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Abstract 

Background Influenza epidemics pose a threat to human health. It has been reported that meteorological factors 
(MFs) are associated with influenza. This study aimed to explore the similarities and differences between the influ-
ences of more comprehensive MFs on influenza in cities with different economic, geographical and climatic charac-
teristics in Fujian Province. Then, the information was used to predict the daily number of cases of influenza in various 
cities based on MFs to provide bases for early warning systems and outbreak prevention.

Method Distributed lag nonlinear models (DLNMs) were used to analyse the influence of MFs on influenza in differ-
ent regions of Fujian Province from 2010 to 2021. Long short-term memory (LSTM) was used to train and model daily 
cases of influenza in 2010–2018, 2010–2019, and 2010–2020 based on meteorological daily values. Daily cases of influ-
enza in 2019, 2020 and 2021 were predicted. The root mean squared error (RMSE), mean absolute error (MAE), mean 
absolute percentage error (MAPE) and symmetric mean absolute percentage error (SMAPE) were used to quantify the 
accuracy of model predictions.

Results The cumulative effect of low and high values of air pressure (PRS), air temperature (TEM), air temperature 
difference (TEMD) and sunshine duration (SSD) on the risk of influenza was obvious. Low (< 979 hPa), medium (983 
to 987 hPa) and high (> 112 hPa) PRS were associated with a higher risk of influenza in women, children aged 0 to 
12 years, and rural populations. Low (< 9 °C) and high (> 23 °C) TEM were risk factors for influenza in four cities. Wind 
speed (WIN) had a more significant effect on the risk of influenza in the ≥ 60-year-old group. Low (< 40%) and high 
(> 80%) relative humidity (RHU) in Fuzhou and Xiamen had a significant effect on influenza. When PRS was between 
1005–1015 hPa, RHU > 60%, PRE was low, TEM was between 10–20 °C, and WIN was low, the interaction between dif-
ferent MFs and influenza was most obvious. The RMSE, MAE, MAPE, and SMAPE evaluation indices of the predictions 
in 2019, 2020 and 2021 were low, and the prediction accuracy was high.
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Background
Influenza is an acute infectious respiratory disease 
caused by influenza viruses [1]. Globally, there are an 
estimated 1 billion cases, 3 million to 5 million severe 
cases, and 290,000 to 650,000 influenza-related respira-
tory deaths each year, according to data from 1999 to 
2015 [2]. Until late 2017, the World Health Organiza-
tion (WHO) estimated that seasonal influenza was 
associated with a total of 250,000 to 500,000 deaths 
from all causes annually [3, 4]. In early 2019, a publi-
cation from the Global Burden of Disease Study (GBD) 
estimated a range of 99,000 to 200,000 annual deaths 
from lower respiratory tract infections directly attrib-
utable to influenza [3, 5]. When an influenza pandemic 
occurs, this number increases dramatically [6]. Using 
preliminary data obtained during the influenza sea-
son, the US Centers for Disease Control and Preven-
tion (CDC) estimated that there were between 32.0 
and 43.4 million influenza illnesses, between 401,000 
and 706,000 hospitalizations, and between 27,300 
and 49,000 influenza-associated deaths during 2018–
2019 [7, 8]. The number of influenza reports in China 

increased substantially from 2018 to 2019, and the 
incidence rate increased from 55.09/100,000 in 2018 
to 253.36/100,000 in 2019 [9]. Among them, the pro-
portion of influenza-like illness (ILI) in the total num-
ber of outpatient and emergency cases (ILI%) in the 
southern region reached 8%, and the positive rate of 
nucleic acid detection of ILI samples was nearly 50%. 
The epidemic trend of influenza in China dropped pre-
cipitously in the early stage of the coronavirus disease 
2019 (COVID-19) epidemic, reaching a very low level 
in history due to the COVID-19 lockdown effect. How-
ever, the intensity of the influenza epidemic in China 
has gradually increased since the autumn and winter of 
2021. In particular, considering that the severe COVID-
19 pandemic continues, COVID-19 and other respira-
tory infectious diseases may overlap [10]. Influenza is 
highly contagious, the speed of transmission is fast, the 
population is generally susceptible, it is easy to trigger 
a cluster of epidemics in schools and kindergartens, 
the social impact is large, and the burden of disease is 
serious.

Conclusion All eight MFs studied had an impact on influenza in four cities, but there were similarities and differ-
ences. The LSTM model, combined with these eight MFs, was highly accurate in predicting the daily cases of influ-
enza. These MFs and prediction models could be incorporated into the influenza early warning and prediction system 
of each city and used as a reference to formulate prevention strategies for relevant departments.

Keywords Meteorological, Influenza, DLNM, LSTM

Fig. 1 Location of Fujian Province in China and regional distribution. (Note: The red box indicates the location of the four cities analysed in this 
study: Fuzhou, Xiamen, Nanping and Longyan)
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Fujian Province, abbreviated as "Min", is a provin-
cial administrative region of the People’s Republic of 
China located on the southeast coast of China (Fig. 1), 
with a total land area of 124,000 square kilometres 
and a geographical location between 23°33’ and 28°20’ 
north latitude and 115°50’ and 120°40’ east longitude. 
Fujian Province has a subtropical oceanic monsoon 
climate that is warm and humid. However, the climate 
in the region varies greatly; the coastal areas of south-
east Fujian belong to the tropical climate zone of South 
Asia and northeast Fujian, northern Fujian and western 
Fujian are in the central subtropical climate zone. The 
vertical differentiation of hydrothermal conditions in 
each climate zone is apparent (Supplemental Fig. 1).

