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Abstract 

Background:  Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications glob-
ally. Environmental risk factors may lead to increased glucose levels and GDM, which in turn may affect not only the 
health of the mother but assuming hypotheses of "fetal programming", also the health of the offspring. In addition to 
traditional GDM risk factors, the evidence is growing that environmental influences might affect the development of 
GDM. We conducted a systematic review analyzing the association between several environmental health risk factors 
in pregnancy, including climate factors, chemicals and metals, and GDM.

Methods:  We performed a systematic literature search in Medline (PubMed), EMBASE, CINAHL, Cochrane Library and 
Web of Science Core Collection databases for research articles published until March 2021. Epidemiological human 
and animal model studies that examined GDM as an outcome and / or glycemic outcomes and at least one environ-
mental risk factor for GDM were included.

Results:  Of n = 91 studies, we classified n = 28 air pollution, n = 18 persistent organic pollutants (POP), n = 11 arsenic, 
n = 9 phthalate n = 8 bisphenol A (BPA), n = 8 seasonality, n = 6 cadmium and n = 5 ambient temperature studies. In 
total, we identified two animal model studies. Whilst we found clear evidence for an association between GDM and 
air pollution, ambient temperature, season, cadmium, arsenic, POPs and phthalates, the findings regarding phenols 
were rather inconsistent. There were clear associations between adverse glycemic outcomes and air pollution, ambi-
ent temperature, season, POPs, phenols, and phthalates. Findings regarding cadmium and arsenic were heterogene-
ous (n = 2 publications in each case).

Conclusions:  Environmental risk factors are important to consider in the management and prevention of GDM. 
In view of mechanisms of fetal programming, the environmental risk factors investigated may impair the health of 
mother and offspring in the short and long term. Further research is needed.
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Background
Gestational diabetes mellitus (GDM) is one of the most 
common pregnancy complications worldwide [1]. It 
is defined as any degree of glucose intolerance with 
onset or first recognition during pregnancy [1]. In the 
past 20  years, the prevalence of GDM has increased 
[1–4], so that up to ca. 14% of all pregnancies world-
wide are complicated by GDM [5]. The association 
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between GDM and adverse pregnancy maternal and 
neonatal outcomes like preeclampsia, caesarean sec-
tion, preterm birth, macrosomia and neonatal hypogly-
caemia, is well known [5, 6]. In addition, the evidence 
of long-term health impacts on mothers and offspring 
is increasing [7]. For example, there is a growing risk 
for the mother of developing type 2 diabetes (T2D) 
[8, 9] and cardiovascular disease (CV) [10, 11] in later 
life. However, there is an increased risk for offspring 
to develop obesity and abnormal glucose metabolism 
in mid-childhood [1, 6, 12]. This suggests that meta-
bolic and cardiovascular conditions in the offspring 
may be associated with mechanisms of perinatal (or 
fetal or transgenerational) programming attributable to 
genomic and environmental influences of the mother 
during perigestation [13].

The “Thrifty Phenotype Hypothesis” suggests that 
physiological and metabolic adaptations may be induced, 
for example, by fetal malnutrition [14]. During critical 
periods of pregnancy, the nutrient supply of some organs 
is limited to ensure the supply of the brain or the heart. 
This may lead to a permanent programmed metabolism 
of the fetus which results in harmful long-term conse-
quences triggered by nutritional abundance in later life 
[14]. Studies found an association between exposure to 
longer starving periods in utero and reduced glucose tol-
erance in adulthood [15], and between low birth weight 
and adult glucose and insulin metabolism [16].

The mechanisms behind the Thrifty Phenotype 
Hypothesis are diverse [13]: the genotype of the fetus 
may be influenced by mutations which result in impaired 
insulin secretion or in polymorphisms [17, 18]. Adverse 
intrauterine factors such as maternal food restriction, 
malnutrition, stress, placental dysfunction, obesity, ges-
tational diabetes, hypertension, preeclampsia, and gesta-
tional weight gain are very important influences. Adverse 
postnatal environmental factors like malnutrition, inac-
tivity or aging also play an important role [13].

