 2016 and 
2019). Variables were broadly categorized into Demo-
graphic, Meterological, Health or Economic domains. A 
full copy of the source datasets has been made available 
in Dryad (doi:https://​doi.​org/​10.​5061/​dryad.​612jm​6465).

Statistical analysis
The majority of the statistical analysis and visualiza-
tions were conducted via software packages in R (version 
3.6.3, February 2020) through the R Studio IDE (version 
1.2.5033–1, Dec 2019) [22]. All R scripts and accompa-
nying data files area available from https://​github.​com/​
sg3451/​covid-​19-​relat​ed.

Analysis of longitudinal trends in COVID‑19 incidence 
per country
For each country, daily COVID-19 total confirmed case 
data was obtained from the day of the first reported 
infection until June 10, 2020. As the number of total 
COVID-19 cases varied widely between countries, we 
expressed the daily country-level increases in COVID-
19 infections as a proportion of the maximum number 
of cases observed for that country (June 10, 2020), essen-
tially scaling the data between 0 and 1 for each country. 
We assessed longitudinal trends in the rise in COVID-
19 cases in each country by considering them as growth 
curves and fitting the number of confirmed COVID-19 
infections using linear (quadratic) and nonlinear (expo-
nential, logistic, log-logistic, and Gompertz) regression 
models. The modeling equations are given as below [23]:

Logistic: f (x) = α +
β−α

1+ x
γ

δ , where α,β,γ,and δ are 4 

estimable parameters representing the maximum asymp-
tote (α), minimum asymptote (β), S-curve inflection 
point (γ) and Hill coefficient (δ), respectively.

Log-logistic: f (x) = α +
β−α

1+
(

ln x
ln γ

)δ , where all four 

parameters have the same meaning as for logistic 
regression.

Gompertz: f(x) = β + (α − β) exp (− exp (γ(x − δ))), where 
β is the lower asymptote, α is the upper asymptote, γ is 
the growth-rate coefficient and δ is the time at inflection.

Exponential: f (x) = α + (β − α)exp
(

−x
y

)

 , a 3-param-
eter model where α is the lower asymptote, β is the upper 
asymptote and γ is the steepness of the growth curve.

Quadratic: f(x) = α + β1x + β2x2, where α is the value of 
f(x) at x = 0, and β1 and β2 are the polynomial regression 
coefficients.

A 4-parameter model was found to be optimum for 
logistic, log-logistic, and Gompertz fitted data. For each 
country, non-nested models were compared using the 
AIC criterion, and the model with the lowest AIC was 
selected. These analyses were conducted via the drc 
[23], aomisc (https://​rdrr.​io/​github/​Onofr​iAndr​eaPG/​
aomisc/) or tidyverse packages in R(v4.1.0) [24]. The drc 
and aomisc packages were used for their advantages of 
employing  numerical optimization based self-starter 
functions for calculating initial values for  the nonlin-
ear regression models [25]. As we generated models on 
all countries simultaneously, it was considered judi-
cious to use the data-guided self-starter functions avail-
able in these packages, rather than having the user guess 
the initial parameters for each model for each country 
separately.

Effect of lockdown on COVID‑19 incidence per country
To identify the effect of the ‘lockdown’ period on new 
COVID-19 case trajectories in a country-specific man-
ner, we obtained data on lockdown dates from https://​
aurav​ision.​ai/​COVID-​19-​lockd​own-​track​er/, as well as 
internet-based reports from individual searches (Addi-
tional file 1), considering data until June 30, 2020. Coun-
tries that either had  not imposed, or imposed but not 
withdrawn their lockdown by June 30 were excluded 
from the analysis (Peru, Belarus, Nepal, etc.), resulting in 
a final list of 106 countries with documented lockdown 
start and end dates. For countries with multiple lock-
down dates (e.g. USA, China), the most common value 
(mode) of the lockdown start and end dates was taken to 
be representative for that country. The beginning and end 
of lockdown period was then overlaid on plots showing 
the number of daily new confirmed COVID-19 cases ver-
sus time. We considered a 5-point criteria to characterize 