Many studies have shown an association between MFs 
and influenza, and temperature, sunshine, humidity and 
precipitation are usually used for research. Research 
reports have shown that low temperature, low humidity 
and less sunshine can increase the transmission of influ-
enza [11–16]. However, it has been reported that both 
low and high temperatures can increase the intensity 
of influenza activity [16, 17]. Different research results 
showed that the average relative humidity was not signifi-
cantly correlated with influenza incidence, but there was 
a significant positive correlation between average relative 
humidity at lag 6 and the incidence of influenza, indicat-
ing that the relative humidity also had a positively cor-
related long-term lag effect on influenza incidence [15]. 
In contrast to Gomez-Barroso et  al.’s research results 
showing a statistically significant increase in influenza 
transmission in relation to an increase in the quantity of 
precipitation, Soebiyanto et  al. reported that influenza 
associations with precipitation were location-dependent 
and inconclusive [13, 14]. Moreover, Wang et  al.’s study 
indicated that high air pressure increased the risk of 
influenza [12]. Data types (e.g., daily data, weekly data), 
analysis model schemes, and region-specific characteris-
tics (e.g., the spatial distribution of the weather stations, 
socioeconomic factors, terrain, living environment, etc.) 
may have led to these differences in research reports [18]. 
For instance, the use of weekly averages for meteorologi-
cal parameters and unreasonable meteorological infor-
mation collection stations could have affected the level of 
precision [13].

There are 9 cities and 1 comprehensive experimental 
development zone in Fujian Province, and the marked 
meteorological regional heterogeneity is substantial. 
Thus, it is not suitable to use a single meteorological and 
influenza association model for assessing and predicting 
influenza in the province.

Therefore, this study focused on four representative cit-
ies in different regions of Fujian Province (eastern Fujian, 
southern Fujian, northern Fujian and western Fujian) 

(Fig. 1) and analysed the MFs that are not often consid-
ered: wind speed (WIN), air pressure difference (PRSD), 
and air temperature difference (TEMD). Fuzhou and Xia-
men are coastal cities, with air pressure and wind speed 
increasing from inland to coastal areas and precipitation 
decreasing. Fuzhou is the capital of Fujian Province and 
the political, economic and cultural centre of the prov-
ince. Xiamen is densely populated and economically 
developed and is a special economic zone of China, with 
high temperatures and more sunshine hours. Nanping 
and Longyan both belong to inland mountainous areas, 
and the wind speed is low. Nanping is located at a higher 
latitude and the average annual temperature and mini-
mum temperature are low; the average annual pressure in 
Longyan is low (Supplemental Fig. 1).

In this study, distributed lag nonlinear models 
(DLNMs) were proposed to analyse the characteristics, 
similarities and differences of meteorological influences 
on influenza in four cities to provide a basis for predict-
ing influenza through meteorology.

Influenza cases were then predicted in the four cit-
ies. The latest research report confirms that in the field 
of time series data analysis and prediction with com-
plex relationships (such as disease real-time analysis 
and prediction), compared with traditional machine 
learning methods, long short-term memory (LSTM) 
in deep learning models yields better results [19–24]. 
In this study, LSTM combined with MFs was proposed 
to predict the daily cases of influenza in the four cities 
to provide technical support for the construction of an 
influenza prediction and early warning system in each 
city and help relevant departments formulate prevention 
strategies.

Materials and methods
Data sources
The influenza case and population data of in Fujian Prov-
ince from January 1, 2010, to December 31, 2021, were 
derived from the China Disease Prevention and Control 
Information System. The China Disease Prevention and 
Control Information System is a monitoring and report-
ing system for infectious diseases, chronic diseases and 
injuries established by the Chinese government in 2003. 
At present, it covers all medical and health institutions 
at and above the township health centre level in Fujian 
Province. While realizing real-time case reporting, the 
system also realizes dynamic and rapid statistical analysis 
of monitoring data and early monitoring of disease out-
break information. Influenza cases were defined as lab-
oratory-confirmed cases and cases clinically diagnosed 
by medical and health institutions at all levels according 
to the diagnostic criteria for epidemic disease cases (WS 
285–2008) [25], excluding suspected cases: (A) clinically 
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diagnosed cases included an epidemiological history and 
acute high fever (axillary temperature ≥ 38  °C), chills, 
headache, aches and pains or other symptoms and signs; 
(B) confirmed cases included clinically diagnosed and ILI 
cases with positive laboratory test results of influenza 
samples. Among them, ILI refers to fever (axillary tem-
perature ≥ 38 °C), accompanied by cough or sore throat, 
and a lack of other laboratory diagnostic basis. In Sup-
plemental Fig.  1, the meteorological means of Fujian 
Province from 1991 to 2020 were derived from the Fujian 
Climate Center. The daily meteorological value data of 
Fujian Province from January 1, 2010, to December 31, 
2021, were derived from the meteorological data network 
of the China Meteorological Administration (http:// data. 
cma. cn). Then, the missing values were proofread and 
supplemented by the Fujian Climate Center on the state 
30-year average climate daily data in China surface cli-
mate standard value data derived from this website. The 
MFs in this study included 8 daily value indicators: air 
pressure (PRS, hPa), PRSD (hPa), relative humidity (RHU, 
%), precipitation (PRE, mm), air temperature (TEM, °C), 
TEMD (°C), WIN (m/s), and sunshine duration (SSD, h). 
PRS, RHU, TEM and WIN were measured as daily aver-
ages, PRE was measured as the daily cumulative precipi-
tation, SSD was measured as the number of sunshine 
hours, PRSD was defined as the difference between the 
maximum and minimum values of daily air pressure, and 
TEMD was defined as the difference between the high-
est and lowest values of daily temperature. The number 
of lag days in this study referred to the number of days 
delayed by the date of influenza onset compared to the 
statistical date of the corresponding MFs.