The “oxidative stress” hypothesis is one other possi-
ble mechanism. In the sensitive state of pregnancy, the 
metabolic state can be easily disturbed, which results in 
dysblances towards oxidative stress, leading to insulin 
resistance, gestational diabetes, and gestational hyper-
tension [19–21]. There seems to be a relation between 
higher rates of malformations and anomalies in offspring 
of diabetic mothers and mechanisms of oxidative stress, 
hyperglycemia-induced ROS, mitochondrial dysfunction 
and altered glycosylation [22–24].

Furthermore, according to Gluckman et  al. and the 
“Predictive Adaptive Responses Hypothesis”, unfa-
vourable environmental conditions induced by dis-
eases such as GDM can lead to adapted developmental 
processes in utero [13, 14, 25]. Another hypothesis 

called the “Fetal Insulin Hypothesis” points out that 
genetically determined alterations within the insulin 
signaling cascades could be a reason for altered fetal 
development as well as long-term metabolic changes 
[14]. This hypothesis is supported by studies which 
showed that genetic influences like polymorphisms 
or mutations, and environmental effects on the fetus, 
which can result in altered glucose tolerance and insu-
lin resistance, are strongly related to long-term conse-
quences like metabolic and cardiovascular diseases in 
later life [14, 22, 26].

It is of great interest to better characterize the poten-
tial environmental risk factors for GDM and its ability 
to “program” short- and long-term consequences in off-
spring. The aetiology of GDM is multifactorial [27]. “Tra-
ditional” risk factors such as excess caloric consumption, 
lack of physical activity and increased BMI [28] do play an 
essential role, but evidence is growing that environmen-
tal exposures such as air pollution [29, 30], climate factors 
[31, 32] and endocrine disrupting chemicals [33–35] and 
metals [36, 37] affect the development of GDM as well. 
Therefore we aimed at performing a systematic review 
analyzing the association between environmental health 
risk factors in pregnancy, including climate factors, chem-
icals and metals, and gestational diabetes or adverse gly-
cemic parameters. We provide an overview of potential 
environmental risk factors for GDM, considering a wide 
range of these factors including epidemiological human 
and animal model studies.

Methods
Search strategy
We conducted a systematic literature search in Med-
line (PubMed), EMBASE, CINAHL, Cochrane Library 
and Web of Science Core Collection databases for 
research articles published until March 2021. Key-
words (gestational diabetes, bisphenol A, phthalate, 
persistent organic pollutants, cadmium, arsenic, air 
pollution, ambient temperature, season, air humidity) 
were selected from the Medical Subject and Embase 
Subject Headings and searched as titles/abstracts 
terms (Additional file 1). In general, the steps of litera-
ture search were:

1.	 Systematic search in databases.
2.	 Elimination of duplicates.
3.	 Screening of titles and abstracts and selection of 

studies.
4.	 Appraisal of selected studies for eligibility.
5.	 Selection of suitable studies and classification of 

these studies according to risk factors.
6.	 Extraction and synthesis of relevant data.
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Study selection
Peer-reviewed epidemiological human studies and ani-
mal model studies with full-texts in English and German 
were included. We considered studies that examined 
GDM as an outcome and/or maternal glycemic outcomes 
and at least one environmental risk factor for GDM. In 
general, we included papers that analyzed the follow-
ing environmental risk factors, as there were the most 
frequently investigated health influences: bisphenol A 
(BPA), phthalate, persistent organic pollutants (POP), 
cadmium, arsenic, air pollution, ambient temperature, 
season and air humidity.