https://ourworldindata.org/coronavirus-source-data
https://doi.org/10.5061/dryad.612jm6465
https://github.com/sg3451/covid-19-related
https://github.com/sg3451/covid-19-related
https://rdrr.io/github/OnofriAndreaPG/aomisc/
https://rdrr.io/github/OnofriAndreaPG/aomisc/
https://auravision.ai/COVID-19-lockdown-tracker/
https://auravision.ai/COVID-19-lockdown-tracker/
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a country’s response to the lockdown: (a) percent change 
in the number of daily cases between the beginning and 
end of lockdown, (b) presence of a peak in the number 
of daily cases within the lockdown period, (c) percent 
change in the number of daily cases 5 days after lifting 
of lockdown (early post-lockdown effects), (d) percent 
change in the number of daily cases 14 days after lifting of 
lockdown (later post-lockdown effects), and (e) percent 
change between day 5 and day 14 post-lockdown. The 
percent change values were then thresholded as follows: 
For (a),  > 20% change was indicated as 1,  < − 20% change 
was indicated as − 1 and a change between − 20 to 20% 
was indicated as 0. For (b), the presence of a peak was 
ascertained by visual inspection and indicated as 1 or 0 
depending on the presence or absence of a peak. For (c, 
d, e), changes > 10% were indicated by 1, changes <− 10% 
were indicated by − 1 and changes between − 10 to 10% 
were indicated by 0. The thresholded data was used to 
cluster the countries via hierarchical clustering using the 
pheatmap function in R [26], such that countries with 
similar lockdown-related COVID-19 case patterns were 
grouped together. Specifically, we employed agglomera-
tive hierarchical clustering where all countries were first 
treated as single clusters, followed by iterative joining of 
the least dissimilar countries to form larger clusters, until 
a single cluster was obtained. The pairwise similarity 
between any two countries was assessed via the Euclid-
ean distance, defined as the shortest distance between 
two samples, whereas the distance between any two clus-
ters was computed via the ‘complete linkage’ method 
[27]. In order to test the robustness of these cutoffs, we 
considered alternate values of 10 and 30% for (a), and 5 
and 15% for (c,d,e), and calculated the number of coun-
tries with altered status based on the Hamming distance 
(calculated in R) [28] (Additional file 2). The results show 
that there was not a large change in the number of coun-
tries with altered status based on different cutoffs – out of 
106 countries, only between 0 and 12 countries showed 
a change in status depending upon the criteria (a,c,d,e). 
Thus the results of hierarchical clustering are unlikely to 
change drastically as a function of different thresholds.

Regression analysis of global COVID‑19 incidence
Bivariate linear regression analysis was conducted by 
examining the association of each demographic, mete-
orological, health or economic variable to the total num-
ber of confirmed COVID-19 cases (log10 transformed). 
A subset of the independent variables was also log trans-
formed. Regression modeling was performed via the 
tidyverse package in R (www.​tidyv​erse.​org), by setting 
the modeling method to “lm” in the geom_smooth argu-
ment in ggplot. Results of the linear regression modeling 
were included in the graphs via the ggpubr and ggpmisc 

packages in R. A copy of the dataset used for bivariate 
regression is available from Dryad (doi:https://​doi.​org/​10.​
5061/​dryad.​612jm​6465).

In addition to the bivariate analysis, we carried out 
variable subset selection in order to identify a parsimo-
nious set of predictors for COVID-19 incidence. Models 
including all variables that were significant in bivariate 
analysis were first compared, and optimal sub-models, 
containing a combination of selected variables, were 
identified based on the Akaike Information Criterion 
(AIC). These analyses were conducted using the  lmSub-
sets package in R [29], based on newly developed theo-
retical strategies for the ‘all-subset regression’ problem. 
The variables selected in the optimized models were then 
included in a multivariable linear regression model to 
assess their relative contributions to COVID-19 cases. 
Power analysis for multivariable linear regression was 
conducted via the pwr package in R [30, 31]. Multicollin-
earity among the selected variables was assessed via the 
variance inflation factor metric (VIF) through the ‘car’ 
package in R [32].