Statistical analysis of data
Regional maps in Fig.  1 and Supplemental Fig.  1 were 
drawn using ArcGIS (version 10.2, ESRI, Redlands, CA, 
USA). In Supplemental Fig.  1, kriging interpolation was 
used for drawing [26, 27].

R software (version 4.1.0, R Foundation for Statistical 
Computing, Vienna, Austria) was used to statistically 
analyse the daily cases of influenza and daily meteoro-
logical value data, in which the population with influenza 
was stratified by sex (male and female), age (0 ~ 12 years, 
13 ~ 59  years, ≥ 60  years) and area (urban and rural), of 
which the age-stratified group was divided according to 
the epidemiological characteristics of influenza in Fujian 
Province. First, a simple analysis of influenza and MFs 
was conducted, and the number of influenza cases per 
day in the four cities was summarized. Then, the differ-
ences in daily sequence values between sexes and regions 
were tested by t test, and the differences in daily sequence 
values between age groups were tested by F test. Differ-
ences in daily sequence values between the total number 

of influenza cases and MF values among the four cities 
were examined by F test. Differences with P < 0.05 were 
considered statistically significant. Then, the time series 
for the variables were plotted. The Pearson correlation 
analysis plot between MFs and influenza was generated. 
Finally, a DLNM was used to analyse the influence of 
MFs on influenza. The interaction diagrams between dif-
ferent MFs and influenza were plotted.

The DLNM incorporates both nonlinear depend-
ency and delay effects, with the essential goal of adding 
a lag dimension to the exposure–response relationship 
through a cross-basis function, thereby describing the 
variation distribution of its effects in both the independ-
ent and lagging dimensions [28]. A cross-base matrix 
for meteorological data and the daily incidence of influ-
enza was established, and the quasi-Poisson connection 
function was used for estimation. After controlling for 
the effects of day of the week, seasonality and long-term 
trend [29, 30], the relationship between meteorological 
factors and influenza was fitted using the DLNM model. 
The basic model is as follows:

Yt is the t-day number of influenza cases, α is the con-
stant term, xi is the influencing factor, βi is the coeffi-
cient, Zj is the potential confounding factor, Dow is the 
dummy variable for the effect of the day of the week, df 
is the degree of freedom, and NS (…) is a natural spline 
function. Df was determined by the Akaike information 
criterion (AIC) minimum criterion, which ultimately 
determined that PRS, PRSD, RHU, PRE, TEM, TEMD, 
WIN, and SSD were all defined as 3. Accounting for the 
incubation period, epidemic characteristics and pretest 
results of influenza, the maximum number of lag days 
was determined to be 14  days, and lag days that had 
cumulative effects of MFs on the risk of influenza in each 
population were 3 d, 7 d and 14 d. The average of each 
MF was used as a reference value. The meteorological 
grade values were set according to the RR value of the 
pretest, which was used to analyse the cumulative effect 
on influenza in each population stratification. The MFs 
of the pretest included the minimum value, the median 
value, the average value, the maximum value and other 
values. Meteorological values with higher or more typi-
cal RR values were adopted. The grading value of MFs is 
shown in Table 1.

Python (version 3.8.13, Python Software Foundation, 
Delaware, USA) and Tensorflow (version 2.8.0, Google 
Brain Team, Mountain View, CA, USA) were used to pre-
dict the daily cases of influenza through LSTM combined 
with MFs.

LSTM is an artificial intelligence deep learning algo-
rithm suitable for time series data analysis. Its key feature 

(1)log[E(Yt)] = α +βixi + NS Zj, df + Dow

http://data.cma.cn
http://data.cma.cn
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is the ability to connect the network model in front of 
and behind neurons so that the network can process the 
time series data from both directions. The basic principle 
of LSTM is shown in Supplemental Attachment 1.

The root mean square error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE) 
and symmetric mean absolute percentage error (SMAPE) 
were used to quantify the accuracy of the model’s pre-
dictions, and the smaller the value was, the higher the 
prediction accuracy and the higher the confidence (best 
value = 0; worst value =  + ∞) [21, 31, 32].

The RMSE calculation formula is as follows:

The MAE calculation formula is as follows:

The MAPE calculation formula is as follows:

The SMAPE calculation formula is as follows:

(2)RMSE =

√

1

n

∑n

i=1
(Pi − Xi)

2
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1

n
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100%
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|

(5)SMAPE =
100%
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In the above formulas, Pi is the observed daily inci-
dence of influenza cases on the i day, and Xi is the pre-
dicted daily incidence of influenza cases on the i day 
where i = 1…, n.