Duplicates, other study designs (e.g. reviews, meta-
analyses, case-reports), letter, comments, notes, edi-
torials and conference proceedings were excluded. In 
addition, we excluded papers that analyzed GDM treat-
ment methods, papers that focussed on women with 
pre-existing type 1 or type 2 diabetes, and publications 
that examined other pregnancy outcomes, for example 
gestational hypertension, preeclampsia, macrosomia and 
preterm birth. The PRISMA flow chart is provided in the 
Additional file 1.

Data synthesis and analysis
We extracted authors, year of publication, location, study 
design, sample sizes, characteristics of the subjects, 
methods, outcomes of interest, study limitations, diag-
nostic criteria for GDM, main findings and statistical 
calculations. Furthermore, we classified the publications 
according to the environmental risk factors and the out-
comes (GDM vs. glycemic parameters).

Results
Our systematic literature research resulted in 819 articles 
(see Additional file 1). After excluding unsuitable articles 
and duplicates (n = 514), n = 105 full-text articles were 
assessed for eligibility based on our inclusion and exclu-
sion criteria. In total, n = 91 studies were analyzed in this 
systematic review. We identified n = 28 air pollution, 
n = 18 POP, n = 11 arsenic, n = 9 phthalate n = 8 BPA, 
n = 8 season, n = 6 cadmium and n = 5 ambient temper-
ature studies. We found no studies examining the asso-
ciation between air humidity and GDM and only n = 2 
animal model studies.

The majority of studies were conducted in China 
(n = 32) and in the USA (n = 25). Five studies took 
place in Taiwan, n = 4 in UK, n = 4 in Canada, n = 4 in 
Australia, n = 3 in Iran, n = 2 in Spain, n = 2 in Greece, 
n = 2 in France, n = 2 in Sweden, n = 1 in Guadeloupe, 
n = 1 in Argentina, n = 1 in Chile, n = 1 in Japan, n = 1 
in Israel and n = 1 in Denmark. Most studies were 
prospective cohort studies (n = 41) and retrospective 

cohort studies (n = 16). 13 publications were case–con-
trol studies and 12 were cross-sectional. 4 papers were 
conducted as longitudinal birth cohort studies, n = 2 
were interventional studies, n = 2 population based 
cohort studies and n = 2 were semi-ecological-studies. 
Table 1 gives an overview of the included studies.

GDM screening methods
Across the human studies, different methods of GDM 
screening and diagnosis were used. The most frequent 
screening methods involved a one-step approach where 
GDM is diagnosed based on results of a single fasting 
oral glucose tolerance test (OGTT), as well as a two-
step approach where women are pre-screened, gener-
ally with a non-fasting glucose challenge test (GCT). In 
some studies GDM was self-reported. Five studies also 
evaluated various markers of insulin resistance (IR) for 
example the Matsuda index and the homeostasis model 
assessment of insulin (HOMA-IR, HOMA S) and beta 
cell function like insulinogenic index (IGI)/HOMA-IR, 
and HOMA B.

Table 1  Overview of included studies

Environmental risk factor Number of studies
 Air pollution 28

 Persistent organic pollutants (POP) 18

 Arsenic 11

 Phthalate 9

 Seasonality 8

 Bisphenol A (BPA) 8

 Cadmium 6

 Ambient temperature 5

Locations Number of studies
 China 32

 USA 25

 Taiwan 5

 UK 4

 Canada 4

 Australia 4

 Iran 3

 Spain 2

 Greece 2

 France 2

 Sweden 2

 Guadeloupe 1

 Argentina 1

 Chile 1

 Japan 1

 Israel 1

 Denmark 1
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Environmental risk factors
Phenols and GDM (n = 5 studies)
Overall, the studies showed no clear and rather hetero-
genic results [38–42]. Hou et al. (n = 390 [38] and Zhang 
et  al. (n = 1841) [42]) indicated significant associations 
(p < 0.01) for BPAF and 2-t-OP, whereas two prospective 
cohort studies (n = 535 [41], n = 620 [40]) and one case–
control-study (n = 22 cases, 72 controls [39]) did not 
observe clear associations between BPA and GDM. In a 
cohort-study by Wang et al., the odds of GDM were even 
reduced by 27% (OR = 0.73; 95% CI = 0.56, 0.97) [40].