Results
Longitudinal trends in COVID‑19 associations by country
Out of a total of 210 countries with available data, 38 
countries with a maximum COVID-19 case load of 
less than 100 were excluded from the analysis. We fur-
ther excluded Benin (BEN) because of an anomaly in 
its cumulative daily reported COVID-19 data which 
increased and then decreased over time. This resulted 
in a final list of 171 countries for longitudinal analysis of 
confirmed COVID-19 case patterns. For each country, 
the trajectory of total COVID-19 cases over time was 
examined via regression analysis, including both linear 
and non-linear regression models. The fits obtained with 
the various models were then compared using the AIC 
criterion and the model with the lowest AIC was selected 
as optimal for that country (Additional file  3). The lon-
gitudinal trends results show that the selected model fits 
the data for individual country well.

From the 5 models considered, the COVID-19 trajec-
tory for the majority of countries was best explained by 
the log-logistic model (70 countries), followed by logis-
tic (44 countries) and Gompertz models (41 countries), 
whereas fewer countries were optimally explained by the 
quadratic (9 countries) and exponential models (6 coun-
tries). Figure 1 shows representative countries with opti-
mal fits from the 5 modeling approaches (optimal model 
fits for all countries shown in Additional file 4).

Association of individual variables to COVID‑19 cases
Linear regression modeling of the logarithm of con-
firmed total COVID-19 reported cases for each country 

http://www.tidyverse.org
https://doi.org/10.5061/dryad.612jm6465
https://doi.org/10.5061/dryad.612jm6465
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(normalized to per million population) against selected 
demographic, meteorological, economic and health indi-
cators identified several variables as being significantly 
associated to the COVID-19 cases. To test the robustness 
of these findings, we analyzed total COVID-19 confirmed 
cases at 3 different time points approximately 1 month 
apart (April 10, May 11 and June 10). Table 2 shows the 
results of bivariate analysis for all 24 variables tested 
across the 3 time points, including coefficient estimates 
with standard error, adjusted coefficients of determina-
tion (R-squared) and significance of the regression fits.

A total of 11 variables including employments in the 
agriculture, service and industrial sectors, percent popu-
lation residing in urban areas, population age, number of 
visitors, and temperatures in the months of Jan-Apr were 
found to be significant across all 3 time points tested 
(p < 1E-05), with the coefficient of determination (R2) 
ranging from 0.2–0.49 (May 11 data). Regression plots 
of the top 6 most significantly associated variables are 
shown for the May 11 data in Fig. 2 (plots for all 24 vari-
ables available in Additional file 5).

Multivariable regression modeling of COVID‑19 association
We used multivariable linear regression to identify a par-
simonious subset of variables that can jointly explain the 
variation in the number of confirmed COVID-19 cases 
across countries. An all-subsets regression analysis was 

undertaken using variables with p < 0.01 in their respec-
tive bivariate analyses (15 variables), resulting in a series 
of sub-models consisting of different subsets of the vari-
ables included in the analysis. Data from 131 countries 
was finally available for modeling, after removing missing 
data. Power analysis [31] showed the power for multivari-
able regression under these conditions to vary between 
0.86–0.96 for significance levels of 0.01–0.05, for small 
effects (coefficient of determination, R2 at 0.2). Based 
on AIC scores, a model with 5 variables (percent urban 
population, percent employed in agriculture, population 
density, percent population aged between 15 and 64 yrs., 
and temperature in March) was found to be the most 
parsimonious with respect to the global incidence of con-
firmed COVID-19 cases for May 11 data (model adjusted 
R2 = 0.68, model p-value < 2.20E-16) (Fig.  3a,b). In this 
figure, a total of 15 sub-models were generated contain-
ing between 1 and 15 regressors (excluding intercept). 
Variables are selected directly in relation to the frequency 
of their appearances in the sub-models. The popula-
tion age related variable was not individually significant 
after adjusting for other variables for the May 11 data 
(Table  3). Multicollinearity among the selected 5 varia-
bles was tested via the variance inflation factor (VIF), and 
found to be low for all variables (VIFs< 5), requiring no 
further adjustments (Fig. 3c).