Results
Descriptive statistics
In total, 136,199 influenza cases were reported over the 
study period in Fujian Province, with an incidence rate 
of 353.70/100,000 people. Fuzhou, Xiamen, Nanping 
and Longyan reported 13,729 cases, 21,324 cases, 4,315 
cases and 5,696 cases, and the incidence rates (1/100,000) 
were 191.22, 563.83, 160.83 and 217.19, respectively. 
There were significant differences between sex, age, and 
urban and rural groups for influenza in the four cities 
(P < 0.001). The total influenza cases and various MFs 
varied significantly among the four cities (P < 0.001). The 
detailed characteristics of influenza and MFs are pre-
sented in Table 2 and Supplemental Table 1.

Figure  2 shows the time series of influenza cases and 
MFs in the four cities, revealing that there was a certain 
seasonal periodicity in the daily values of influenza, PRS, 
PRSD, RHU, PRE, TEM, TEMD, WIN and SSD in the 
four cities, and there was a certain consistency in their 
fluctuations. This indicates that there may be a correla-
tion and lag between influenza and MFs.

Table 1 Grading values of MFs used to analyse the cumulative effect on influenza in each population stratification

Variables Fuzhou Xiamen Nanping Longyan

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

PRS (hPa) 979 994 1012 1026 975 988 1008 1017 968 985 1000 1015 950 965 975 990

PRSD (hPa) 2 8 16 24 2 12 20 39 2 4 8 15 2 4 8 12

RHU (%) 27 60 80 100 23 60 80 100 36 60 75 100 25 60 85 100

PRE (mm) 0 3 30 244 0 4 30 172 0 3 60 154 0 3 60 152

TEM (°C) 3 10 23 33 4 13 23 32 -1 4 13 31 2 13 23 31

TEMD (°C) 1 5 10 17 1 5 10 17 1 5 10 21 2 6 13 22

WIN (m/s) 1 3 6 9 1 4 6 9 2 3 — — 1 3 5 7

SSD (h) 0 2 8 12 0 2 8 12 0 2 8 12 0 2 8 12

Table 2 Stratified influenza characteristics of populations in the four cities based on daily cases

Variables Sex Age (years) Area

Males Females 0 ~ 12 13 ~ 59 60 ~ Urban Rural

Total cases 25,092 19,972 23,624 19,375 2,065 27,133 17,931

Constituent ratio(%) 55.68 44.32 52.42 42.99 4.58 60.21 39.79

t/F 36.44 259.40 33.76

p 0.00 0.00 0.00
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Correlation analysis
There were highly positive and negative correlations 
between influenza and PRS and TEM in all four cities, 
among which the correlation values (r) in Fuzhou were 
0.21 and 0.22, respectively. Between most of the MFs in 
the four cities, the correlations between PRS and TEM 
and between SSD and TEMD were strongest. However, 
there were inconsistencies among the four cities. For 
instance, there was a positive correlation between RHU 
and TEM in Xiamen, Longyan and Fuzhou, among which 
Xiamen had a stronger correlation (r = 0.22); however, 
Nanping had a negative correlation (r = -0.20). There was 
an obvious positive correlation between PRSD and SSD 
in Nanping and Longyan, while there was a negative cor-
relation in Xiamen, but the correlation between them was 
not obvious in Fuzhou. The detailed correlations between 
influenza and various MFs are presented in Fig. 3.

DLNM analysis
The cumulative effect a PRS (< 985 hPa) lag of 6 to 8 days 
showed risk factors, and the peak was at 7 cumulative 
days. However, there was a difference between the low 
PRS peaks in the four cities, with the peaks in Fuzhou 

and Xiamen concentrated at 975–979 hPa and Longyan 
appearing at 964  hPa (RR: 1.09, 95% CI: 1.01–1.46). An 
extreme PRS lag of 0 to 2 days was a risk factor for influ-
enza (Longyan, 950 hPa, lag 1 d, RR = 1.56, 95% CI: 0.78–
3.10). The cumulative effect of a high pressure (> 112 hPa) 
lag of 7 to 14  days on the risk of influenza gradually 
increased, but the peak of high pressure in Longyan was 
only 990 hPa (lag 14 d, RR: 6.01, 95% CI: 1.05–34.30).

High PRSD (> 8 hPa) had a significant effect on influ-
enza and increased rapidly with increasing PRSD, and 
the cumulative risk effect increased with increasing lag 
time and then gradually decreased, reaching a peak with 
a lag of 7  days (Nanping, 15  hPa, RR = 30.04, 95% CI: 
0.58–1544.04).

The cumulative effect of low RHU (< 40%) on the risk 
of influenza in Fuzhou and Xiamen was obvious, while 
high values (> 80%) in Fuzhou and Longyan were obvious 
(Fuzhou, 100%, lag 7 d, RR = 1.86, 95% CI: 1.17–2.97).

The cumulative effect of PRE on the risk of influenza in 
Xiamen and Longyan increased with the increase in PRE, 
among which PRE in Xiamen gradually decreased with 
the increase in the number of lag days (172 mm, lag 0 d, 

Fig. 2 Time series of influenza cases and MFs in the four cities. (Note: Some extremely high MF values were not included in these maps)



Page 7 of 17Zhu et al. BMC Public Health         (2022) 22:2335  

RR = 3.52, 95% CI: 1.11–11.20), whereas it first decreased 
and then increased in Longyan.

Low (< 9  °C) and high (> 23  °C) TEM were risk fac-
tors for influenza in the four cities, but there were also 
differences. TEMs in Fuzhou and Xiamen at 10 to 15 °C 
were also risk factors (Fuzhou, 10 °C, lag 14 d, RR = 1.84, 
95% CI: 1.18–2.88), showing a wave type between 3 and 
33 °C, while Nanping and Longyan exhibited a "U" shape 
between -2 and 32 °C. The cumulative effect of low tem-
perature on the risk of influenza first increased and then 

decreased with the increase in the number of lag days, 
while high temperature risk first decreased and then 
increased.