Phenols and glycemic outcomes (n = 4)
All n = 4 studies reported positive associations between 
glycemic outcomes and phenols in exposed women [38, 41, 
43, 44]. Three studies, [(n = 350 [43], n = 245 [44], n = 535 
[41]) found significant associations between BPA con-
centrations and glucose levels (p < 0.05 [43], p < 0.01 [44], 
p < 0.05 [41]). However, Bellavia et al. observed this associa-
tion only on obese and overweight women [43].

Pthalates and GDM (n = 6)
An animal model study performed on rats (n = 24) 
showed significant positive associations for the progres-
sion of GDM through Di-n-butyl phthalate (p > 0.05 [45]).

Consistent with this, 3 of 5 human studies observed 
positive associations between certain phthalates (mono-
iso-butylphthalate, mono-n-butylphthalate, mono-2-
ethyl-5-oxohexyl phthalate (p < 0.05) [46], monoethyl 
phthalate (95% CI:1.61 (1.10, 2.36) [47], mono-(2-ethyl-
hexyl) phthalate (p = 0.019) [48]) and GDM. Two cohort 
studies by Shapiro e al. (n = 1274 [49], n = 1795 [50]) did 
not find significant associations between phthalates (aOR 
third quartile = 2.0, 95% CI = 0.9–4.4; aOR fourth quar-
tile = 2.0, 95% CI = 0.9–4.8) [49] or triclosan (aOR third 
quartile = 0.9, 95% CI (0.3–2.5) aOR fourth quartile = 0.9, 
95% CI (0.4–2.5) [50] and GDM.

Phthaltes and glycemic outcomes (n = 7)
Most studies (n = 4) showed positive associations 
between phthalate exposure and adverse glycemic out-
comes (p < 0.01 [48], p < 0.05 [47, 51, 52]. James Todd 
et al. (n = 350) showed that second trimester mono-ethyl 
phthalate was associated with increased odds of impaired 
glucose tolerance (adj. OR: 7.18; 95% CI: 1.97, 26.15). In 
contrast, n = 3 publications (n = 72 [53], n = 1274 [49], 
n = 1795 [50]) observed not significant associations and 
concluded that phthalate exposure might not be associ-
ated with adverse glycemic values.

POPs and GDM (n = 15)
The majority of the papers found that POPs exposure 
obviously increased the risk for GDM [35, 54–67]. In 

general, n = 10 out of n = 15 studies reported significant 
positive associations (p < 0.05 [55, 57–60, 62, 64, 67], 
p < 0.001 [63], p < 0.01 [66]) for POPs like PCBs [55, 60, 
63, 67], PBDEs [55, 59, 62], EtP [57], PCAs [58], PFASs 
[66] and OCs [64]. In contrast, n = 4 studies found no 
significant associations between POPs and GDM [35, 56, 
61, 65]. Alvarez-Silvares et  al. [54] reported an inverse 
relationship between PBDE and PCB levels in placenta 
and GDM.

POPs and glycemic outcomes (n = 5)
All studies showed that POPs had clear negative effects 
on glycemic parameters in pregnant women [35, 58, 65, 
68, 69]. In total, n = 3 of n = 5 studies reported that POPs 
(PB [68], PFCAs [58], PFAS [65]) resulted in elevated 
blood glucose levels (p < 0.05 [58, 65, 68]. Shapiro et  al. 
(n = 1274) observed elevated odds of gestational IGT 
((OR = 3.5, 95% CI = 1.4–8.9) [35]. Wang et al. (n = 217) 
found time-specific inverse associations (p < 0,05) 
between BP-3 and pregnancy glucose levels [69].