Fig. 1  Analysis of the time-course of increase in COVID-19 total cases by country, using different growth-curve models. For each plot, the actual 
number of COVID-19 cases are shown as open circles and the fitted curve is shown in red. The y-axis refers to the proportion of daily total cases to 
the maximum total cases recorded in the time interval studied (0–1 scale), and the x-axis refers to the time-course as dates. The best growth-curve 
model for each country was determined by minimization of the AIC. Two exemplar countries for each model-type are shown with model names 
listed at the top. Countries are indicated by their ISO codes
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Effect of lockdown on new COVID‑19 cases
As the majority of the countries adopted some meas-
ure of restriction (lockdown) to reduce the inci-
dence of COVID-19 infection, and also removed such 
restriction (partially or entirely) after a certain period 
of time, we investigated the patterns by which the 
daily new cases of COVID-19 infections were affected 
due to the lockdown. Countries which had imposed 
and relaxed lockdowns by June 10, 2020 were con-
sidered, whereas data on total COVID-19 cases were 
considered until June 30, 2020 to identify post-lock-
down trends. Lockdown-associated COVID-19 new 
case data was prepared and thresholded according to 
the 5-point criteria as described under Methods, and 
the per-country results are shown in Additional file 6. 
The thresholded dataset was then subjected to Euclid-
ean hierarchical clustering and the results visualized 
by a dendrogram and heatmap (Fig.  4). The dendro-
gram was cut at the level of 6 branches (dotted blue 
line in Fig. 4) resulting in the countries being grouped 
into 6 different clusters. Representative plots for each 
of the six major clusters are shown alongside the den-
drogram (lockdown plots for all countries are shown 
in Additional file 7).

Discussion
Although the second, third and fourth waves of the pan-
demic are at the center of attention and discussion today, 
these outbreaks are primarily driven by viral mutagenesis, 
variable government policies and lack of social restraint, 
and have less predictive value for planning measures against 
future infection outbreaks. Pre-existing natural and human 
factors that engendered the pandemic in the first place are 
more informative for understanding the global COVID-19 
experience, and for drawing important country-specific 
lessons that can be incorporated into future decision mak-
ing. This is the motivation of the current study.

Despite a large body of research, uncertainties remain 
regarding the importance of environmental factors 
and their roles in COVID-19 transmission [33]. Results 
obtained from these studies have not conclusively 
resolved whether weather condition plays a key role in 
SARS-CoV-2 transmission [19]. Several factors can con-
tribute to the observed discrepancies, including differ-
ences in outcome measures (counts of confirmed cases, 
new cases, or total cases or cumulative incidence rate), or 
weak correlations between temperature and COVID-19 
propagation [16]. Compared to these published reports 
that focused on limited geographic regions, we examined 

Fig. 2  Association of selected variables with total COVID-19 cases in May 2020. Each plot shows the change in total COVID-19 cases per million 
population (expressed in log10 units) on the y-axis and the relevant variables on the x-axis. The line of best fit is shown along with its equation, 
the coefficient of determination (R2) and the associated significance of the regression model. Some selected countries with very high or very low 
COVID-19 cases are annotated by their ISO codes
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Fig. 3  Multivariable regression analysis of variables associated with COVID-19 cases. a results from all-subsets regression analysis to identify 
the best sub-model with a smaller list of variables, based on minimization of the AIC. Selected variables are highlighted in red (in addition to 
the intercept). The x-axis refers to the model size (number of variables in each sub-model), and y-axis lists all the variables tested as follows: 
Temp_Jan(oC,2016), temperatures in January in degrees Celsius in 2016; Temp_Feb(oC, 2016), temperatures in February in 2016; Temp_Mar(oC, 2016), 
temperatures in March, 2016; Temp_Apr(oC, 2016), temperatures in April, 2016; Urban%(2018), percentage of urban living population in 2018; Emp_
service_%total(2018), percentage of total male employment in service sector in 2018; Emp_agri_%total(2018), percentage of total male employment 
in agriculture in 2018; Emp_ind_%total(2018), percentage of total male employment in industry in 2018; log-COVID_duration(May2020); duration 
(in days) between May 11, 2020 and the first reported COVID-19 case in a country (log10 scale); log_popdens(2018), population density in 2018 
(log10 scale); log_Rain_Feb(mm,2018), rain in millimetres in February 2018 (log10 scale); Age_15_64yrs(2018), population between the ages 15 to 64 
as percentage of the total population in 2018; >65yrs_%total(2018), population aged 65 and above as percentage of the total population in 2018; 
Land_area(sqkm), land area in square kilometres. b change in AIC scores as a function of the number of variables included in the model. c Variance 
inflation factor (VIF) test of multicollinearity among the 5 variables in the sub-model identified from all-subsets regression analysis. The x-axis refers 
to the VIF scores and the y-axis refers to the selected variables