Both low (< 3  °C) and high (> 8  °C) TEMDs were 
risk factors for influenza. Low TEMD had cumulative 
effects on the risk of influenza in Fuzhou, Xiamen and 
Nanping, and the cumulative effect of high TEMD risk 
increased with increasing TEMD (Nanping, 21 °C, lag 7 
d, RR = 3.72, 95% CI: 1.06–13.08). However, the cumu-
lative effect of influenza risk in Fuzhou and Xiamen 
weakened rapidly at a TEMD > 12 °C.

Fig. 3 Pearson correlation analysis of influenza and MFs
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Fig. 4 3D plots of the effects of MFs on influenza
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With the increase in WIN (> 6  m/s, Nanping 
was > 2  m/s), the risk of influenza gradually increased; 
WIN in Fuzhou and Longyan first decreased and then 
increased with the increase in lag time, whereas WIN 
in Xiamen and Nanping continued to increase with the 
increase in lag time.

SSD was a risk factor for influenza at 1 to 4 h and 11 
to 13 h. The cumulative effect of high SSD on the risk of 
influenza decreased with increasing lag time and then 
increased. The cumulative effect of low SSD risk first 
decreased and then increased with increasing lag time. 
Nanping was mainly at greater risk of influenza develop-
ment when SSD was small (0 h, lag 14 d, RR = 3.88, 95% 
CI: 1.08–14.01).

Additional characteristics of the impact of MFs on 
influenza in the four cities are presented in Fig. 4.

Population stratification analysis
Low (< 979  hPa), medium (983–987  hPa), and high 
(> 112  hPa) PRS were risk factors for women, children 
aged 0–12 years, and rural populations, with the cumu-
lative risk effect of high PRS being more significant and 
increasing with the increase in lag time (the low, medium 
and high PRS values in Longyan were < 955  hPa, 972–
978 hPa, and > 980 hPa, respectively).

The cumulative effect of influenza risk among women 
increased with increased PRSD and lag days. Low PRSD 
(< 8  hPa) was more significant in the ≥ 60-year-old 

population and increased with increasing lag time (Long-
yan, 4 Pa, lag 14 d, RR = 1.97, 95% CI: 0.80–4.86). Com-
pared with urban areas in the four cities, considering the 
coverage of PRSD values that had a significant positive 
correlation with influenza, lag time span and RR values, 
the risk of PRSD on influenza was more significant in 
rural areas.

The cumulative effect of RHU on influenza among 
women was significant when the lag time was long (≥ 7 
d). Compared with men, the effect of high PRE on influ-
enza among women in Xiamen, Nanping and Longyan 
was more significant.

The cumulative effect of both low and high TEMs on 
the risk of influenza among women was more significant. 
The cumulative effect of low TEM on the risk of influenza 
in the 0 ~ 12-year-old group and ≥ 60-year-old group in 
Xiamen was more significant.

The effect of high WIN on influenza in the ≥ 60-year-
old population was more significant and increased with 
the increase in WIN and lag days. However, in Nanping, 
the effect of WIN on influenza was more obvious in the 
0 ~ 12-year-old group (3 m/s, lag 3 d, RR = 3.46, 95% CI: 
0.50–23.88). Compared with urban areas, WIN had a 
more significant impact on influenza in rural populations.

The cumulative effect of high SSD (> 7 h) on influenza 
among women people ≥ 60  years old and urban popu-
lations was more significant. The effect of low SSD on 
influenza in rural populations was more significant.

Fig. 5 Cumulative effects of MFs on the risk of influenza in each population. (Note: (a). When RR > 10, it was counted as 10. (b). Meteorological 
values were divided into four grades, and the details are presented in Table 1. (c). The number of lag days was divided into three grades: 3 d, 7 d and 
14 d.)
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Additional characteristics of the impact of MFs on 
influenza in each population are presented in Fig. 5.

Association between the Interaction of Different MFs 
with Influenza
Among the four cities, the interaction between differ-
ent MFs and influenza was the most obvious in Xiamen 
and the least obvious in Nanping. Overall, when PRS 
was between 1005–1015 hPa, RHU > 60%, PRE was low, 
TEM was between 10–20  °C, and WIN was low, the 
interaction between different MFs and influenza was 
most obvious. However, the value range was not com-
pletely consistent among the four cities. For instance, 
the PRS range of Fuzhou was 1005–1025 hPa, Xiamen 
was 1005–1015  hPa, and Longyan was 972–985  hPa. 
In addition, the interaction between SSD and other 
MFs was not obvious in the impact on influenza. Addi-
tional characteristics of the association between the 

interactions of different MFs with influenza are pre-
sented in Fig. 6.

LSTM Forecast
In this study, we designed a prediction algorithm based 
on LSTM to capture the temporal relationship in the 
sequence. The network model was trained with histori-
cal data until it converged. The historical time series data 
included time, climate data and influenza incidence data. 
After coding, LSTM was input to capture the timing rela-
tionship, and then the fully connected layer was entered 
after coding and splicing to output the timing prediction. 
A brief description of the operation is shown in Fig. 7.