Arsenic and GDM (n = 10)
One animal model study by Bonventura et al. (rats) noted 
clearly that arsenic alters glucose homeostasis during 
pregnancy by altering beta-cell function, increasing the 
risk of developing gestational diabetes (p < 0.05) [70]. 
Overall, most human studies (n = 8 out of n = 9) found a 
positive relation between exposure to arsenic and GDM 
(p = 0.04 [71], p < 0.05 [37, 72–75], p < 0.001 [76], p = 0.37 
[77]). Two of these studies [72, 73] found this association 
only in obese and overweight women. Contrary to this, 
Muñoz et al. reported no significant association between 
GDM and inorganic arsenic exposure tertiles [78]).

Arsenic and glycemic outcomes (n = 2)
Ettinger et  al. (n = 532) reported a significant associa-
tion for arsenic exposure and increased risk for impaired 
glucose tolerance (p = 0.008 [79]), whereas Farzan et  al. 
(n = 1151) found no significant association [72].

Cadmium and GDM (n = 6)
In general, the majority of studies (n = 4 of n = 6) found 
significant positive associations for cadmium exposure 
and GDM (p = 0.003 [80], p = 0.03 [81], p < 0.05 [36, 82]). 
However, Oguri et  al. found no association for elevated 
blood cadmium with increased GDM risk [83] and 
Romano et al. only found a slight association in women 
with normal weight (OR = 1.32, 95% CI 0.88–1.98) [84].

Cadmium and glycemic outcomes (n = 2)
Romano et  al. observed no significant association for 
glucose intolerance (OR = 1.11, 95%CI 0.85–1.45) and 
Soomro et  al. reported that cadmium was statistically 
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related to having had a diagnosis of IGT (aOR = 1.61, 95% 
CI 1.05–2.48) [36].

Season and GDM (n = 7)
In general, most studies (n = 5 of n = 7) found clear sea-
sonal variations in the prevalence of GDM. Strong rela-
tions were reported for GDM prevalence in spring and 
summer in n = 5 studies (p < 0.0001 [85] p = 0.027 [86], 
p = 0.01 [32], p < 0.001 [87], p = 0.02 [88]). However, 
Shen et al. and Petry et al. (n = 2120 [89], n = 1074 [90]) 
observed no significant associations with seasonality 
(p = 0.51 [89], p = 0.4 [90]).

Season and glycemic outcomes (n = 6)
In total, n = 5 of n = 6 studies outlined significant sea-
sonal trends, with higher glucose levels in summer 
(p < 0.0001 [32, 85], p = 0.009 [89], p < 0.001 [91], p < 0.05 
[88]). In contrast, Petry et al. revealed no significant asso-
ciation of OGTT fasting glucose concentrations and sea-
sonality [amplitude: 21.3 (− 24.1, 66.6) [90]).

Ambient temperature and GDM (n = 5)
All publications found that rising environmental tem-
perature was distinctly associated with an increased 
risk of GDM [31, 92–95]. Furthermore, a large cohort 
study by Zhang et  al. reported that extreme low tem-
perature exposure increased the risk of GDM as well 
(p < 0.05 [95]).

Ambient temperature and glycemic outcomes (n = 2)
Retnajaran et  al. (n = 318) indicated that rising environ-
mental temperature in the 3– 4 weeks prior to glucose tol-
erance testing in pregnancy was independently associated 
with maternal beta cell dysfunction and blood glucose 
levels [92] and Vasileiou et  al. noted that temperatures 
above 25 °C might lead to increased glucose levels [94].

Air pollution and GDM (n = 25)
In summary, n = 22 of n = 25 studies showed that air pol-
lution (through PM2.5 [29, 96–107], NO [30, 108–112], 
NO2 [30, 108, 109, 112–114], CO [30, 113], PM10 [98, 
100, 104], BC [98], SO2 [30, 100, 103, 104, 115], O3 [30]) 
was clearly associated with an increased risk of GDM. 
Eight studies found a significant association (p < 0.01 
[107, 109], p < 0.05 [103, 110, 111, 113], (aOR = 1.69 
(1.41, 2.03) [108]). However, Fleisch et  al. (n = 159.373) 
found higher odds of GDM in women less than 20 years 
old (95% CI: 1.08, 1.70) [116], whereas Padula et al. in a 
cross-sectional-study (n = 262.182) reported consistent 
inverse associations between exposure to air pollution 
during the first two trimesters and GDM (p < 0.01) [117].