Table 3  Statistical summary of multivariable regression analysis. Statistical estimates of top variables identified after subset selection 
and minimization of the AIC are reported. Col 1, variable name; col 2, regression estimate for variable; col 3, standard error of estimate; 
col 4, t-statistic for regression; col 5, significance of variable association (p-value); col 6, variable association significance codes

Significance codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’

Residual standard error: 0.4992 on 125 degrees of freedom

Multiple R-squared: 0.6928; Adjusted R-squared: 0.6805

F-statistic: 56.39 on 5 and 125 degrees of freedom, p-value < 2.20E-16

Variable Estimate Std.Error t value Pr(>|t|)

(Intercept) 1.25828 0.665479 1.891 0.06097 .

G_Temp_C_Mar2016 −0.02075 0.004482 −4.63 9.04E-06 ***

E_Urban_pct2018 0.009165 0.002912 3.148 0.00206 **

E_Employ2018_agri_pct_tot_emp −0.021051 0.003676 −5.726 7.22E-08 ***

log_D_Popden2018 0.175727 0.087111 2.017 0.04581 *

D_Age_15_64y_2018 0.014129 0.009234 1.53 0.12854
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global trends between confirmed COVID-19 cases and 
temperatures, by considering country-specific confirmed 
COVID-19 cases against their recorded monthly tem-
peratures. Our results from both bivariate and multivari-
able analysis generally agree with a negative association 
of confirmed COVID-19 cases with temperatures, espe-
cially in the months of March and April.

In addition to the effects of temperature, our analysis 
also indicates a significant negative correlation of global 
COVID-19 incidence with markers of increased eco-
nomic activity such as percent urban population  and 
employment in industrial and service sectors, reflecting 
the consequences of increased congregation and sociali-
zation in the population [34]. This finding agrees with 
similar associations observed during the spread of other 
viral outbreaks with economic booms and trade expan-
sions [35], for example an increased incidence of influ-
enza associated with increases in employment [36]. These 
findings feed into the larger observation of the relation-
ships between economic activity and population health, 
mediated by increased interactions between populations 
not otherwise exposed to each other’s disease  ecologies 
(e.g. business and leisure visitors), and also dense perma-
nent settlements around areas of high industrialization. 
Historically, both of these relationships have been found 
to negatively impact health of the populations exposed 
[37]. Overall, our analysis supports this trend. Multivari-
able regression modeling with variable subset selection 
further affirmed that a mixture of economic, demo-
graphic and meteorological variables was adequate for 
explaining the variation in total COVID cases at a global 
level.

The analysis of time course trajectories of COVID-
19 incidence showed important differences among the 
countries examined. While the log-logistic and logis-
tic models were adequate in modeling the COVID-19 
trajectories for the majority of countries, there were 
nations whose SARS-Cov-2 incidence patterns were 
better modeled by exponential or quadratic fits. Such 
country-specific differences are probably the result of a 
combination of factors including natural elements (e.g. 
meteorology), socioeconomic regulators (e.g. urbani-
zation), as well as governmental interventions (e.g. 
quarantines). Finally, we investigated the viral spread 
trajectories in additional detail by overlaying informa-
tion on government-induced  lockdown restrictions 
on the time course curves and estimating their effects 
on new COVID-19 case incidence. While effectively 
administered lockdowns are expected to successfully 
reduce the virus reproduction number, premature lock-
down relaxation may lead to epidemic rebounding in 
still susceptible populations [38]. To identify possible 
recurring patterns in the countries’ experiences with 
COVID-19 incidence around lockdown, we employed 
hierarchical clustering, that allowed us to classify the 
responses into six main clusters depending on how 
the COVID-19 case numbers fluctuated before, dur-
ing, and immediately after lockdowns. We found that 
countries such as Australia used lockdowns effectively 
to bring down the viral case-load to near zero levels 
well within the lockdown period, and kept it low post-
lockdown, whereas another cluster represented by 
France for example, achieved near zero case-loads only 
as the lockdown was lifted. In contrast, countries such 