First, the meteorological and influenza data from 2010 
to 2018 were trained and modelled to predict the daily 
cases of influenza in 2019. Then, the data from 2010 to 
2019 were trained and modelled to predict the daily cases 
of influenza in 2020. Finally, the data from 2010 to 2020 

Fig. 6 Associations between the interaction of different MFs and influenza
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were trained and modelled to predict the daily cases of 
influenza in 2021.

The LSTM forecast evaluation indicators of the four 
cities are shown in Table 3. The RMSE, MAE, MAPE, and 
SMAPE values of the forecast evaluation indicators for 
2019, 2020 and 2021 decreased yearly. The true and fore-
cast values for 2019–2021 are shown in Fig. 8. The results 
show that the predicted and actual values matched well 
and that the accuracy was high.

Discussion
MFs can affect the onset of influenza by influencing the 
reproduction, growth and spread of pathogens, as well as 
human behaviour, immunity, etc.

This study showed that 8 meteorological indicators had 
different degrees of influence on influenza in four cities 
in Fujian Province.

This study found that both low and high PRS were risk 
factors for influenza in the four cities. Figure 2 shows that 
the association between an influenza season epidemic 

and high PRS (cold high PRS), as well as the subepi-
demic season and low PRS, was relatively clear, consist-
ent with the results of DLNM analysis. Low, medium and 
high PRS were risk factors for women, children aged 0 to 
12  years and rural populations with influenza, possibly 
because these populations with extreme cold weather and 
high PRS were more susceptible to influenza infection. It 
may be that women and children aged 0 to 12 years have 
lower immunity, and their risk of viral infection is greater. 
Due to the urban heat island effect, the TEM in rural 
areas is lower, so they are more susceptible to cold high 
PRS.

TEM is the MF that has the greatest impact on influ-
enza, primarily due to the impact of low TEM [16, 33, 
34]. However, the results of this study showed that low 
(< 9  °C) and high (> 23  °C) TEMs were risk factors for 
influenza in the four cities. Low TEM is mainly distrib-
uted during the winter and spring influenza epidemic 
seasons. Low TEM can reduce the body’s resistance, and 
this is during cold high PRS. Cold high PRS often brings 

Fig. 7 A brief analysis of the LSTM operation process in this study

Table 3 LSTM prediction evaluation indicators for the four cities

Training years Prediction year Evaluation 
indicator

Fuzhou Xiamen Nanping Longyan

2010 ~ 2018 2019 RMSE 8.21 11.57 3.88 5.27

MAE 4.65 7.19 2.49 2.54

MAPE 0.52 0.47 0.76 0.88

SMAPE 0.54 0.66 1.12 1.52

2010 ~ 2019 2020 RMSE 2.89 16.78 2.06 2.95

MAE 1.89 6.50 0.88 1.35

MAPE 0.59 0.66 0.75 0.79

SMAPE 0.79 1.31 1.44 1.48

2010 ~ 2020 2021 RMSE 2.40 3.12 1.63 2.84

MAE 1.75 2.43 1.00 1.47

MAPE 0.55 0.84 0.69 0.73

SMAPE 0.84 1.03 1.44 1.22
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dryness, the nasal mucosa is prone to fine cracks, and 
viruses can easily invade. Studies have also reported that 
low TEM enhanced the viability of influenza viruses and 
provided more appropriate conditions for transmission 
[16, 35]. In low TEM weather, people are more active 
indoors, and there is less ventilation through windows 
and doors, which is conducive to the spread of the virus. 
High TEMs are distributed in the summer and autumn 
of the small peak period in influenza, when the highest 
TEM has often been reached. During this time, home 
and public places generally use air conditioning, indoor 
low-temperature drying is conducive to virus growth, 
the indoor and outdoor temperature difference is larger, 
autoimmunity is reduced, and the long-term sealed 
indoor environment also easily promotes the spread of 
influenza, which may explain why high TEM is a risk 
factor for influenza onset. At the same time, this is also 
one of the important reasons for the impact on influenza 
caused by high TEM during times of low PRS.

The effect of PRSD, TEMD and WIN on influenza has 
rarely been reported. However, this study showed that 
these three indicators are important for studying the 
effects of MFs on influenza. DLNM analysis showed that 

rural people are more sensitive to changes in PRS. The 
effect of high TEMD was more significant on influenza, 
while Fig.  2 shows that TEMD had two peak periods 
per year, which were distributed between the low peak 
period and peak period of TEM. Figure 3 also shows that 
TEMD and TEM were significantly positively correlated, 
so a high TEMD contributed more to the secondary peak 
period of influenza in summer and autumn. This study 
also showed that the risk of influenza onset increased 
with WIN (> 6  m/s) (Nanping was > 2  m/s). Figure  2 
shows that WIN had two peak periods per year, con-
sistent with the TEMD distribution period, which may 
aggravate the somatosensory TEMD effect, especially in 
the winter and spring low temperature seasons, which 
increases the risk of influenza virus infection by reducing 
the body’s immunity. Therefore, PRSD, TEMD and WIN 
are important indicators to explore the impact of MFs on 
influenza.