Air pollution and glycemic outcomes (n = 9)
Overall, the most articles pointed out that exposure to air 
pollution (through PM2.5 [98–100, 105, 107, 118–121], 
PM10 [98, 100, 119, 121], PM1 [121], BC [98], NO2 [119], 
CO [119], SO2 [100]) was able to increase blood glucose 
levels in pregnant women. In n = 7 of n = 9 studies, air 
pollution was significantly associated (p < 0.05 [98, 99, 
105, 119, 120], p < 0.01 [107, 121]) with elevated fast-
ing blood glucose concentrations. The remaining n = 2 
studies by Fleisch et  al. (n = 2.093) [118] and Lin et  al. 
(n = 12.842) [100]) also found associations, but they were 
not significant.

Discussion
In this systematic review, the current evidence assess-
ing environmental risk factors and GDM has been ana-
lyzed. Whilst we found clear evidence for an association 
between GDM and air pollution [29, 96–107], ambient 
temperature [31, 92–95], season [32, 85–88], cadmium 
[36, 80–82], arsenic [37, 70–77], POPs [55, 57–60, 62–
64, 66, 67] and phthalates [45–48], the findings regard-
ing phenols were rather heterogeneous. The results for 
adverse glycemic outcomes also showed clear associa-
tions regarding air pollution [98–100, 105, 107, 118–121], 
ambient temperature [92, 94], season [32, 85, 88, 89, 91], 
POPs [35, 58, 65, 68], phenols [38, 41, 43, 44] and phtha-
lates [47, 48, 51, 52]. Our findings regarding cadmium 
and arsenic were inconsistent with only n = 2 publica-
tions in each case.

The results suggest that environmental health influ-
ences such as bisphenol A (BPA), phthalate, persistent 
organic pollutants (POPs), cadmium, arsenic, air pollu-
tion, ambient temperature and season might be associ-
ated with an increased risk for GDM and with adverse 
glycemic values. These results suggest that environmen-
tal risk factors are important to consider in the manage-
ment and prevention of GDM, especially in the context of 
the growing dissemination of environmental pollutants 
and toxins. In view of key theses on fetal (or transgen-
erational) programming, which were mentioned at the 
beginning, the environmental factors examined may 
impair the health of mother and offspring in the short 
and long-term and lead to the development of diseases. 
Furthermore, the mechanisms underlying the poten-
tial correlation of environmental influences with GDM 
remain obscure and need more research. However, in 
previous research, it was found that air pollution expo-
sure during the second trimester was significantly associ-
ated with GDM. Substances like SO2, oxynitride (NOX, 
NO2, NO), CO, and O3 all showed a linear trend effect on 
GDM [30]. On the other hand, the data on fine particular 
matter (PM) is inconsistent. Some research studies report 
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that greater exposure to fine particulate matter and other 
traffic-related pollutants during pregnancy was not asso-
ciated with GDM [118]. Other studies observed that PM 
in the 2nd trimester were associated with higher odds of 
GDM [29].

Moreover, an association between ambient temperature 
/ seasonality and type 1 and/or type 2 diabetes was found 
in meta-analyses and observational studies [122–124]. 
There was discussion about whether this association could 
be transferred to GDM. Very cold or very high ambient 
temperature may lead to improved insulin sensitivity, due 
to activation of brown adipose tissue [125], or to spurious 
increased blood glucose concentrations, because of dehy-
dration and hemoconcentration [91]. Another systematic 
review also found that the seasonality of GDM was con-
sistent across studies, with higher prevalence of GDM 
generally observed in the summer months and with clear 
associations between ambient temperature and GDM 
[126]. Future studies need more consistency in exposure 
and outcome assessment and diverse study populations 
need to be included to identify potential high-risk popula-
tion subgroups.