Fig. 4  Characterization of new COVID-19 cases at the beginning and close of lockdowns. Countries were characterized on a 5-point heuristic based 
on new COVID-19 cases prior to, during, at the end of, and 5-days and 14-days post lockdown, and subjected to hierarchical clustering. Dendrogram 
and associated heatmap shows six major clusters (indicated by dashed blue line on the dendogram). Time-courses of new COVID-19 cases are 
shown for an exemplar country from each cluster, with the lockdown start and end days indicated by the two blue vertical bars in each plot. 
Heatmap is color-coded by the assigned values of the five-point criteria (− 1 = skyblue, 0 = ivory, 1 = coral)
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as India continued to see a steady rise in case num-
bers during, as well as after lockdown end, probably 
due to premature timing of both lockdown initiation 
and relaxation [38, 39]. While the current analyses do 
not establish causality between lockdown timings and 
COVID-19 incidence, it does allow for a retrospective 
assessment of the country clusters and identification 
of patterns representing variation in COVID-19 inci-
dences around lockdowns. Based on these, the timing 
of a lockdown relative to the stage of the pandemic 
appears to be an important factor in SARS-CoV-2 
transmission patterns, as also reported elsewhere [40].

Overall, our results provide empirical data on a global 
level that are consistent with some of the published 
modeling assumptions [41], and should prove useful 
for future policymaking. For example, our analysis of 
COVID-19 trends over time demonstrate country-spe-
cific trajectories following different growth models, and 
thereby provides important comparative information for 
future reference and planning in the respective countries. 
Similarly, our analysis of new COVID-19 cases around 
lockdown periods identify clusters containing coun-
tries with shared experiences, that should provide valu-
able comparative information regarding better planning 
of lockdown timing in relation to an infection’s spread. 
Finally, our multivariable analysis identified a small set 
of economic, meteorological and demographic variables 
that are significantly associated with global COVID-19 
cases. Knowledge about such associations can allow indi-
vidual countries to either take relevant mitigating steps 
when possible (e.g. reducing industrial economic activ-
ity sooner) or increase the pace of preventive measures 
if such countries have high indicators for the associated 
variables (e.g. countries with high urban population, high 
population density, lower agricultural employment, etc.).

Some limitations to the study are now discussed. First 
and foremost, we depended on publicly reported data 
on COVID-19 incidences per country, that, as has been 
pointed out, may have variable accuracies for different 
countries, especially with regard to underreporting of 
cases [42, 43]. Inefficient contact tracing, lack of accurate 
patient registration and differences in policy interven-
tions are some of the contributing factors for inaccurate 
estimates of disease incidence, which could introduce 
some bias in the results reported in this study. Secondly, 
in our efforts to maximize the number of countries with 
complete information on candidate factors affecting 
COVID-19 incidence, we sometimes had to use slightly 
older datasets (e.g. from 2016 for temperature and rain-
fall) which could potentially differ from more recent 
estimates. This could also change the regression mod-
eling estimates somewhat, although the lessons learned 

would most likely still remain the same. Finally, the 
results obtained in this study are at the national level and 
should not be extrapolated to sub-national units due to 
the possibility of ecological fallacy. For example, regional 
variation in COVID-19 incidence or differential suscep-
tibility among different age groups in a country can, in 
fact, introduce ecological bias when aggregated at the 
national level.

In summary, our analysis contributes to the field of 
infectious diseases in three important aspects. First, 
our study models the trajectory of SARS-CoV-2 spread 
at a country level and specifies important differences 
in the time-course of virus transmission around the 
world. Second, we examine key economic, meteorologi-
cal, geographic and health determinants of the spread 
of COVID-19 on a global level. Third, our study inves-
tigates virus-infection statistics around lockdown peri-
ods and identifies both similarities and differences 
in the countries’ experiences with new virus infec-
tions around such restrictions. These analyses provide 
valuable prior data on disease incidence at global and 
national scales, allowing for more informed decision 
making for future disease outbreaks.
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