This study showed that the interaction between dif-
ferent MFs and influenza was most obvious when PRS 
was between 1005–1015  hPa, RHU was greater than 
60%, PRE and WIN were low, and TEM was between 
10–20 °C. Because these MFs were superimposed in late 

Fig. 8 Influenza forecasts and true values for the four cities from 2019 to 2021 based on LSTM
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winter and early spring in southern China, when cold 
high PRS and RHU were high but PRE and WIN were not 
high, this suggests that in the winter and spring influenza 
epidemic seasons, the interaction between different MFs 
and influenza was significant. However, different research 
reports were not completely consistent. For instance, this 
study showed that the interaction effect between higher 
humidity and higher air pressure and lower air tempera-
ture on influenza was obvious. The peaks of influenza 
infection risk were observed at low temperatures or at 
high temperatures with high relative humidity, although 
there were differences between Shanghai, Hong Kong, 
and British Columbia [36]. The interaction effect of low 
relative humidity with low ambient temperature and high 
air pressure aggravated the incidence of influenza in Lan-
zhou [12].

However, the effects of MFs on influenza were also 
inconsistent in these four cities. One reason was that the 
range and peak value of MFs that affected influenza were 
inconsistent in the four cities. For instance, the peak of 
low PRS impact in Fuzhou and Xiamen was concentrated 
in 975 ~ 979 hPa, high PRS referred to > 112 hPa, while in 
Longyan, low PRS impact peak appeared at 964 hPa, and 
high PRS was only 990 hPa. Another reason was that the 
influence mode of MFs on influenza was not completely 
consistent. For instance, the TEM in Fuzhou and Xiamen 
was also a risk factor for influenza onset at 10 to 15  °C, 
showing a wavy type between 3 and 33 °C, while in Nan-
ping and Longyan, it showed a "U" type between -2 and 
32  °C. Low RHU had a significant effect on influenza in 
Fuzhou, Xiamen and Nanping, while high RHU had a 
more significant effect in Longyan. Furthermore, there 
were completely different patterns of association between 
MFs and influenza in the different cities. For instance, the 
increase in PRE in Xiamen and Longyan increased the 
risk of influenza, while the opposite effect was observed 
in Fuzhou and Nanping. TEMD seemed to have the 
opposite effect in Xiamen and Nanping. The interaction 
between PRS and other MFs (except SSD) was obvious in 
the impact on influenza, but the values in the four cities 
were not completely consistent; the PRS range of Fuzhou 
was 1005–1025  hPa, the range in Xiamen was 1005–
1015 hPa, and the range in Longyan was 972–985 hPa.

Many factors may affect the relationship between MFs 
and influenza.

Supplemental Fig.  1 and Supplemental Table  1 show 
that Fuzhou and Xiamen are coastal cities, and their 
meteorological conditions are relatively consistent. 
Therefore, their MFs have many similarities in the impact 
on influenza. However, Xiamen has a small area, and 
the meteorological stations are more representative, 
while Fuzhou has a vast area, and there is a large differ-
ence between urban and rural MFs and the geographical 

environment. Therefore, there are some inconsistencies 
between Fuzhou and Xiamen regarding the impact of 
MFs on influenza. Supplemental Fig.  1 and Supplemen-
tal Table  1 also show that Nanping and Longyan have 
meteorological characteristics of small WIN and SSD 
and large TEMD. In addition, Nanping also has a low 
TEM and a high RHU, while the daily minimum, daily 
maximum and daily average of PRS in Longyan are very 
low. These meteorological and geographical differences 
undoubtedly affect the meteorological analysis of influ-
enza risk to a large extent.

In 2021, the urbanization rate of Xiamen’s resident 
population reached nearly 90%. Moreover, Xiamen is 
economically developed and a tourist city. It has a large 
floating population and a large population density. These 
are also important reasons for the high number of influ-
enza cases. The medical and health conditions are supe-
rior in Xiamen, and the influenza case report rate is high. 
Therefore, the reported incidence (563.83/100,000 peo-
ple) rate of influenza in Xiamen is the highest among the 
four cities and the highest in Fujian Province. However, 
Nanping and Longyan account for a high proportion of 
rural areas, and the urbanization rate is less than 60%. 
The density of the resident population is low, with fewer 
aggregation activities. Moreover, they are more moun-
tainous areas, which makes the vertical and horizontal 
distribution of the population more dispersed. The phe-
nomenon of rural children and elderly individuals staying 
behind is very common in China, and they are suscepti-
ble groups, so they are vulnerable to influenza. However, 
most rural people with ILI seek medical treatment in vil-
lage clinics, and case information from village clinics is 
more often than not required to be reported to the China 
Disease Prevention and Control Information System, so 
the reported number of influenza cases underestimates 
the true value. In addition, during the holidays, especially 
the Spring Festival, which is during the season of high 
incidence of seasonal influenza, the population flows fre-
quently, which is conducive to the spread of influenza. 
Xiamen and Fuzhou are obvious cities of population 
import. There is the phenomenon of "empty Spring Fes-
tival city" in China due to the siphon effect of large cit-
ies. At the same time, the return of migrant workers and 
students has changed the phenomenon of children and 
elderly individuals staying behind. The impact of these 
factors on different cities may be inconsistent, but there 
is no detailed research report at present, so the impact on 
the relationship between MFs and influenza needs fur-
ther study.

Moreover, influenza vaccination is the most effective 
means to prevent influenza. In Europe, influenza vacci-
nation rates on average are 45% [37]. In the 2017–2018 
influenza season, 57.9% of children between the ages 
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6  months and 17  years were vaccinated in the United 
States [38, 39]. But in mainland China, the influenza vac-
cination rate was extremely low, had reached the highest 
point in 2010 at 37.3% but dropped to 7% in 2017 [40]. 
The vaccination rate needs to be at least 50%-60% for 
herd immunity to occur. Therefore, the difference in the 
influenza vaccination rate among the four cities is very 
slight.