Furthermore, other studies also suggest that chemi-
cal exposure has a negative effect on women’s health 
[127, 128]. Chemicals like polychlorinated biphenyls 
(PCBs), perfluoroalkyl substances (PFAS), polybromi-
nated diphenyl ethers (PBDEs), BPA and some pesti-
cides currently in use are widespread in consumer and 
personal care products or food, yet have an endocrine 
disrupting property which can lead to adverse pregnancy 
outcomes such as GDM [129, 130]. Maternal suscepti-
bility for developing GDM might be increased through 
chemicals that disrupt or damage pancreatic β cells and 
environmental chemicals that interfere with the peroxi-
some proliferator-activated receptor signalling pathway, 
which mediates placental development and is funda-
mental to lipid metabolism [131, 132]. Some animal and 
human studies also indicated that endocrine disrupting 
chemicals are diaplacental [133–136] and thus result in 
adverse pregnancy outcomes like fetal growth restriction 
or preterm birth [134, 135]. Even though endocrine dis-
rupting chemicals seem to have an extensive impact on 
women’s and offspring’s health, the data on their effect 
on GDM is still limited.

Besides, metals can persist in the environment and 
some heavy metals such as cadmium have biological half-
lives of more than ten years. Therefore, they have been 
a public health concern for many years [137]. Metals 
including arsenic and cadmium are classified as endo-
crine disrupting substances because they seem to have 
estrogenic activity [138]. High level of arsenic in maternal 
blood or meconium might be associated with increased 
risk of GDM [75, 76]. Other metals like nickel, antimony, 

cobalt or vanadium also showed positive associations 
with an increased risk of GDM [37]. Just like endocrine 
disrupting chemicals, metals are easily transported 
through the placenta [139, 140] and might cause adverse 
pregnancy outcomes like adverse. glycemic parameters, 
small for gestational age and stillbirths [140–142].

Limitations
In some cases and depending on the risk factors, the 
sample sizes were small, which is a limitation as there 
was limited statistical significance. With regard to arsenic 
and cadmium and glycemic values, we were able to iden-
tify only very few studies. In general, further studies are 
required for all risk factors examined in order to repro-
duce the results. Furthermore, we included studies that 
are observational in nature and therefore cannot confirm 
whether the observed association is causal. Potential con-
founders, such as family history of diabetes, diet, physi-
cal activity and other exogenous compounds with similar 
exposure sources were mostly not measured and con-
sidered, but might influence the findings. Probably the 
major limitation of the manuscript is the lack of clear evi-
dence and transfer related to clinical consultation. Never-
theless, it is important to point out a possible overarching 
relationship. More research needs to be done.

Conclusion
This systematic review found that environmental health 
influences such as bisphenol A (BPA), phthalate, per-
sistent organic pollutants (POP), cadmium, arsenic, air 
pollution, ambient temperature and seasonality might 
be associated with an increased risk of GDM. Therefore, 
environmental risk factors must be considered in the pre-
vention and management of GDM – in clinical practice 
and research.

Metabolic conditions in offspring might be a result 
of fetal programming due to maternal perigestational 
genomic and environmental conditions. As far as fetal 
programming is concerned, environmental health influ-
ences can impair the health of mother and child dur-
ing pregnancy and later in life. Our findings need to be 
replicated in other studies. There is a need for further 
research in particular with regard to the association 
between GDM and phenols and with regard to glyce-
mic values and arsenic and cadmium. Furthermore, we 
identified very few animal studies and none on humidity 
and GDM. Overall, more research is required to analyze 
this increasingly important research topic in more detail. 
Besides, the mechanisms underlying the potential corre-
lation of environmental influences with GDM need to be 
analyzed.
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