The dynamic assessment and prediction of epidemics is 
an important part of the prevention and control of infec-
tious diseases. In terms of prediction, the methods com-
monly used in the prediction autoregressive integrated 
moving average (ARIMA) model, susceptible-infectious-
recovered (SIR) model, and recurrent neural networks 
(RNNs) have good performance, but the prediction accu-
racy is not high. The ARIMA model is not suitable for 
modelling nonlinear relationships, the SIR model cannot 
add MFs and cannot make full use of the information in 
the multidimensional input data, gradient extinction eas-
ily occurs in RNNs, and the problem of long-distance 
dependence cannot be handled [31, 41–44].

With the development of artificial intelligence, 
machine learning algorithms have demonstrated advan-
tages in prediction and recognition [45–48]. LSTM is 
an advanced RNN with the ability to learn time patterns 
and store useful memories longer [48]. Due to its unique 
design structure, LSTM has the ability to solve gradient 
extinction problems, handle nonlinear relationships, and 
incorporate MFs. It is also suitable for processing and 
predicting important events with very long intervals and 
delays in time series. Therefore, this study used 8 mete-
orological indicators and historical influenza data to con-
struct an LSTM model, which was actually a multivariate 
LSTM model prediction that was very suitable for pre-
dicting the daily cases of influenza.

The results of this study showed that the RMSE, MAE, 
MAPE, and SMAPE of the 2019–2021 yearly predictions 
and evaluation of influenza cases in the four cities were 
very low by using a multivariate LSTM model of MFs. 
Previous studies have reported that LSTM is superior to 
other methods in predicting viral infectious disease [20, 
21, 49]. Different studies may have different data orders 
of magnitude, so the RMSE and MAE are not suitable for 
comparison with other reports. However, the MAPE and 
SMAPE are not affected by this. This study was consist-
ent with other similar studies with low values [20, 21, 49]. 
Figure  8 also confirms that the true and forecast values 
of the four cities are highly consistent. This shows that 
the eight meteorological indicators used in this study can 
accurately predict the daily cases of influenza through 
LSTM models.

It is worth mentioning that, first, there are regional dif-
ferences in the impact of meteorology on influenza, so 

it is necessary to evaluate and predict by city. Second, at 
present, extreme weather events occur frequently, and 
the effect of climate change is obvious. If the prediction 
time is too long, the prediction value may be unstable 
and inaccurate in the later stage, which will lose practical 
usefulness. In addition, environmental factors, people’s 
living habits, government policies and other factors will 
also have a certain impact on the occurrence and devel-
opment of influenza, and historical cases of influenza 
also participate in LSTM training modelling. Therefore, it 
is recommended to adopt a forecast cycle of half a year or 
one year, incorporate newly collected meteorological and 
influenza data in a timely manner, revise the model, and 
reforecast. The third is to avoid overfitting. LSTM mod-
els risk overfitting or underfitting, which often results in 
poor prediction performance [21, 50]. When the num-
ber of memory neurons is less than 32 or the number of 
training rounds is less than 250, the performance of the 
model deteriorates [21].

This study also has some limitations. First, the influenza 
data of the study came from the China Disease Preven-
tion and Control Information System, which is reported 
by medical and health institutions at all levels in various 
places. Some patients who have cold symptoms only go to 
pharmacies to buy medicines for treatment or go to vil-
lage clinics for treatment without receiving case reports. 
Therefore, the number of reported influenza cases may 
underestimate reality. The proportion of these condi-
tions in various cities may not be consistent, which may 
affect the relationship between meteorology and influ-
enza. Second, in the context of the COVID-19 pandemic, 
the widespread implementation of nonpharmacological 
interventions (e.g., global travel, mask use, physical dis-
tancing, and stay-at-home orders) has reduced the spread 
of some viral respiratory pathogens [51–53], particularly 
in cases where schools prone to cluster influenza out-
breaks have also been suspended due to the COVID-19 
pandemic. And School-age children have been described 
as the driving force behind the family and commu-
nity epidemics during the influenza season [53–55]. 
As a result, the number of reported influenza cases has 
dropped considerably, so the influenza reporting data of 
the past two years may have some impact on the research 
and prediction accuracy of the impact of meteorology 
on the risk of influenza in 2010–2021. Third, a strati-
fied analysis of influenza aetiology has not been carried 
out because only a portion of the cases have undergone 
laboratory pathogen testing, often in medical institutions 
for influenza detection. If only this subset of the cases is 
selected, it will limit the usefulness of the study results.
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Conclusion
Larger meteorological differences between regions can 
lead to significant regional differences in its impact on 
the risk of influenza. All eight MFs studied had an impact 
on influenza in four cities, among them the impact of 
WIN, TEM, PRS, PRSD and SSD was obvious and rela-
tively consistent in the four cities, however, the impact of 
RHU and PRE on influenza varied greatly in the 4 cities. 
The impact of both low and high values of MFS studied 
on the risk of influenza was more significant, especially 
for women, 0 ~ 12-year-old, ≥ 60-year-old and rural pop-
ulation. The LSTM model, combined with these eight 
MFs, was highly accurate in predicting the daily cases 
of influenza in 4 cities. These MFs and prediction mod-
els can be incorporated into the influenza early warning 
and prediction system of each city to make preparations 
to help relevant departments deal with the possible out-
break of influenza and can be used as a reference for each 
city to formulate prevention strategies and risk predic-
tion for adjusting people’s lifestyles.
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